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Numerical FE investigations of a deterministic and statistical size effect in
notched concrete beams of a similar geometry under three-point bending were per-
formed. The FE analyses were carried out with four different beam sizes. Determinis-
tic calculations were performed assuming constant values of tensile strength. In turn,
in statistical calculations, the tensile strength took the form of random spatial fields
described by a truncated Gaussian random distribution. In order to reduce the num-
ber of stochastic realizations without loosing the accuracy of the calculations, Latin
hypercube sampling was applied. The numerical results were compared with the cor-
responding laboratory tests. The numerical outcomes show that the bearing capacity
of beams and their ductility increase with decreasing specimen size. If the distribution
of the tensile strength is stochastically distributed, the mean beam strength is always
smaller than the deterministic value.
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1. Introduction

The size effect phenomenon (nominal strength varies with the size of struc-
ture) is an inherent property of the behaviour of many engineering materials. In
the case of cementitious materials, both the nominal strength and material brit-
tleness (ratio between the energy consumed during the fracture process after and
before the peak) decrease with increasing element size under tension (Walraven
and Lehwalter [43], Wittmann et al. [46], Bažant and Chen [3], Bažant
and Planas [4], van Vliet [48], Chen et al. [16], Le Bellego et al. [30], van
Mier and van Vliet [34], Vořechovský [49]). Thus, concrete becomes per-
fectly brittle on a sufficiently large scale. The results of laboratory tests which
are scaled versions of the actual structures cannot be directly transferred to
them. The physical understanding of size effects is of major importance for civil
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engineers, who try to extrapolate experimental outcomes at laboratory scale to
results which can be used in big scale situations. Since large structures are be-
yond the range of testing in laboratories, their design has to rely on a realistic
extrapolation of testing results with smaller sizes.

Two size effects are of a major importance: deterministic and the statistical
one. The first one is caused by the fact that fracture is preceded by the formation
of a region with strain localization of a certain width (in the form of a fracture
process zone FPZ), which cannot be appropriately scaled in laboratory tests.
Strain localization is not negligible for the cross-section dimensions and is large
enough to cause significant stress redistribution in the structure. The specimen
strength increases with increasing ratio lc/L (lc – characteristic length of the
micro-structure influencing both the thickness and spacing of localized zones, L –
specimen size). In turn, a statistical (or stochastic) effect is caused by the spatial
variability/randomness of local material strength. In spite of many experiments
exhibiting the noticed size effect in concrete and reinforced concrete elements
under different loading types (Walraven and Lehwalter [43], Bažant and
Planas [4], Bažant [6], Bažant and Yavari [7], Yu [51]), the size effect is
not always taken into account in practical design of engineering structures (what
may contribute to their failure, Bažant and Planas [4], Yu [51]).

For brittle materials, there are only a few reliable approaches to describe the
size effects. For example, two size effect laws proposed by Bažant (Bažant and
Planas [4], Bažant [6]) for geometrically similar structures allow one to take
into account the size difference by determining the tensile strength of structures
without notches and preexisting large cracks (the so-called type 1 size effect),
and of notched structures (the so-called type 2 size effect). In the first type
structures, the maximum load is reached as soon as a macroscopic crack initi-
ates from the fully formed FPZ. In the second type structures, cracks grow in
a stable manner prior to the maximum load. Only the first type of structures
is significantly affected by material randomness causing a pronounced statistical
size effect. The material strength is bound for small sizes by a plasticity limit,
whereas for large sizes the material follows the linear elastic fracture mechanics.
The most known statistical theory is the Weibull’s [45] theory (called also the
weakest link theory) which is based on the distribution of flaws in a material. It
postulates that a structure is as strong as its weakest component. The structure
fails when its strength is exceeded, since a stress redistribution is not considered.
This model is not able to account for a spatial correlation between local mate-
rial properties. Another approach to the size effect was proposed by Carpinteri
et al. [15], which was based on the multi-fractality of a fracture surface which
increased with spreading disorder of the material in large structures. In this
approach, the material strength is bound for small and large sizes by the plastic-
ity limit. The nominal strength decreases in a hyperbolic form with increasing
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structure size. According to Bažant and Yavari [7], the cause of size effect is
energetic-statistical not fractal. The fits of the size effect law by Bažant [6] and
the multi-fractal scaling law by Carpintieri et al. [15] to experimental data
for concrete elements (van Vliet [48]) have shown that both laws are similar
only for experiments at the laboratory scale, but significantly differ when the
structure is very small or very large.

