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1. Introduction

Standard Materials are modelled by differentiable potentials. Mainly to
capture the multivalued constitutive laws, for example plastic flow rules [6, 21],
they were extended to the so-called “Generalized Standard Materials” (GSM)
modelled by lower-semi-continuous (lsc) convex potentials [9].

But this extension failed to describe Coulomb’s dry friction law. In 1991,
considering such an implicit constitutive law, Géry de Saxcé and Z. Q. Feng
[24, 25] proposed a new generalization, which they called “Implicit Standard
Material” (ISM). This new class of materials is modelled by a point-to-point
function which they called a bipotential. In the particular case of a GSM,
the bipotential is reduced to the sum of the potential and its conjugate
potential.

For a given GSM, a theorem due to R. T. Rockafellar [23] and J. J. Mo-
reau [22] provides a constructive method to retrieve the potential from the
data of its subdifferential. A similar, crucial question for a given ISM is: how to
retrieve the bipotential from the implicit constitutive law?
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Independently, in 1988, Simon Fitzpatrick [7], in order to simplify the
study of monotone operators, made a proposal to replace these multifunctions
by point-to-point functions, nowadays called Fitzpatrick’s functions.

Is there any relation between Géry de Saxcé’s bipotentials representing ISM
constitutive laws and Fitzpatrick’s functions representing maximal monotone
multifunctions? Can this last representation coming from convex analysis [3, 4,
14, 22] provide a constructive method to discover the “best” bipotential modelling
of a given ISM? The aim of our paper is to give some answers to these two
questions.

2. Standard materials

A constitutive law relating
• a strain-like variable x belonging to a real Banach space X (with norm
‖ · ‖) and

• a stress-like variable y belonging to the continuous dual space Y = X∗

(with duality product 〈·, ·〉)
is defined as a subset of the set X × Y .

This subset can be regarded as the graph of a multifunction T : X −→ 2Y

G(T ) = {(x, y) ∈ X × Y | y ∈ Tx} .

In finite dimensions, when this subset is a maximal Lagrangian submanifold
of the linear space X × Y (made symplectic by the canonical Darboux 2-form),
then there exists a differentiable function φ, called “potential”, such that

y = Dφ(x).

If additionally this potential is convex, the inverse constitutive law reads

x = Dφ∗(y)

with φ∗ the Legendre transform of the potential φ (called “conjugate potential").
A material whose behavior can be described by a differentiable potential is re-
ferred to as a “Standard Material” (SM).

3. Generalized Standard Materials

For many materials, the relation between x and y is a multifunction. Drop-
ping the differentiability of the potential φ, but keeping its convexity and its
lower semi-continuity, a large class of materials, called “Generalized Standard
Materials" (GSM), can be described by one of the following three equivalent
constitutive laws:
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(i) y ∈ ∂φ(x),
(ii) x ∈ ∂φ∗(y),
(iii) φ(x) + φ∗(y) = 〈x, y〉.

Remark. The convexity of the potential φ allows to express the conjugate
potential φ∗ as a supremum [22]:

φ∗(y) = sup
x∈X

[〈x, y〉 − φ(x)] .

Remark. The subdifferentials

∂φ(x) = {y ∈ Y | ∀ξ ∈ X,φ(ξ) ≥ φ(x) + 〈ξ − x, y〉} ,

∂φ∗(y) = {x ∈ X | ∀η ∈ Y, φ∗(η) ≥ φ∗(y) + 〈x, η − y〉} ,

of the potentials φ and φ∗ generalize [22] the differentials Dφ and Dφ∗; usually
they are not reduced to a unique gradient.

4. Implicit Standard Materials

4.1. Bipotentials

The equality (iii) can be regarded as an extremal case of Fenchel’s inequality

φ(x) + φ∗(y) ≥ 〈x, y〉.
To model the dry friction phenomena or the behavior of materials such as

clays [24–26], Géry de Saxcé noticed that it was useful to weaken Fenchel’s
inequality to

b(x, y) ≥ 〈x, y〉.
Dropping the decomposition as a sum of two potentials

b(x, y) = φ(x) + φ∗(y),

he called the function b(x, y) a bipotential.
The bipotentials b(x, y) are assumed to be

(i) convex and lsc in x,
(ii) convex and lsc in y,
(iii) bounded from below by the duality product: b(x, y) ≥ 〈x, y〉.

