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In this paper fluid-structure interaction, taking into account the nonlinearity of
structural models, is concerned. This phenomenon has important influence in many
aeronautical applications. The method and developed system is demonstrated on
NACA-0012 wing mounting, made of non-linear springs and include structures with
non-linear materials, modelled by Neo–Hooke and Mooney–Rivlin models, like flexible
delta wing. For the first flow the comparison with experiment made in Institute of
Aviation Warsaw is presented. For both mentioned above models, the linear and non-
linear analysis are presented and the critical flutter speeds are determined. Finally,
aeroelastic simulation of full I23 aircraft configuration presents the capability of used
numerical codes to analyze large-scale complex geometries. All computations were
carried out in parallel environment for CFD mesh of order of millions tetrahedral
elements.
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1. Introduction

Expansion of computer technologies allows using numerical simulation
in the early stages of aircraft design more and more often. The role of both
the wind tunnels and initial test flights used to verify the validity of solu-
tions seems to be diminishing. Big systems for three-dimensional simulations
of Fluid-Structure Interactions (FSI) constitute highly specialized and costly
software. Most of the codes are based on many simplifications. One of them
is the assumption of linearity of the structural model being in contradiction
with real-life situations. What is meant by the non-linearity of structure is:
a) geometrical non-linearity, in which case large deformations of the system
cause the lack of the proportionality between load and displacement; the influ-
ence of displacement on static quantities; b) material non-linearity stemming
from a constitutive equation. The paper presents the results of simulations for
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complex, multi-scale objects and non-linear structure models. What is crucial
for carrying out the assumed analyses is to extend a numerical tool [1] com-
prising a flow and a structural program and a space grid deformation model for
a system allowing to take into consideration the non-linearity of structure.

The scope of our work has included:
• Joining independent programs: flow, structural, interpolation and three-

dimensional CFD grid deformation tools into one integrated system.
• Adapting a structural code to a non-linear analysis and modifying FSI

control script.
• Carrying out tests.
• Analyzing FSI on certain examples.
• Visualizing the results.

The point of reference for testing the suggested approaches are the existing
solutions of the aeroelastic linear problems.

The paper is organized as follows. In Sec. 2 the brief description of Com-
putational Aeroelasticity problems are presented. The Sec. 3 concerns possible
nonlinearity types and their properties. The methodology of Fluid-Structure In-
teraction is given in Sec. 4, and demonstrated in Sec. 5. The examples include
NACA-0012 profile (compared with Institute of Aviation Warsaw – IoA – exper-
iment) and flexible delta wing. Finally, the developed and validated algorithm
is demonstated on full I23 aircraft configuration.

2. Computational Aeroelasticity

Computational Aeroelasticity [2] is a branch of mechanics which examines
the way a stream of fluid affects a deformable body that it flows around. The
term combines the methods used in Computational Fluid Dynamics (CFD)
and Computational Structural Mechanics (CSM) [3]. The non-linearity found
in structural models is usually not taken into consideration in numerical analy-
ses of interacting fluid and structures found in the literature [2–5]. This limits the
possibility of simulating such cases as maneuvers of planes, in which considerable
deformation of structure occurs, and cases with the non-linearity of constitutive
equation. The non-linearity is also of particular importance for biological flows
as, for example, blood flow in the blood vessels [5].

Because of the wide scope of FSI, the paper is focused on fluid and struc-
ture interaction in external flows. Computational methods for different aspects
of aeroelastic responses are still the subject of scientific examination. To illus-
trate the point, many aspects in [2] are FSI related to search interdependence
between aerodynamics in a flow and the dynamics of structure. This approach is
connected with many complications stemming from two independent numerical
codes interacting with each other.
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Another problem to be solved is the way of exchanging information between
programs for fluids and structure (Fig. 1), with a different level of discretization
and use of different methods (finite elements, finite volumes). One significant
problem in analyses of FSI is the description of particular states in relation
to two different coordinate systems used. What is used quite often [2] is use
of Euler’s description – a stationary coordinate system (CSM) or Lagrange’s
description – a movable coordinate system (CFD). Thus it is necessary to devise
appropriate techniques of data exchange between these two systems.

a) b)

Fig. 1. An example of differences in discretization for the NACA 0012 airfoil: a) a CFD grid
– tetrahedral elements, b) a structural grid – beam and surface elements.

What also poses a problem is adopting the time step in calculations which
can be different for a flow code and for a structural code. It is particularly
important when conducting a dynamic analysis of a FSI.