The goal of the numerical simulations in this paper is to investigate a de-
terministic and statistical size effect on flexural resistance in notched concrete
beams of a similar geometry under quasi-static three-point bending, by consider-
ing the influence of strain localization. A finite element method with an elasto-
plastic constitutive model using Rankine’a criterion with non-local softening
(Marzec et al. [32], Majewski et al. [31]) was used which is able to prop-
erly capture strain localization. Two-dimensional calculations were performed
with four different concrete beam sizes of a similar geometry. Deterministic cal-
culations were performed assuming constant values of tensile strength. In turn,
statistical analyses were carried out with spatially correlated homogeneous distri-
butions of tensile strength which were assumed to be random. Truncated Gaus-
sian random tensile strength fields were generated using a conditional rejection
method (Walukiewicz et al. [44]) for correlated random fields. The approxi-
mate results were obtained using a Latin hypercube sampling method (McKay
et al. [33], Bažant and Lin [2], Florian [18], Huntington and Lyrintzis
[25]) belonging to a group of variance reduced Monte Carlo methods (Hurtado
and Barbat [26]). This approach enables a significant reduction of the sample
number without loosing the accuracy of calculations. The numerical results of
load-displacements diagrams were compared with the corresponding laboratory
tests performed by Le Bellego et al. [30]. The effect of the correlation length
was also investigated (only in a small-size beam).

The deterministic calculations for the similar boundary value problems were
performed among others by Pamin and de Borst [35] and Pamin [36] with
a second-gradient elasto-plastic model, Simone et al. [39] with a second-gradient
damage model, and Bobiński and Tejchman [11, 12], using elasto-plastic
model and damage model with non-local softening. In turn, the combined statis-
tical and deterministic size effects were simulated by Carmeliet and Hens [14],
Frantziskonis [19], Gutiérrez and de Borst [21], Gutiérrez [22], Voře-
chovský [49], Bažant et al. [8] and Yang and Xu [50]. The most compre-
hensive combined calculations were performed by Vořechovský [49] for un-
notched concrete specimens under uniaxial tension with a micro-plane material
model and crack band model, using Latin hypercube sampling. A squared expo-
nential autocorrelation function with the correlation length of 80 mm was used.
His results show that the strength of many specimens, with parameters which
were obtained from random sampling, could be larger than a deterministic one in
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small specimens, in contrast to large specimens which rather obeyed the weak-
est link model. The difference between a deterministic material strength and a
mean statistical strength grew with increasing size. The structural strength ex-
hibited a gradual transition from Gaussian distribution to Weibull distribution
at increasing size. As the ratio of autocorrelation length and specimen size de-
creased, the ratio of spatial fluctuation of random field realizations grew. In the
work by Yang and Xu [50], a heterogeneous cohesive crack model to predict
macroscopic strength of materials based on meso-scale random fields of fracture
properties was proposed. One four-point concrete notched beam subjected to
mixed-mode fracture was modeled. Effects of various important parameters on
the crack paths, peak loads, macroscopic ductility and overall reliability, includ-
ing the variance of random fields, the correlation length, and the shear fracture
resistance, were investigated and discussed.

Our paper follows the research presented by Vořechovský [49] by using
an alternative stochastic finite element method. In contrast to his simulations,
we have dealt here in the first step with notched elements of similar geometry.
The innovations in the present paper are the following: a) a more sophisticated
regularization technique was used in the softening regime, namely non-local
theory, which ensures entirely mesh-independent results with respect to load-
displacement diagrams and widths of localized zones (in contrast to the crack
band model which provides only mesh-independent load-displacement diagrams),
b) our FE calculations were carried out with a different boundary value problem
(notched beams under bending), and c) an original method of the random field
generation with a different homogeneous correlation function was used.

The outline of the present paper is as follows. First, after the introduction
(Sec. 1), the employed constitutive elasto-plastic model with non-local softening
is summarized (Sec. 2). The simulation of discrete random fields is described in
Sec. 3. Information about the finite element discretization and boundary condi-
tions are given in Sec. 4. The numerical results of the deterministic and statistical
size effects are discussed in Sec. 5. Conclusions and future plans are described
in Sec. 6.