4.2. Implicit Standard Materials

A material whose behavior can be described equivalently by one of the fol-
lowing three constitutive laws:
(iv) y belongs to the subdifferential of b(x, y) with respect to x,
(v) x belongs to the subdifferential of b(x, y) with respect to y,
(vi) b(x, y) = 〈x, y〉

is referred to as an “Implicit Standard Material" (ISM).
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4.3. Examples of Implicit Standard Materials

The Implicit Standard Material model has shown to be relevant for the
description of many non-associated phenomena ([26] and references contained
therein):

• unilateral contact with Coulomb dry friction [24],
• generalized Drucker–Prager plasticity [26],
• modified Cam–Clay model [26],
• non-linear kinematical hardening rule for cyclic plasticity of metals [1, 16],
• Lemaître’s plastic-ductile damage law [15].

5. Maximal monotone constitutive laws

5.1. Basic facts

Definition. A constitutive law associated with a multifunction T is mono-
tone if [3, 4, 22, 33]

y1 ∈ Tx1 and y2 ∈ Tx2 =⇒ 〈x2 − x1, y2 − y1〉 ≥ 0.

Definition. A monotone multifunction T is maximal if no proper enlarge-
ment of T is monotone [3, 4, 22, 33].

As mentioned in Sec. 2, multifunctions T are used to model constitutive
laws. Due to their implicit nature, they are quite difficult to handle – this is the
reason to seek equivalent representations. The following lemma provides such
an equivalent representation for maximal monotone multifunctions. Its proof is
straightforward (for example, by contradiction) and can be found in [33].

Lemma 1. If T is a maximal monotone multifunction, then

∀x ∈ X,∀y ∈ Y, inf
y1∈Tx1

〈x − x1, y − y1〉 ≤ 0

and the value 0 is attained if and only if y ∈ Tx.

5.2. Fitzpatrick’s function

Definition. Let T be a maximal monotone multifunction; the associated
Fitzpatrick function FT,2 is defined by [7]

FT,2(x, y) = 〈x, y〉 − inf
y1∈Tx1

〈x − x1, y − y1〉.

Applying Lemma 1, we obtain the following proposition.
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Proposition 1. Fitzpatrick’s function is bounded from below by the duality

product

FT,2(x, y) ≥ 〈x, y〉

and the equality is attained if and only if y ∈ Tx.

Finally, we are able to represent a maximal monotone multifunction by its
associated Fitzpatrick function (for the proof, see [2]).

Theorem 1 (Representation theorem). The Fitzpatrick function FT,2 repre-

sents the maximal monotone multifunction T :

G(T ) = {(x, y) ∈ X × Y | FT,2(x, y) = 〈x, y〉} .

5.3. Fitzpatrick’s sequence

Definition. For n ≥ 2 and (x, y) ∈ X × Y , let (xi, yi) be n − 1 elements of
G(T ) indexed from i = 1 to i = n− 1. Insert (xn, yn) = (x, y) and close the loop
by taking (xn+1, yn+1) = (x1, y1). Then Fitzpatrick’s sequence [2] is defined by

FT,n(x, y) = 〈x, y〉 + sup
yi∈Txi

n∑

λ=1

〈xλ+1 − xλ, yλ〉

Remark. For n = 2, we recover the function FT,2 originally proposed by
Fitzpatrick.

The following proposition [2] states a basic property of Fitzpatrick’s se-
quence.

Proposition 2. Fitzpatrick’s sequence is increasing:

for n ≥ 3, FT,n(x, y) ≥ FT,n−1(x, y)

and admits as a pointwise limit

FT,∞(x, y) = sup
n≥2

FT,n(x, y).

P r o o f. In the sequence x1, . . . , xn−1 choose the last term as xn−1 = xn−2.

We can now extend the representation Theorem 1 (for the proof, see [2]).

Theorem 2 (Representation theorem). Every function of Fitzpatrick’s se-

quence represents the maximal monotone multifunction T :

∀n ≥ 2, G(T ) = {(x, y) ∈ X × Y | FT,n(x, y) = 〈x, y〉} .
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Remark. Although the functions FT,n can be defined for any multifunc-
tion T , they are equipped with strong properties only when T is maximal mono-
tone. For a generalization of the theorem to maximal n-cyclically monotone mul-
tifunctions T , see also [2].