3. A non-linear structural problems

A numerical algorithm to carry out aeroelastic analyses consists of a flow
program and a structural program. The paper presents the algorithm of aeroe-
lastic calculations using non-linear structural models. To outline the question of
a non-linear structural problem, let us consider the governing equations for the
structure motion (3.1):

(3.1) Mẍ + Cẋ + Kx = F.

In linear problems the relationships between load and displacement are pro-
portional. In the case of structural non-linearity (covering the scope of work),
the last matrix of the left side of the Eq. (3.1) K is formulated through a func-
tion. K represents the stiffness matrix of the structure and for non-linear cases
it is defined by a function of characteristic properties of a given material. The
Eq. (3.2) for non-linear structural problems used in the case of work is as follows:

(3.2) Mẍ + Cẋ + K(x)x = F.
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Matrix C represents the damping which can also be non-linear. Damping
defined in this way together with the FSI algorithm can be applied in the flow
control.

3.1. Non-linear material models used in simulations

In structural calculations for constitutive (material) non-linearity, a hyper-
elastic material is used. On the basis of functions and introduced constants
C10 and C01, invariants I1, I2, I3 are specified for a given non-linear mate-
rial, in which the coordinates of the Cauchy–Green stress tensor, regardless of
how the coordinate system has been specified [6]. Nowadays the commonly used
non-linear material models in structural analyses are Arruda–Boyce’s, Mooney–
Rivlin’s, Neo–Hookean, Odgen’s, Polynomial and Yeoh’s.

This paper outlines the approach towards non-linear material models for-
mulated by Mooney–Rivlin and Hooke to analyse the FSI. Mooney–Rivlin’s
material model is described through the function of energy of non-dilatational
strain as follows [6]:

(3.3) W = C10(Ī1 − 3) + C01(Ī2 − 3),

where W – the energy of the non-dilatational strain, Ī1, Ī2 – the combination
of invariants I1, I2, I3 of the Cauchy–Green strain tensor, C10, C01 – material
constants characteristic of a particular material [6].

The Mooney–Rivlin material model used in the paper is based on two invari-
ants. In practice, it means the possibility of modelling most types of non-linear
materials. The Neo–Hookean material model can be treated as a simplified ver-
sion of the Mooney–Rivlin model. The function of energy of the non-dilatational
strain is as follows:

(3.4) W = C10(Ī1 − 3),

where W – the energy of the non-dilatational strain, Ī1, Ī2 – the combination
of invariants I1, I3 of the non-dilatational strain, C10, C01 – the material char-
acteristic constants of a given material [6].

4. The fluid structure interaction algorithm

There are many methods to perform fluid-structure interaction computa-
tions. In the first approach, equations describing all the coupled physical phe-
nomena are coupled in one code. As each of components of the coupled problem
has different mathematical and numerical properties (linear/non-linear equa-
tions, symmetric/unsymmetric matrices, etc.), [7], this approach is computa-
tionally challenging. The alternative approach, used in this work, is based on
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the code coupling, where fluid flow computations and structural analyses are
performed by separate packages. Depending on the the particular problem, dif-
ferent numerical strategies might be employed. The overview of them might be
found in pioneer studies by Farhat, Piperno and others [7–9].

To carry out aeroelastic calculations, a control system has been created which
has interrelated particular numerical tools into one integrated system. The de-
signed control scripts allow efficient calculations. The program starts with static
analysis, then the perturbation of the solution is introduced and dynamic anal-
ysis continues.

The following tools have been used in the presented system.

4.1. TAU-Code

For CFD computations, a parallel and efficient RANS flow code (Reynolds
Averaged Navier–Stokes) by Deutsches Zentrum fuer Luft- und Raumfahrt
(DLR) [10], has been used. The system consists of two modules: the first one is
used to prepare a task for calculations (pre-processing): the checking of the grid,
the division into subdomains (in the case of parallel calculations), the introduc-
tion of boundary conditions, etc.; the second one solves a system of equations
(Euler’s or RANS if turbulence and viscosity are taken into account).

4.2. The deformation module

It is a module for modifying a CFD grid on the basis of the deformation of
the structure; the aim of this modification is to change the CFD grid in such
a way that the points (nodes) of the coupling surface lie on the surface of the
object being flown round, while preserving the quality of the mesh.