2. Constitutive elasto-plastic model with non-local softening

To describe the behaviour of concrete under tension during three-point bend-
ing, a Rankine criterion was used with the yield function f , with isotropic soft-
ening defined as:

(2.1) f = max{σ1, σ2, σ3} − σt(κ),

where: σi – principal stress, σt – tensile yield stress and κ – softening parameter
equal to the maximum principal plastic strain εp

1. The associated flow rule was
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assumed. To model concrete softening under tension, the exponential curve by
Hordijk [24] was chosen:

(2.2) σt(κ) = ft[(1 + (A1κ)3) exp(−A2κ) − A3κ],

where ft stands for the tensile strength of the concrete ft = 3.6 MPa). The
parameters A1, A2 and A3 were:

(2.3) A1 =
c1

κu
, A2 =

c2

κu
, A3 =

1

κu
(1 + c3

1) exp(−c2),

wherein κu = 0.005 denotes the ultimate value of the softening parameter, and
the constants ci are: c1 = 3 and c2 = 6.93. The modulus of elasticity was assumed
to be E = 38.5 GPa and the Poisson ratio was ν = 0.24. The edge and vertex
in Rankine yield function were taken into account by the interpolation of 2–3
plastic multipliers according to the Koiter’s rule.

To properly describe strain localization, to preserve the well-posedness of
the boundary value problem, to obtain mesh-independent results and to include
a characteristic length of micro-structure for simulations of a deterministic size
effect, a non-local theory was used as a regularisation technique (Pijaudier-
Cabot and Bažant [37], Bažant and Jirasek [5]). A principle of a local
action does not take place any more. Thus, any variable at a certain material
point depends not only on the state variables at that point but also on the
distribution of state variables in a finite neighbourhood of the considered point.
Usually it is sufficient to treat non-locally only one variable controlling material
softening or degradation (Bažant and Jirasek [5]). In the calculations, the
softening parameter κ was assumed to be non-local (κ̄)

(2.4) κ̄(x) =

∫
V ω(‖x− ξ‖)κ(ξ)dξ∫

V ω(‖x− ξ‖)dξ
,

where κ̄(x) is the non-local softening parameter, V – the volume of the body,
x – the coordinates of the considered (actual) point, ξ – the coordinates of the
surrounding points in a certain neighborhood of the considered point and ω – the
weighting function. The softening non-local parameters κ̄ near the boundaries
were calculated also on the basis of Eq. (2.4) (which satisfies the normalizing
condition). As a weighting function ω, a Gauss distribution function was used

(2.5) ω(r) =
1

lc
√

π
e−(r/lc)2 ,

where r is a distance between two material points. The averaging in Eq. (2.5) is
restricted to a small representative area around each material point (the influ-
ence of points at the distance of r = 3lc is only of 0.01%), Fig. 1. A characteristic
length is usually related to the micro-structure of the material (e.g. maximum
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Fig. 1. Region of the influence of a characteristic length lc and weighting function ω.

aggregate size). It is determined with an inverse identification process of ex-
perimental data (Le Bellego et al. [30]). However, the determination of the
representative characteristic length of micro-structure lc is very complex in con-
crete, since strain localization can include a mixed mode (cracks, shear zones)
and the characteristic length (which is a scalar value) is related to the fracture
process zone with a certain volume. In turn, other researchers conclude that the
characteristic length depends upon the boundary value problem (Ferrara and
di Prisco [17]). The width of the fracture process zone increases according to
e.g. Pijaudier-Cabot et al. [38], but decreases after e.g. Simone et al. [39]).
It depends also on the choice of the weighting function.

The FE-analyses show that a classical non-local assumption (Eq. (2.4)) does
not fully regularize a boundary value problem in elasto-plasticity (Brink-
greve [13], Bažant and Jirasek [5], Bobiński and Tejchman [10]). There-
fore, a modified formula (according to Brinkgreve [13]) was used to calculate
the nonlocal softening parameter

(2.6) κ̄(x) = (1 − m)κ(x) + m

∫
V ω(‖x − ξ‖)κ(ξ)dξ∫

V ω(‖x− ξ‖)dξ
,

where m denotes an additional parameter controlling the size of the localized
plastic zone and the distribution of the plastic strain. For m = 0, a local ap-
proach is obtained and for m = 1, a classical non-local model is recovered. If the
parameter m > 1, the influence of non-locality increases and the localized plastic
region reaches a finite mesh-independent size (Bobiński and Tejchman [10]).
To simplify the calculations, the non-local rates were replaced by their approxi-
mation ∆κest

i calculated on the basis of the known total strain increment values:

(2.7) ∆κ̄(x) ≈ ∆κ(x) + m

(∫
V ω(‖x − ξ‖)∆κestdξ∫

V ω(‖x − ξ‖)dξ
− ∆κest(x)

)
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with ∆κest(x) = ∆ε1(x) (∆ε1 the increment of principal total strain). Equa-
tion (2.7) enables to ‘freeze’ the non-local influence of the neighbouring points
and to determine the actual values of the softening parameters, using the same
procedures as in a local formulation. The calculations were carried out with
lc = 5 mm and m = 2 on the basis of other FE calculations (Bobiński and
Tejchman [10], Marzec et al. [32], Majewski et al. [31]) and experiments
using a DIC technique (Kozicki and Tejchman [29], Skarzyński et al. [40]).