The above theorem shows that we can use any function in Fitzpatrick’s se-
quence to represent the constitutive law T . Having now a whole sequence of
bipotentials to choose from, the question arises: Which one is the “best”? To find
the answer, we consider some examples from [2].

5.4. Fitzpatrick’s sequence for a GSM

5.4.1. Recovery of the bipotential for a GSM. When the multifunction T models a
GSM, then there exists a potential φ such that T = ∂φ; thereafter T is cyclically
monotone [22, 23] and

∀n ≥ 2, FT,n(x, y) exists.

Moreover, the pointwise limit is

FT,∞(x, y) = φ(x) + φ∗(y)

and we recover the typical separated GSM bipotentials.

5.4.2. Fitzpatrick’s sequence for an indicator function. When the potential φ is
the indicator function iK of a convex set K, then

∀n ≥ 2, FT,n(x, y) = FT,∞(x, y) = iK(x) + i∗K(y).

5.4.3. Fitzpatrick’s sequence for a support function. By duality, the same coinci-
dence holds if the potential φ is the support function i∗K of a convex set K.

Remark. For GSM, the bipotential is given by FT,∞. Thus, FT,∞ becomes
a strong candidate for the “best" bipotential.

6. Linear constitutive laws

6.1. Symmetric linear constitutive laws

Let X = Y be a Hilbert space with inner product 〈·, ·〉.

6.1.1. Potential representing a symmetric linear constitutive law. A linear sym-
metric law y = Sx is modelling a Standard Material if and only if S is symmetric
(S coincides with its adjoint S∗). The potential is therefore

φ(x) =
1

2
〈x, Sx〉.
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If S is also positive definite, this potential is convex and the symmetric linear
constitutive law y = Sx is modelling a GSM.

Proposition 3. Fitzpatrick’s sequence of the linear symmetric positive de-

finite law y = Sx is

∀n ≥ 2, FS,n(x, y) = 〈x, y〉 +
n − 1

2n
‖S−1/2y − S1/2x‖2,

where S1/2 and S−1/2 are the square roots of S and of its inverse S−1. The

pointwise limit of Fitzpatrick’s sequence is

FS,∞(x, y) =
1

2
〈x, Sx〉 +

1

2

〈
y, S−1y

〉
.

Remark. If we replace in the definition of FS,n(x, y) each pair (xλ, yλ) by
the pair (S1/2xλ, S−1/2yλ), we observe that it is enough to give the proof when
S is the linear identity mapping I. For S = I, the proof was given in [2].

6.2. Monotone non-symmetric linear constitutive laws

6.2.1. Monotonicity of linear mappings. A linear law y = Ax can be monotone
without being symmetric; it is only necessary that the symmetric part S =
1
2(A + A∗) of A should be positive.

6.2.2. Examples of coaxial constitutive laws. Let X and Y be the six-dimensional
Euclidean space of real symmetric 3× 3 matrices (with e as identity matrix and
〈x, y〉 = tr(xy) as duality product). Regard the variables x and y as strain and
stress tensors. Consider the linear constitutive law asserting that x and y admit
the same eigenvectors. Such a law, referred to as coaxial, has the general form

y = [tr(kx)] e + 2µx

and involves seven coefficients: the scalar µ and six independent coefficients of
the symmetric matrix k.

This law is not symmetric except if the matrix k is spheric (k = λe), in which
case λ and µ are the Lamé coefficients of Hooke’s elastic constitutive law

y = λ(tr x)e + 2µx.

It is a well-known result that Hooke’s constitutive law is positive if and only
if

3λ + 2µ ≥ 0 and µ ≥ 0.
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P r o o f. We start to analyze the positivity of Hooke’s operator:

〈Ax, x〉 ≥ 0 ⇐⇒ 〈λ(tr x)e + 2µx, x〉 ≥ 0 ⇐⇒

tr
(
(λ(tr x)e + 2µx) xT

)
≥ 0 ⇐⇒ tr

(
λ(tr x)x + 2µx2

)
≥ 0 ⇐⇒

tr (λ(tr x)x) + tr
(
2µx2

)
≥ 0 ⇐⇒ λ(tr x)2 + 2µ tr

(
x2
)
≥ 0.