Multiple methods used for mesh deformation incorporate the spring analogy
concept. All of them are based on the assumption, that the tetrahedral (cubic,
etc.) elements of the CFD mesh are replaced with spring elements. The difference
between them is the number of interpolation triangles that are activated in each
case. Among these methods, torsional spring analogy [11, 12], semi-torsional
spring analogy [13, 14], ortho-semi-torsional (OST) spring analogy [15] and ball-
vertex spring analogy [16] can be mentioned. For the purpose of aeroelastic
computations the efficient mesh deformation system has been developed. It is
based on in-house MF3 structural code and beam elements. It combines benefits
of spring and torsional orthotropic spring analogy.

4.3. The MF3 structural code

For elastic calculations MF3 [17] – the in-house finite-element code has been
used. It allows static and dynamic calculations and a modal analysis using
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1-dimensional (beams, rods), 2-dimensional (shells, membranes, etc.) and 3-di-
mensional (tetrahedral, hexahedral) elements.

4.4. The F2S and S2F modules

The fluid-structure interaction algorithm, used in aeroelasticity analyses, re-
quires the transfer of some quantities between the used codes. In the interaction
mentioned before, pressures computed in CFD software act as the loads in struc-
tural code. The deformations of structural mesh, resulting from CSM analyses,
influence the computational domain and the boundary conditions in the CFD
part of the coupled system.

The interpolation algorithms are divided into the ones based on the geometry
and the other ones based on the finite element mesh. The example of the first
group is spline interpolation [18, 19]. The codes based on the definitions of mesh
points [20, 21] usually define the surfaces, where the interaction between coupled
codes occurs. Due to the fact that coupled software is multidisciplinary, and the
domain used in structural analysis may be not rigid, the interpolation tools have
to determine how the coupling surfaces of both domains fit together [21].

There are several different search algorithms aimed at finding the adequate
pairs of points and elements on the coupling surfaces. One of the most straight-
forward of them is linear search, shown in [22]. As it has been described in
[21], the computational cost of the comparison of all pairs of points rapidly in-
creases with the growth of mesh size. Other methods, e.g. oct-tree [23, 24] and
bucket [25–27] search algorithms, are based on restricting the search region and
are much more efficient. The detection strategies differ for matching and non-
matching meshes. In the first case, the structure of the both contact surfaces
is the same, and only the pairs of points have to be found. For different levels
of discretization or in case when the geometry in one of the coupled tools is
simplified, the algorithm for non-matching grids has to be used. In this case,
the pairs of points and elements have to be found. Again, bucket and oct-tree
algorithms are more efficient than the linear search.

When the neighborhood of the points and elements is computed, the in-
terpolation can be performed. Depending on the type of the quantity to be
interpolated, different methods can be mentioned:

• Non-conservative interpolation might be used for the functions of spatial
coordinates in time, like the pressures, velocities or the mesh points coor-
dinates.
In the case of non-conservative interpolation (Fig. 2), for each point of
target mesh the corresponding element on the source mesh is found. Next,
the values from source points are interpolated to the target point (lying
inside the source element).
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Fig. 2. Non-conservative interpolation. Data are interpolated from source points Qi to
a target point Qt.

• Conservative interpolation is adequate in the cases, when some additional
laws must be preserved during interpolation. The example of such situation
is the interpolation of the forces, when their sum has to be preserved.
In that case (Fig. 3), the source value is located in a single point and
transferred to the points of element lying on target coupling surface, using
weights wi that satisfy

∑
i wi = 1. Each node on target element gets

a portion wi · Qt of the given coupling quantity.
For interpolation in the system presented here, three sets of modules were tested.

Fig. 3. Conservative interpolation. Data are interpolated from a single source point Qt to
the target points Qi at the corners.

The first set is the EADS modules developed in frame of TAURUS pro-
ject [28]. They are based on conservative solutions of finite elements, used to
distribute the pressures from the CFD grid to the structural one (forces), and
the displacements from the structural grid to the CFD grid.

The same goal could be obtained by the second set of modules employing the
MpCCI [21] tools. MpCCI-based interpolation was successfully tested in Poznan
University of Technology in frame of the TAURUS project [28].
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The third set of modules is the in-house developed [29]. In the tools used by
authors, bucket search algorithm has been used.

The comparison of all three sets of interpolating modules show no significant
differences in performance and accuracy. They all allow interpolation between
non-matching grids. EADS and in-house modules performed better in the cases,
when only torsion box of the wing was modelled on the structural side. For
further examples shown the EADS modules were used.