The 2D and 3D non-local model was implemented in the commercial finite
element code Abaqus [1] with the aid of subroutine UMAT (user constitutive
law definition) and UEL (user element definition) for efficient computations
(Bobiński and Tejchman [10]). For the solution of the non-linear equation of
motion governing the response of a system of finite elements, the initial stiffness
method was used with a symmetric elastic global stiffness matrix. The calcula-
tions were carried out using a large-displacement analysis available in the Abaqus
finite element code [1] (although the influence of such analysis was negligible). In
this method, the current configuration of the body was taken into account. The
Cauchy stress was taken as the stress measure. The conjugate strain rate was the
rate of deformation. The rotation of the stress and strain tensor was calculated
by the Hughes–Winget method [24]. The non-local averaging was performed in
the current configuration.

To capture a snap-back behaviour in a very large size beam, the so-called
arc-length technique was used. The actual load vector P was defined as λPmax

where λ – multiplier and Pmax – maximum constant load vector. In general,
the determination of the length of the arc the P − u space (u – displacement
vector) involves the displacements of all nodes (as e.g. the Riks method available
in Abaqus Standard [1]). However, for problems involving strain localization, it
is more suitable to use an indirect displacement control method, where only se-
lected nodal displacements are considered to formulate an additional condition
in the P − u space. The horizontal distance between two nodes lying on oppo-
site sides of the notch was chosen as a control variable CMOD (crack mouth
open displacement). The indirect displacement algorithm was implemented with
the aid of two identical and independent FE-meshes and some additional node
elements, to exchange the information about the displacements between these
meshes.

3. FE-input data

3.1. Deterministic calculations

The two-dimensional FE-calculations of simply supported notched beams
with free ends (assuming constant values of tensile strength ft) were performed
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Fig. 2. Notched beams used for calculations (with L = 3 × h).

with 4 different beam sizes of a similar geometry h×Lt: 8×32 cm2 (called small
size beam), 16 × 64 cm2 (called medium size beam), 32 × 128 cm2 (called large
size beam) and 192×768 cm2 (called very large size beam) (h – beam height, Lt –
total beam length), Fig. 2. The span length L was equal to 3h for all beams. The
size of the first 3 beams was similar as in the corresponding experiments carried
out by Le Bellego et al. [30]. The quadrilateral elements divided into trian-
gular elements were used to avoid volumetric locking. 7628 triangular (small
size beam), 14476 (medium size beam), 28092 (large size beam) and 104310
triangular elements were used, respectively. The mesh was particularly very
fine in the region of a notch (Fig. 3) to properly capture strain localization
in concrete (where the element size was equal to 1/3 × lc). The ratio between
the width of this region and the beam length was always the same. A quasi-
static deformation of a small, medium and large beam was imposed through a
constant vertical displacement increment ∆u prescribed at the upper mid-point
of the beam top. In the case of a very large beam (to capture the snap-back
behavior), a procedure described in Sec. 2 was used.

Fig. 3. FE mesh in the case of a medium size beam.

3.2. Statistical calculations

3.2.1. Latin sampling method. In the paper the Monte Carlo method was used.
Application of the method in stochastic problems of mechanics requires the fol-
lowing steps: simulation of random variables or fields describing the problem
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under consideration (variability of material parameters, initial imperfections in
structure geometrics and others), solution of the problem for each simulated re-
alization, creation of a set of results and its statistical description. Contrary to
stochastic finite element codes, the Monte Carlo method does not impose any
restriction to the solved random problems. Its only limitation is the time of
calculations. For example, to reproduce exactly the input random data of ini-
tial geometric imperfection of a shell structure problem, at least 2000 random
samples should be used (Bielewicz and Górski [9]). Any nonlinear calcula-
tions for such a number of initial data are, however, impossible due to excessive
computation times. To determine a minimal, but sufficient number of samples
(which allows one to estimate the results with a specified accuracy), a conver-
gence analysis of the outcomes was proposed (Górski [20]). It was estimated
that in case of various engineering problems, only ca. 50 realizations had to
be considered. For example, in the shell structure limit load analysis (Górski
[20]), the change of the error of limit load mean values between 50 and 150
samples equaled 2% and the standard deviations error was 12%. A further de-
crease of sample numbers can be obtained using Monte Carlo variance reduction
methods.