We decompose x as a sum of its spherical and deviatoric part:

x =
1

3
(tr x)e + x′ with tr x′ = 0.

Then we have

tr
(
x2
)

= tr
(

1

9
(tr x)2e +

2

3
(tr x)x′ + (x′)2

)
=

1

3
(tr x)2 + tr((x′)2).

The positivity of Hooke’s operator is then equivalent to

λ(tr x)2 + 2µ tr
(
x2
)
≥ 0 ⇐⇒

λ(tr x)2 + 2µ

(
1

3
(tr x)2 + tr((x′)2)

)
≥ 0 ⇐⇒

(
λ +

2

3
µ

)
(tr x)2 + 2µ tr((x′)2) ≥ 0 ⇐⇒

λ +
2

3
µ ≥ 0 and µ ≥ 0.

Due to the fact that both (tr x)2 and tr((x′)2) are positive for x symmetric, the
last equivalence holds because the subspaces of spherical and deviatoric matrices
are orthogonal. By choosing x to be a spherical matrix we obtain λ + 2

3µ ≥ 0;
for deviatoric matrices x we obtain 2µ ≥ 0. The proof is finished.

If the deviatoric part h of the matrix k is not reduced to 0, we set

k = λe + h with λ =
1

3
(tr k) and tr h = 0.

The symmetric part of the coaxial constitutive law is then

Sx =
1

2
[tr(kx)] e +

1

2
(trx)k + 2µx

= λ(tr x)e + 2µx +
1

2
(trx)h +

1

2
[tr(hx)] e.

It is positive if and only if




µ ≥ 0,

3λ + 2µ ≥ 0,

tr
(
h2
)
≤ 8

3
µ(3λ + 2µ).
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P r o o f. We start by expressing the positiveness of S in equivalent forms:

〈Sx, x〉 ≥ 0 ⇐⇒ tr
(

1

2
(tr(kx)) x +

1

2
(tr x)kx + 2µx2

)
≥ 0 ⇐⇒

1

2
(tr(kx)) (tr x) +

1

2
(tr x) (tr(kx)) + 2µ tr(x2) ≥ 0 ⇐⇒

tr(kx)(tr x) + 2µ tr(x2) ≥ 0 ⇐⇒

tr ((λe + h)x) (tr x) + 2µ tr(x2) ≥ 0 ⇐⇒

tr(λx + hx)(tr x) + 2µ tr(x2) ≥ 0 ⇐⇒

λ(tr x)2 + tr(hx)(tr x) + 2µ tr(x2) ≥ 0.

Using the decomposition of x in its spherical and deviatoric part:

(6.1) x =
1

3
(tr x)e + x′ with tr x′ = 0,

we can continue our chain of equivalences:

λ(tr x)2 + tr(hx)(tr x) + 2µ tr
(
x2
)
≥ 0 ⇐⇒

λ(tr x)2tr
(

1

3
(tr x)h + hx′

)
(tr x) +

+ 2µ tr
(

1

9
(tr x)2e + +

2

3
(tr x)x′ + (x′)2

)
≥ 0 ⇐⇒

λ(tr x)2 + tr(hx′)(tr x) +
2

3
µ(tr x)2 + 2µ tr((x′)2) ≥ 0 ⇐⇒

(
λ +

2

3
µ

)
(tr x)2 + tr(hx′)(tr x) + 2µ tr((x′)2) ≥ 0.

For the case when x′ is in the deviatoric subspace orthogonal to h, we have
tr(hx′) = 0, the middle term vanishes and the inequality is reduced to the one
already analyzed for the symmetric Hooke’s law. It leads, like before, to the
inequalities λ + 2

3µ ≥ 0 and µ ≥ 0.
For the case that x′ is parallel to h, we can write x′ = 1

αh. The inequality
becomes

(
λ +

2

3
µ

)
(tr x)2 +

1

α
tr
(
h2
)
(tr x) + 2µ

1

α2
tr
(
h2
)
≥ 0

or, after multiplying by α2,
(

λ +
2

3
µ

)
(α tr x)2 + tr

(
h2
)
(α tr x) + 2µ tr

(
h2
)
≥ 0.