4.5. The description of the algorithm

In what follows, the simulation algorithm for static FSI calculations is pre-
sented (Fig. 4). The static computations are performed to specify initial condi-
tions for a dynamic FSI analysis.

Fig. 4. The static FSI analysis, left – the starting point for adaptation a CFD grid.

In aeroelastic computations the structural model is subjected to the forces
determined on the basis of pressure distribution computed with the CFD code.
The analysis starts from CFD computation. The process consists of three stages.
The first stage is about generating the consistent CFD grid (Fig. 5) and checking
it for negative volumes and other grid pathologies. Then the grid is partitioned.
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Fig. 5. An example of the CFD grid being deformed on the basis of the structural grid’s
displacement.

The division is dependent on the number of used processors, and in turn this
number is dependent on the size of the task and the amount of time for the MPI
packet to pass on messages.

The next stage constitutes a significant part of the flow analysis. The bound-
ary conditions having been specified and the environment having been prepared,
computations are performed. After the flow analysis, parameters for information
exchange are specified (units, the coupling surface, object files).

Then the CFD data, in the form of the pressure distribution on the coupling
surfaces, are translated into forces and interpolated from the CFD grid to the
structural grid. The exchange occurs through the coupling surface, specified on
the basis of the structural model and flow model.

The next step consists of structural calculations by means of structural code.
Depending on settings, it is possible to perform a traditional linear analysis
or to take into account the constitutive and geometrical nonlinearities. When
the structural calculations have been completed, the information in the form
of displacements of given nodes of the structural model is passed on to the
deformation module. On the basis of the structure’s displacement, the CFD
grid is modified (Fig. 5), thus creating a new grid for the next step in the
calculations. The process of deformation being realized is based on the spring
analogy.

The designed tool also enables to perform dynamic analyses, what is neces-
sary in analysing dynamic responce of the aircraft depending on types of the
input functions. In the case of dynamic simulations, the algorithm has been
extended with an additional iterative loop (Fig. 6).

In this case, after introducing the initial condition (the input function), the
dynamic response of the system to the initial perturbation in a given period
of time is investigated. Dynamic aeroelastics also takes into account the ac-
celeration of the structural grid (the grid’s dynamics) and its impact on the
flow. Information on the dynamics of the grid is obtained on the basis of cur-
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Fig. 6. The algorithm of dynamic FSI analysis.

rent displacements of the grid, in reference to the one obtained in the previ-
ous time step, as well as on basis of the previous flow solution. Typical time
coupling procedures used for aeroelastic simulations are described in [30, 31].
Here the partitioned time stepping is used. The time coupling is solved explic-
itly as boundary conditions imposed by one system onto the other. To prevent
numerical instability the time step is decreased and subiterations are performed.
By subiterating the fully coupled solution is obtained. The size of time step for
all the modules used is managed by CFD solver TAU-code, interfaced for this
kind of aeroelastic computations in TAURUS project [28]. The description of
similar management of aeroelastic time coupling can be found in [32].

5. A numerical simulation of the fluid-structure interaction

for the chosen cases

5.1. A numerical simulation of the flow around NACA 0012 airfoil

The studies on flutter have proved that in models with linear characteristics,
an infinite rise in amplitude can occur and the construction is destroyed in
a short period of time. However, in systems in which non-linear springs have
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been used in the suppression system after the critical speed has been reached,
the amplitude of oscillation is set.

Simulation of aeroelasticity of non-linear structure is impossible with most
of the standard aeroelastic codes destined for linear models. To simulate the ex-
periment for the system having two degrees of freedom with non-linear restoring
force, it was necessary to adapt the structural code and to rebuild the algorithm
of fluid and structure interaction with each other.

A structural model has been created for the examined profile (Fig. 7) and
a CFD grid has been generated (Fig. 8).

Fig. 7. The structural model of the NACA 0012 profile with non-linear springs used.
The model complies with the experiment of IoA [33].

Fig. 8. A CFD grid for the NACA 0012 profile. Geometry of the domain reflects the
experimental setting of the wind tunel.

The CFD grid consisted of 1152587 tetrahedral elements and 197427 nodes.
To achieve the most accurate results, comparable to the experiment, the accu-
racy of the structural model has been checked by comparing the eigenfrequencies
assigned numerically with the ones determined experimentally.
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Figure 9 shows the results of flow calculations for the dynamic FSI in the
form of the velocity distribution towards the Y axis (inflow) for a linear case at
the speed of Vx = 28.2 [m/s].

a) b) c)

Fig. 9. The velocity distribution Vx = 28.2 [m/s] for: a) 1 time step; b) 10 time steps;
c) 20 time steps.