In the papers by Tejchman and Górski [41, 42], two methods: a stratified
and a Latin sampling method were considered. It should be pointed up that these
methods were not used for the generation of two-dimensional random fields as,
for example, in the paper by Vořechovský [49], but for their classification.
For that reason, the single realization was generated according to the initial
data, i.e. the theoretical mean value and the covariance matrix was exactly re-
produced. The statistical calculations according to the proposed version of the
Latin sampling method were performed in two steps (Tejchman and Górski
[41, 42]). First, an initial set of random samples was generated in the same way
as in the case of a direct Monte Carlo method. Next, the generated samples were
classified and arranged in increasing order according to the chosen parameters
(i.e. their mean values and the gap between the lowest and the highest values
of the fields). From each subset defined in this way, only one sample was chosen
for the analysis. The selection was performed in agreement with the theoreti-
cal background of the Latin sampling method. The numerical calculations were
performed only for these samples. It was proved that using the Latin sampling
variance reduction method, the results can be properly estimated by several
realizations only (e.g. 12–15) (Tejchman and Górski [41, 42]).

To generate the random field, the conditional-rejection method described by
Walukiewicz et al. [44], Bielewicz and Górski [9], Górski [20]. Tejch-
man and Górski [41], and Tejchman and Górski [42] was used. The method
makes it possible to simulate any homogeneous or non-homogeneous truncated
Gaussian random field described on regular or irregular spatial meshes. The
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simulation process was based on the original, conditional rejection method of
generation. An important role in the calculations was played by the propaga-
tion base scheme covering sequentially the mesh points and the random field
envelope, which allowed one to fulfill the geometric and boundary conditions of
the structure of the model. Random fields of practically unlimited sizes could
be generated.

3.2.2. Random field data in the problem of beam bending. Various properties
of concrete may be considered as randomly distributed. In the present work,
only fluctuations of its tensile strength were taken into account. Two parameters
describing the random field should be chosen, i.e. the distribution of the random
variable in a single point of the field and a function defining the correlation
between these points.

In the work, the distribution of a single random variable took the form
of a truncated Gaussian function with the mean concrete tensile strength of
f̄t = 3.6 MPa. Additionally, it was assumed that the concrete tensile strength
values changed between ft = 1.6 MPa and ft = 5.6 MPa (ft = 3.6 ± 2.0 MPa).
To fulfil this condition, the standard deviation sft

= 0.424 MPa was used in
the calculations. The coefficient of variations describing the field scattering was
cov = sft

/f̄t = 0.118 (f̄t – the mean tensile strength). It is easy to notice that
5sft

= 5 × 0.424 = 2.12 MPa and the cut of variables did not change the the-
oretical Gauss distribution distinctly (Fig. 4). The Irvin’s characteristic length
EGf/f2

t , (Gf – tensile fracture energy) which controls the length of the fracture
process zone, Bažant and Planas [4]), varied between 0.100 m and 0.351 m.

Fig. 4. Distribution of the concrete strength values for a single point of the mesh.

Randomness of tensile strength ft has to be described by a correlation func-
tion. Due to lack of the appropriate data, the correlation function is usually
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chosen arbitrarily. It is evident that the fluctuation of any material parameters
should be described by a homogeneous function, which confirms that the corre-
lation between random material variables vanishes when the random point dis-
tance increases. Any non-homogeneous correlation function, for example Wiener
or Brown, defines strong correlation between every point of the field, and such a
definition of material parameters is unrealistic. The simplest choice is a standard
first-order correlation function K(x1, x2) = e−λx1∆x1e−λx2∆x2 . Here, the follow-
ing, more general, second-order, homogeneous correlation function was adopted
(Bielewicz and Górski [9])

(3.1) K(∆x1,∆x2) = s2
ft
× e−λx1∆x1(1 + λx1∆x1)e

−λx2∆x2(1 + λx2∆x2),

where ∆x1 and ∆x2 are the distances between two field points along the hori-
zontal axis x1 and vertical axis x2, λx1 and λx2 are the decay coefficients (damp-
ing parameters) characterizing a spatial variability of the specimen properties
(i.e. describe the correlation between the random field points). The second-order
homogeneous function (Eq. (3.1)) proved to be very useful in engineering calcu-
lations (Knabe et al. [27]).