334 C. Vallée et al.

This is a quadratic inequality in α tr x and thus it is always satisfied if and only
if its discriminant ∆ is negative:

∆ ≤ 0 ⇐⇒
(
tr
(
h2
))2 − 8

(
λ +

2

3
µ

)
µ tr

(
h2
)
≤ 0 ⇐⇒

tr
(
h2
) [

tr
(
h2
)
− 8

(
λ +

2

3
µ

)
µ

]
≤ 0.

Because of h = αx′, h is symmetric and thus tr
(
h2
)
≥ 0; the above inequality

is equivalent to

tr
(
h2
)
≤ 8µ

(
λ +

2

3
µ

)
.

We can interpret this condition as a bounding condition: the deviatoric part
h of the matrix k should not be too large.

6.2.3. Fitzpatrick’s function of monotone linear mappings. If y1 = Ax1, the infi-
mum of

〈x − x1, y − y1〉 = 〈x − x1, y − Ax〉 + 〈x − x1, S (x − x1)〉

is attained for

2S (x − x1) = Ax − y.

Therefore the first element of Fitzpatrick’s sequence is

FA,2(x, y) = 〈x, y〉 +
1

4

〈
y − Ax, S−1(y − Ax)

〉
.

This is a bipotential representing the non-associated law y = Ax.

7. Non-monotone constitutive laws

As a pioneering work to establish a bipotential modelling Coulomb’s dry
friction, let us consider the following constitutive law: x and y have the same
orientation. This constitutive law is not monotone, Fitzpatrick’s method cannot
be directly applied for finding a point-to-point function to represent it. The ques-
tions are: does this constitutive law model an IMS? Can Fitzpatrick’s sequence
be generalized to exhibit a representation by a bipotential?

Let us ask only for a local supremum in the definition of the first Fitzpatrick
function. By “local supremum” we mean a supremum in a subset of variables,
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while the remaining variables are given by the optimality condition. In our ex-
ample, let u be the unit vector in the common direction of x1 and y1. To obtain
the first Fitzpatrick function, we have to optimize

〈x1, y〉 + 〈x, y1〉 − 〈x1, y1〉 = ‖x1‖〈u, y〉 + ‖y1‖〈x, u〉 − ‖x1‖‖y1‖
= − (‖x1‖ − 〈x, u〉) (‖y1‖ − 〈u, y〉) + 〈x, u〉〈u, y〉.

The optimality condition gives a saddle point for (‖x1‖, ‖y1‖) = (〈x, u〉, 〈u, y〉),
where the first term vanishes. The second term is depending only on u and
admits a supremum (this justifies the notion of “local supremum”).

〈x, u〉〈u, y〉 =
1

2
(〈〈u, y〉x, u〉 + 〈u, 〈x, u〉y〉)

=
1

2
〈u, (xy∗ + yx∗) u〉

with respect to u, we are led from Rayleigh’s quotient argument to the lar-
gest eigenvalue 1

2λ1(xy∗ + yx∗) of 1
2(xy∗ + yx∗). This largest eigenvalue being

1
2(〈x, y〉 + ‖x‖‖y‖), we can claim that the constitutive law asserting that two
vectors have the same orientation models an IMS, and we can propose the bipo-
tential

b(x, y) =
1

2
〈x, y〉 +

1

2
‖x‖‖y‖.

This function is a bipotential thanks to the Cauchy–Schwarz–Buniakovsky
inequality.

Remark. If θ is an angle (chosen between 0 and π) such that

〈x, y〉 = ‖x‖‖y‖ cos θ,

then

b(x, y) = ‖x‖‖y‖ cos2
(

θ

2

)
.

8. Conclusions

8.1. Selection rules

Backed by the examples presented above, we define the “best” bipotential to
be the largest element of Fitzpatrick’s sequence (including the limit FT,∞, if it
exists).

To select the “best" bipotential modelling an Implicit Standard Material, we
propose the following rules:
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(1) Define FT,n(x, y) as a local supremum (by considering only the subset of
variables for which a supremum exists, the other variables being given by
the optimality condition).

(2) Choose the last existing Fitzpatrick function in this generalized Fitzpatrick
sequence.