A linear approach

Calculations have been made for the same configuration as in the case of the
experimental studies. In the first stage of simulation, standard linear elements
have been used. As a result, displacement and the angle of rotation in the func-
tion of time for specified boundary conditions have been obtained. Below one

Fig. 10. Displacement and the angle of rotation (the control node) in the function of time
for a linear case at the inflow speed of Vx = 23 [m/s].
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Fig. 11. Displacement and the angle of rotation (the control node) of the profile in
a function of time – flutter’s critical speed – VF = 25 [m/s].

can see sequences of displacement and the angle of rotation (the control node) as
a function of time, obtained as a result of calculations by means of using linear
elements (Figs. 10, 11).

Figure 10 shows the sequence of displacement and the angle of rotation of the
control node in the function of time for an approximate inflow speed of 23 [m/s].
For the range of speed at which the flutter has occurred in experimental studies,
the oscillations are decaying.

After increasing the speed to 25 [m/s] (Fig. 11), one can observe that the
amplitude of the profile’s oscillation is growing rapidly in time. The critical
flutter speed has been reached at 25 [m/s] for the numerical model, which agrees
with the results of the experimental studies.

A non-linear approach

In the second stage of simulation, standard linear elements have been re-
placed with non-linear elements to simulate non-linear restoring force. As in the
case of the previous simulation, MF3 code has been used to carry out a structural
analysis, introducing procedures taking into account non-linearity.

Figure 12 shows the sequence of displacement and the control node rotation
angle in the function of time for the inflow speed of 30 [m/s].

As one can see, considering the speed, the amplitude grew rapidly in the
linear approach, what has been suppressed in the non-linear approach.

After increasing the speed to 33 [m/s] one could observe (Fig. 13) the profile’s
oscillations with a similar amplitude as in the linear case.
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Fig. 12. Displacement and the profile’s rotation angle (the control node) in a function of
time for a non-linear case at the inflow speed of Vx = 30 [m/s].

Fig. 13. Displacement and the profile’s rotation angle (the control node) in a function of
time for a non-linear case, at the inflow speed of Vx = 33 [m/s].

5.2. Summary

The results of numerical simulations compare fairly well with the experimen-
tal findings. The obtained results confirm the influence of structural non-linearity
on the character of the fluid-structure system oscillations. There exists no com-
plete theory accurately explaining the mechanism responsible for this process.
It is particularly true for a coupled fluid-structure systems having very large
number of degrees of freedom as the one used in the present paper. The more
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detailed analysis is possible for a simplified dynamical system reduced to only
few degrees of freedom, e.g. for the system two degrees of freedom with non-
linear restoring force analyzed above. The methods of solution depend on the
character and strength of non-linearity. The Harmonic Balance or High-Order
Harmonic Balance [34] methods are often used for the analysis.

The Centre Manifold and Normal Form [35, 36] constitute the non-linear os-
cillator for the analyzed system. The form obtained with the Krylov–Bogoliubov
ansatz and the use of cylindrical coordinates and normal forms [35] for the am-
plitude A and the phase φ are given by

(5.1) ∂tA = σ1A + βA3, ∂tφ = ω1 + γA2,

with the growth rate σ1 and the frequency ω1 of the most unstable linear stability
eigenmode, the Landau constant β, and the nonlinearity parameter γ.

The stability investigation of Eq. (5.1) determines the fix point – subcritical
or supercritical Hopf bifurcation, related to flutter velocity. The character of bi-
furcation is related to the spring characteristics. The limit cycle of the dynamical
system (Eq. (5.1)) is LCO in case of aeroelastic model. It is interesting to notice
that the circular cylinder wake model in [37] deals with the same non-linear
oscillator solution. The methodology used also by authors in flow modeling, like
ROM analysis with POD of the snapshots, Galerkin Projection and dynamical
system analysis, is often used to treat the high-dimensional aeroelasticity prob-
lems [38, 39]. As the ROM approach is aligned with the activity of the authors,
formulation of low-dimensional model and identification of aeroelastic dynamical
system is a target of further investigation.