In finite element methods, continuous correlation function (Eq. (3.1)) has to
be represented by the appropriate covariance matrix. For this purpose, the pro-
cedure of local averages of the random fields proposed by Vanmarcke [47] was
adopted. After an appropriate integration of the function (Eq. (3.1)), the follow-
ing expression describing the variances Dw and covariances Kw were obtained
(Knabe et al. [27]):

(3.2) Dw(∆x1,∆x2) =
2

λx1∆x1
s2
ft

[
2 + e−λx1∆x1 − 3

λx1∆x1
(1 − e−λx1∆x1)

]

× 2

λx2∆x2
s2
ft

[
2 + e−λx2∆x2 − 3

λx2∆x2
(1 − e−λx2∆x2)

]
,

(3.3) Kw(∆x1,∆x2)

=
eλx1∆x1

(λx1∆x1)2
s2
ft
{[cos(λx1∆x1) − sin(λx1∆x1)] + 2λx1∆x1 − 1}

× eλx2∆x2

(λx2∆x2)2
s2
ft
{[cos(λx2∆x2) − sin(λx2∆x2)] + 2λx2∆x2 − 1}.

We took mainly into account a strong correlation of the tensile strength ft in
horizontal direction λx1 = 1.0 1/m and a weaker correlation in the vertical direc-
tions λx2 = 3.0 1/m in Eq. (3.1) (due to the way of specimen’s preparation). In
this way, the layers formed during the concrete placing were modeled. The range
of significant correlation was approximately 80 mm in the horizontal direction
and 30 mm in the vertical direction (the correlation distances for the normalized
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correlation function are presented in Fig. 5). The smaller is the lambda parame-
ter, the shorter will be the correlation range. The dimension of the random field
was identical as the finite element mesh. The same random values were assumed
in 4 neighboring triangular elements.

Fig. 5. The correlation distances for different coefficients λ [1/m].

Using the conditional-rejection method, 2000 field realizations of the initial
void ratio tensile strength were generated. Next, the generated fields were clas-
sified according to two parameters: the mean value of the tensile strength and
the gap between the lowest and the highest value of the tensile strength. The
joint probability distribution (so-called “ant hill”) is presented in Fig. 6. One dot
represents one random vector described by its mean value and the difference
between its extreme values. The two variable domains were divided into 12 in-
tervals of equal probabilities (see vertical and horizontal lines in Fig. 6). Next,

Fig. 6. Selection of 12 pairs of random samples using Latin hypercube sampling: 1–4, 2–7,
3–3, 4–11, 5–5, 6–8, 7–1, 8–6, 9–2, 10–9, 11–10 and 12–12.
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according to the Latin hypercube sampling assumptions, 12 random numbers
in the range 1-12 were generated (one number appeared only once) using the
uniform distribution. The generated numbers formed the following 12 pairs: 1–4,
2–7, 3–3, 4–11, 5–5, 6–8, 7–1, 8–6, 9–2, 10–9, 11–10 and 12–12. According to
these pairs, the appropriate areas (subfields) were selected (they are presented
as rectangles in Fig. 6). From each subfield, only one realization was chosen and
used as the input data to the FEM calculations. In this way the results of 12
realizations were analyzed. Figure 7 shows a stochastic distribution of tensile
strength in one concrete beam in the area close to the notch.

Fig. 7. Stochastic distribution of tensile strength ft close to the notch in small size beam
(strong correlation, small standard deviation).

4. FE-results

4.1. Deterministic size effect

Figure 8 shows the evolution of the calculated vertical force P versus the
vertical beam deflection u and normalized vertical force PL/tft(0.9h)2 versus the
normalized vertical beam displacement u/h, for four different beam heights h:
8 cm, 16 cm, 32 cm and 192 cm, with constant values of tensile strength of
ft = 3.6 MPa. The depth of the specimen was equal to t = 4 cm (as in laboratory
experiments). The calculations were performed under plane strain conditions
(the differences between the results obtained within Rankine plasticity under
plane stress and plane strain conditions are insignificant). A distribution of the
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Fig. 8. Normalized force-displacement curves with constant values of tensile strength for
4 notched beams under three-point bending.