(3) Choose the pointwise limit if all generalized Fitzpatrick functions are de-
fined.

8.2. Conjectures

8.2.1. Cauchy–Schwarz–Buniakovsky bipotential. Concerning the constitutive
law asserting that the vectors x and y have the same orientation, we conjec-
ture that the best bipotential will be [28]

b(x, y) = ‖x‖‖y‖

as the pointwise limit of the generalized Fitzpatrick sequence

Fn(x, y) = ‖x‖‖y‖ cosn

(
θ

n

)
,

with

θ = arccos

( 〈x, y〉
‖x‖‖y‖

)
.

We will call it the “Cauchy–Schwarz–Buniakovsky bipotential”.

8.2.2. Hill’s bipotential. Let X and Y be the 1
2d(d + 1)-dimensional Euclidean

space of real symmetric d × d matrices (with duality product 〈x, y〉 = tr(xy)).
Let us consider the constitutive law asserting that real symmetric matrices x
and y admit the same ordered spectral decomposition [13, 14, 17]. Let

λ1(x) ≥ λ2(x) ≥ · · · ≥ λd(x) and λ1(y) ≥ λ2(y) ≥ · · · ≥ λd(y)

denote the ordered eigenvalues of x and y. We conjecture [28] that the best
bipotential will be

b(x, y) =

d∑

i=1

λi(x)λi(y),

as the pointwise limit of a generalized Fitzpatrick sequence. We will call it “Hill’s
bipotential” [28].
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8.3. Byproducts

8.3.1. Algorithm for determining the eigenvectors associated with the largest eigen-

value of a real symmetric matrix. In linear vibration studies of mechanical or
acoustical systems, the eigenvectors associated with the largest eigenvalue λ1(x)
of a real symmetric matrix x are of main interest. The spaces X and Y are the
1
2d(d + 1)-dimensional Euclidean spaces of real symmetric d × d matrices (with
duality product 〈x, y〉 = tr(xy)). This largest eigenvalue is a lsc convex function
of the matrix [31]. We can regard it as the potential of a GSM, with the indicator
function iK(y) of the convex part

K = {y ∈ Y | y ≥ 0 and tr y = 1}

as the conjugate potential. The subdifferential of the potential λ1 at x is consti-
tuted of the elements y of the convex K, which are projections on the eigensub-
spaces associated with the largest eigenvalue. According to Moreau’s “proximal
mappings method" [19, 20]:

y ∈ ∂λ1(x) ⇐⇒ y = P (y + x),

where P is the projection on the convex K. The fixed point method leads us to
propose the iterative algorithm [31]

yi+1 = P (yi + x) .

Algorithms concerning the projection onto the cone of positive semidefinite
matrices can be found in [8, 11, 12], and [32].

8.3.2. Algorithm for determining the subdifferential of Tresca’s yield criterion.

Let X and Y be the six-dimensional Euclidean space of real symmetric 3 × 3
matrices (with e as identity matrix and duality product 〈x, y〉 = tr(xy)). Let
the variables x and y be strain-rate and stress tensors. Consider the problem of
finding x in the subdifferential at y of Tresca’s yield criterion [10]:

x ∈ ∂
λ1 − λ3

2
(y).

The solutions can be obtained by applying the fixed point method [31]

x = P (x + y),

where P is the projection on the convex

K =

{
x ∈ X

∣∣∣∣ −
1

2
e ≤ x ≤ 1

2
e and tr x = 0

}
.
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8.4. Open problems

Determine the generalized Fitzpatrick sequence for:
• non-symmetric linear coaxial constitutive laws,
• Coulomb’s dry friction law,
• generalized Drucker–Prager plasticity,
• modified Cam-Clay model,
• non-linear kinematical hardening rule for cyclic plasticity of metals,
• Lemaître’s plastic-ductile damage law.

8.5. Outlook

We think that the method of the generalized Fitzpatrick sequence will prove
to be very helpful to produce bipotentials for:

• shakedown analysis of non-standard elastoplastic materials,
• constitutive laws of wet clays,
• damage kinetic constitutive equation,
• granular materials,
• linear non-symmetric constitutive laws of non-standard materials.
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Starting points

As starting points we recommend [2] and [26].
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