5.3. A numerical simulation for given material models exemplified
by the flexible delta profile

To carry out an analysis of the FSI for geometrical non-linearity and some
non-linear material models (Mooney–Rivlin and Neo–Hookean [40]), a flexible
delta wing [5] has been used (Figs. 14, 15), which has been subjected to defor-
mation in a linear case, and using non-linear material properties in a non-linear
case.

The structural model has been created in CAD system (Fig. 14). It is con-
sisting of 3543 shell elements having the following properties:

• thickness: T = 10 [mm],
• Young’s module E = 6.9e + 05 [Pa],
• Poisson’s ratio ν = 0.3,
• density: ρ = 2700 [kg/m3].

Boundary conditions have been specified in the form of restraint in line with the
experimental data [6]. The next step in preparing the FSI calculations was to
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a) b)

Fig. 14. A flexible delta wing: a) geometry [5], b) a structural grid with applied boundary
conditions.

generate a three-dimensional CFD grid for the URANS analysis (Fig. 15). The
grid consists of 3050400 tetrahedral elements, 45045 prismatic elements and 152
regular tetrahedron-like elements.

Fig. 15. A flexible delta wing – a CFD grid for the URANS analysis.

The grid generated in that way has been tested to check grid connectivity
and the quality of particular elements.

An analysis of the FSI has been performed for the following boundary con-
ditions, parameters and turbulence model:

• inflow speed Vx = 5, 10, 15, 20 [m/s],
• atmospheric pressure P = 0.1 [MPa],
• Reynolds number Re = 620 000,
• angle of attack α = 100,
• time step t = 0.01 [s],
• turbulence model: LEA k − ω.
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5.3.1. A flexible delta wing with the linear approach. In the first stage of the
numerical simulation, linear material has been used for the flexible delta wing in
line with the assumptions specified above. In Fig. 16 one can see the results of the
calculations of displacement for the control nodes W1 and W2 of the structural
model in the function of time for the inflow speed of 20 [m/s], at which a rapid
increase in amplitude of displacement has been observed in the function of time
in the linear case. The results for the remaining speeds can be found in [20]. As
a result of the calculations made for the first inflow speed Vx = 5 [m/s] [20], the
amplitude of the examined profile’s displacements specified in the W1 and W2
control nodes has risen slightly. Calculations have been repeated to verify the
results obtained for this and other cases.

Fig. 16. Displacements of control nodes in function of time, in the linear case at the inflow
speed of VF = 20 [m/s]: a) W1 node, b) W2 node.

As the inflow speed is increased to 20 [m/s] the amplitude of displacement
(Fig. 16) shows that the critical speed of the flutter has been obtained. Os-
cillations grew rapidly in line with the value at which a real model would be
deformed or even destroyed in the final stage.

5.3.2. A flexible delta wing with the Mooney–Rivlin non-linear model. The next
stage of the numerical simulation, consisted in using the Mooney–Rivlin non-
linear material model for a flexible data wing. In order to be able to compare
linear and non-linear models, initial parameters have been specified as in the
case of linear material.

• thickness: T = 10 [mm],
• constants: C10, C01 = 6.9e + E05 [Pa],
• density: ρ = 2700 [kg/m3].

Simulations for specific inflow speeds: 5, 10, 15, 20 [m/s] have been made in an
analogous way. Below one can find the results for the W1 and W2 nodes dis-
placement calculations for the structural model (Fig. 17) in the function of time,
with the inflow speed of 20 [m/s].
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Fig. 17. Displacements of the control nodes in the function of time in the non-linear case of
Mooney–Rivlin material model at the inflow speed of Vx = 20 [m/s]: a) W1 node, b) W2 node.

For linear case at the speed of 20 [m/s] (Fig. 17), exponential rise in the
amplitude indicating flutter is observed. For the same conditions the nonlinear
model exhibits LCO with saturation of the oscillation amplitude.

5.3.3. A flexible delta wing with the Neo–Hookean non-linear model. The last
stage of the numerical simulation was to use the Neo–Hookean material model
for a flexible delta wing. The model is employed with loads smaller than in the
case of the Mooney–Rivlin material model. In this case the initial parameters
were the same as for linear materials:

• thickness: T = 10 [mm],
• constant: C10 = 6.9e + E05 [Pa],
• density: ρ = 2700 [kg/m3].

As in the linear case, the inflow speeds of 5, 10, 15, 20 [m/s] were set in the
Mooney–Rivlin non-linear model.