non-local softening parameter is shown close to the notch (Fig. 9). Moreover,
the numerical results of a deterministic size effect compared to the size effect
model by Bažant for notched concrete specimens (Bažant and Planas [4]) are
shown (Fig. 10).

a) b) c) d)

Fig. 9. Calculated contours of non-local softening parameter κ̄ above the notch for
three-point bending of small (a), medium (b), large (c), and very large (d) concrete beam

(constant values of tensile strength).
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Fig. 10. Relationship between the calculated normalized concrete strength
ln σ = ln[PL/(fth

2t)] and ratio ln(h/lc), compared to the size effect law by Bažant (Bažant

and Planas [4]) for constant values of tensile strength.

The beam strength and beam brittleness obviously increases with increasing
beam size. This pronounced deterministic size effect is in agreement with the size
effect model by Bažant (Bažant and Planas [4]). For a very large size beam,
a so-called snap-back behaviour occurred (decrease of strength with decreasing
deformation). The mean width of a localized zone above the notch was 15.08 mm
(h = 8 cm), 15.10 mm (h = 16 cm), 18.02 mm (h = 32 cm) and 18.05 mm
(h = 192 cm) at u/h = 1.000%0, 0.494%0, 0.234%0 and 0.105%0, respectively.

Fig. 11. The load-displacement curves from FE-calculations with constant values of tensile
strength compared to the experiments by le Bellego et al. [30]: h = 8 cm, h = 16 cm and

h = 32 cm.

The calculated vertical forces for a small, medium and large beam are in
good accordance with the experiments by Le Bellego et al. [30] (Fig. 11). The
calculated width of the localized zone was similar as in experiments, i.e. about
20 mm (on the basis of acoustic emission, Pijaudier-Cabot et al. [38]).
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4.2. Statistical size effect

12 selected random samples using Latin hypercube sampling are shown in
Fig. 6 (λx1 = 1.0 1/m, λx2 = 3.0 1/m, sft

= 0.424 MPa). The 12 different
evolutions of the vertical force P versus the vertical displacement u are shown
in Fig. 12 for 3 different beam heights h: 8 cm (small beam), 32 cm (large beam)

a)

b)

c)

Fig. 12. Normalized force-displacement curves in the case of deterministic (dashed lines) and
random calculation (solid lines) for 3 notched beams under three-point bending: a) small size

beam (h = 8 cm), b) large size beam (h = 32 cm), c) very large size beam (h = 192 cm)
(λx1

= 1.0 1/m, λx2
= 3.0 1/m, sft = 0.424 MPa).
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and 192 cm (very large beam), respectively. Figure 13 demonstrates the calcu-
lated width of a localized zone. In turn, 5 arbitrary deformed FE-meshes for
a small size beam are shown in Fig. 15.

a)

b)

c)

Fig. 13. Distribution of non-local softening parameter above the notch in the case of
deterministic (dashed lines) and random calculation (solid lines) for 3 notched beams under
three-point bending: a) small size beam (h = 8 cm), b) large size beam (h = 32 cm), c) very

large size beam (h = 192 cm) (λx1
= 1.0 1/m, λx2

= 3.0 1/m, sft = 0.424 MPa).
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Fig. 14. Relationship between calculated normalized concrete strength ln σ = ln[PL/(fth
2t)]

and ratio ln(h/lc) compared to the size effect law by Bažant (Bažant and Planas [4]) for
constant values of tensile strength.

The normalized maximum vertical force decreases with decreasing beam
height h (Fig. 12). For h = 8 cm, it changes between 2.92–3.38 kN. The mean
stochastic Pmax = 3.08 kN (with the standard deviation of 0.126 kN) is prac-
tically the same as the deterministic value Pmax = 3.13 kN (it is smaller by
only 2%). If the beam height is h = 32 cm, the maximum vertical force varies
between 7.73–8.85 and the mean stochastic force Pmax = 8.30 kN (with the stan-
dard deviation of 0.334 kN) is smaller by only 0.6% than the deterministic value
(Pmax = 8.35 kN). For the beam height of h = 192 cm, the maximum vertical
force varies between 26.05–28.72 kN and the mean stochastic Pmax = 27.56 kN is
again smaller by only 0.6% than the deterministic value of Pmax = 27.72 kN (the
standard deviation equals 0.692 kN). The load-displacement curves for a very
large beam are not smooth in softening regime when tensile strength is dis-
tributed stochastically. The scatter of the maximum vertical force around its
mean value is similar for all beam sizes (Fig. 14). The deformation field above
the notch is strongly non-symmetric (Fig. 15). The mean width of the localized
zone above the notch is slightly higher than the deterministic value, namely:
w=16.56 mm (h = 8 cm), w = 18.88 mm (h = 32 cm) and w = 19.67 mm
(h = 192 cm), Fig. 13.

Our results are similar to those given by Vořechovský [49]. However, in
contrast to his results, the difference between stochastic and deterministic val-
ues and the scatter of stochastic values in our calculations were similar, inde-
pendently of the beam size. It was caused by the assumption of a notch in our
calculations contributing to the type-2 size effect (Bažant et al. [8]).

In contrast to simulations by Yang and Xu [50], which were performed with
one notched beam only, the strong tortuousness of crack trajectories was not
obtained in a small beam. Besides, the evolution of stochastic load-displacement
curves was similar.
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Fig. 15. Five arbitrary deformed FE meshes for a small size beam (h = 8 cm) u/h = 0.25%)
with random distribution of tensile strength (λx1

=1.0 1/m, λx2
=3.0 1/m. sft =0.424 MPa.
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Effect of samples’ number

The calculations were carried out with a small size beam using a direct Monte
Carlo method with 30 samples (Fig. 16) (λx1 = 1.0 1/m, λx2 = 3.0 1/m, sft

=
0.424 MPa). Almost similar results (mean Pmax = 3.07 kN with sP = 0.138 kN)
appeared as in the case of Latin hypercube sampling with 12 samples (mean
Pmax = 3.06 kN).
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Fig. 16. Small size beam with random distribution of tensile strength (h = 8 cm) using
a direct Monte Carlo method with 30 samples: maximum vertical force with expected

values (a) and standard deviation (b) (λx1
= 1.0 1/m, λx2

= 3.0 1/m, sft = 0.424 MPa)

Effect of correlation range

In addition, the calculations were carried out with a small-size beam, assum-
ing a very small correlation length of 10 mm (see Fig. 5) and λx1 = 10.0 1/m,
λx2 = 10.0 1/m and sft

= 0.424 MPa in Eq. (3.1). The results (Figs. 17 and 18)
show that the mean stochastic vertical force, Pmax = 3.08 kN, and mean width of
the localized zone, w = 16.56 mm, are similar to the results with λx1 = 1.0 1/m
and λx2 = 3.0 1/m. However, the scatter of forces is significantly smaller.
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Fig. 17. Normalized force-displacement curves with and random distribution of tensile
strength for notched small beam under three-point bending (h = 8 cm) for smaller correlation

length (λx1
= 10.0 1/m, λx2

= 10.0 1/m, sft
= 0.424 MPa)

Fig. 18. Distribution of non-local softening parameter random distribution of tensile
strength for notched small beam under three-point bending (h = 8 cm) for small correlation

length (λx1
= 10.0 1/m, λx2

= 10.0 1/m, sft
= 0.424 MPa)

5. Conclusions

The following conclusions can be drawn from our non-linear FE-investiga-
tions of a deterministic and statistical size effect in notched concrete beams of
a similar geometry:

The deterministic size effect (nominal strength decreases with increasing
specimen size) is very pronounced. It is caused by occurrence of tensile local-
ized zone above the notch with a certain width. The material ductility increases
with decreasing specimen size. A pronounced snap-back behaviour occurs for
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very large-size beams (h/lc ≈ 400). The width of the localized zone above the
notch slightly increases with increasing beam size.

The solution of random non-linear problems on the basis of several samples is
possible. The statistical size effect is significantly weaker than the deterministic
one. The difference between deterministic material strength and mean statistical
strength is practically negligible, independently of the beam size and correlation
length.

The width of the localized zone above the notch in beams with a random
distribution of tensile strength is slightly larger than that with constant values
tensile strength due to a smaller rate of softening.

The scatter of the maximum force is similar in all beams. It decreases with
decreasing correlation range.

Our research will be continued. In the next step, the size effects will be the-
oretically studied with unnotched concrete beams where a significantly stronger
stochastic size effect is expected (Bažant and Planas [4]). The effect of the
range of correlation and standard deviation of tensile strength will be studied
again. In parallel, the experiments on size effects will be performed with beams
of a different geometry by varying their height and length (Koide et al. [28]).
A DIC technique will be applied to measure the width of the FPZ on the beam
surface to calibrate the characteristic length (Skarzyński et al. [40]).
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