As it can be seen from the results depicted in Fig. 18, for the inflow velocity
20 [m/s] the amplitude of the oscillation saturates at the value larger than

Fig. 18. The control nodes displacements in the function of time for the Neo–Hookean
non-linear material model at the inflow speed of V = 20 [m/s]: a) W1 node, b) W2 node.
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in the previous, Mooney–Rivlin case. However, also in this case the LCO is
present.

5.3.4. Summary. The simulation shown above for the system having only 2 de-
grees of freedom and the experiments [33] for the NACA 0012 profile show that
the nonlinearity changes considerably the FSI nature. The same conclusion can
be drawn for non-linear material models (Mooney–Rivlin’s and Neo–Hookean)
with continuous structural models. The developed tool enable analyses for hy-
brid structural models consisting of both linear and non-linear materials. The
nonlinear FSI computation shown here are targeting practical problems encoun-
tered in aviation industry. To demonstrate the applicability of the system for
industrial applications, the real-life configuration has to be considered. For this
purpose the full configuration of I23 plane (Fig. 19) has been chosen.

Fig. 19. The I23 model.

5.4. A simulation of the FSI exemplified by the I23 plane

The structural model has been obtained in cooperation (in frame of TAURUS
project and later) with the Institute of Aviation in Warsaw (Fig. 20, left). The
model consists of beam and mass elements.

The boundary conditions have been specified in line with the data from the
Institute of Aviation. To perform the computations, the three-dimensional non-
structural CFD grid has been generated (Fig. 20, right). The grid consists of
about 15 millions of tetrahedral elements.
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Fig. 20. A discrete model of the I23 plane for structural and flow analyses.

The grid generated in this way has been subjected to quality tests. The FSI
has been carried out for the following boundary conditions and parameters:

• Mach number Ma = 0.3,
• atmospheric pressure P = 0.1 [MPa],
• Reynolds number Re = 2 · 106,
• angle of attack α = 0.026,
• time step t = 0.01 [s],
• singular input function: Fz = 2000 [N] in time t = 0.01 [s].
The FSI analyses of the I23 has been carried out for both, static and dynamic

conditions. The result of the static FSI analysis was input into the dynamic one.
The perturbation is introduced as the impulse force on the wing tip. The results
of the analysis are shown in the following figures.

Figure 21 shows the displacement of the CFD grid for the I23 plane in con-
secutive stages of the analysis.

Fig. 21. An example of the CFD grid deformation on the basis of the structural grid.
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The above-discussed system predicts correctly FSI phenomena, e.g. the flut-
ter, which are particularly important during designing and certifying planes.
Figure 21 shows static FSI plane deformation.

In Fig. 22 the sequence of plane deformations for subsequent time steps is
depicted. In the figure, the flutter originating on the plane wing can be clearly
seen.

Fig. 22. The I32 plane wing deformation for a aerodynamic analysis of the flutter.

As a result of the calculations being made for the inflow speed Ma = 0.3,
the displacement amplitude (Fig. 23) shows that the critical speed of the flutter
has been reached. Oscillations grew rapidly, a real model would be deformed
permanently or even destroyed.

Fig. 23. Displacement of the control point lying at the tip of the I23 plane wing in function
of time, with the flutter occurring.
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6. Conclusions

The system for large-scale aeroelastic simulation with material nonlinear-
ity has been developed. The test computations, performed for simple 2 degrees
of freedom, plunging and pitching NACA0012 airfoil with non-linear restoring
force, compare fairly well with the experiment. The results of the computa-
tional analysis prove that using non-linear material models (Mooney–Rivlin’s
and Neo–Hookean) in a structural model, changes considerably the nature of
phenomena found during the flow around of an examined profile. In the case
of both the Mooney–Rivlin and Neo–Hookean non-linear material models, the
LCO has been obtained. The flutter has occurred in the linear case. Results
were obtained also for large deflection of the structure. This confirms that the
system can handle not only material but also geometrical nonlinearity. Finally,
the computations of the full-configuration aircraft have been performed. Large-
scale, non-linear, industry-oriented aeroelastic computations are feasible with
the presented system. The I23 plane’s analysis shows that the presented here
numerical tool can be used in design process in the aviation industry as well
as in examining dangerous phenomena, such as the flutter limit-cycle oscilla-
tion (LCO). Introducing the non-linear damping matrix to the system will be a
natural direction of development. It will enable extending the scope of practical
usefullness in modeling of active control over aeroelastic phenomena.
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