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An application of uncertainty analysis of microelectromechanical resonator is
presented. A number of different uncertain parameters have been considered, con-
nected both to geometric characteristics and material property. Sensitivity analysis
has been carried out in order to study the influence of each input uncertain parameter
on the chosen dynamic characteristics. The propagation of given uncertainties into
the variation of studied output parameter has been evaluated by means of the Monte
Carlo simulation, the vertex method and genetic algorithms. Finite element model
of microresonator has been elaborated. It has taken into account the phenomenon of
viscous damping coming from the presence of surrounding air as well as the influence
of constant electrostatic field.
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Notations

A area; cross-sectional area; area of capacitor electrodes,
b thickness of comb drive finger,

B dimension of rectangular shape,
c damping coefficient,

CDAMPERS global damping matrix consisting of resultant damping coefficients which
represent presence of surrounding air,

d thickness of air film; distance; gap between capacitor electrodes,
F force,
J1 first-order Bessel function,
k stiffness coefficient,
K global stiffness matrix aggregated for mechanical part,

KSPRINGS matrix consisting of resultant stiffness coefficients which represent the presence
of electrostatic field,

L dimension of rectangular shape,
M global mass matrix,
n iteration index,
r characteristic dimension of the area of cross-section i.e. radius for a circular

shape, a half of grater dimension for a rectangular shape, etc.,
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u vector of nodal displacements in FE model,
u̇ vector of nodal velocities in FE model,
ü vector of nodal accelerations in FE model,
V voltage,
x displacement along axis x,
ẋ velocity along axis x,

x0 initial displacement along axis x,
x, y axes of Cartesian coordinate system,

β auxiliary factor in calculation of squeeze-film damping,
δ effective decay distance,
ε relative permittivity of air,

ε0 permittivity of vacuum,
λ acoustic wave length,
µ kinematic viscosity,
ρ density,
σ standard deviation,
υ speed of sound wave,
ω circular frequency of vibration.

1. Introduction

Microelectromechanical systems (MEMS) [1] compose a class of devices
that utilize mechanical and electronic parts of microscale, mainly made of silicon
material and integrated in one package. MEMS technology gives the opportunity
to construct very small movable mechanical parts, e.g.: flexures, rotating joints,
racks, gears, membranes and beams of size of microns that can be assembled
into microdevices. Pure mechanical components, together with the electronic
part contained in one functionally-closed unit, enable many applications in biol-
ogy, chemistry, optics, measurement techniques etc. Most known and nowadays
commercially available MEMS applications are: accelerometers, gyroscopes, mi-
crophones, pressure sensors, micropumps, optic signal switchers, signal filters,
microreactors, etc. [1].

MEMS are usually manufactured with lithography-based techniques used
during production of integrated circuits. Generally, there are two kinds of manu-
facturing techniques that are applied to MEMS: bulk and surface micromachin-
ing [1]. The first one consists in micromachining of a wafer made of monocrys-
talline silicon, e.g. etching in KOH. Second technique of MEMS fabrication, in
turn, means microstructuring of layers, typically made of polysilicon. In this
case MEMS is built by deposition layer by layer on a given substrate. Described
technique allows for creating suspended structures easily.

Manufacturing processes of MEMS does not guarantee infinite repeatability
of characteristics of subsequent items of microdevice [2, 3]. They differ, one from
another, as their geometry and material properties are not the same. This fact
should be taken into account while designing MEMS, to be able to predict more
realistic ranges of variation of interesting properties which are crucial for device
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performance. Therefore uncertainty analysis is performed, firstly to study sep-
arately the influence of introduced uncertainties on investigated characteristics,
and secondly to predict overall uncertainty propagation [4]. First part of the
uncertainty analysis, known also as sensitivity analysis, allows for distinguishing
between influential and non-influential parameters and helps to neglect some of
them to make the analysis easier and less time-consuming. In the paper, an ap-
plication of uncertainty analysis carried out for the finite element (FE) model
of MEMS microresonator has been described. As an object of the study, funda-
mental operational resonance frequency has been chosen since the knowledge of
its scatter is important to assess the quality of microresonator. Selected material
and geometry properties have been treated as uncertain and their influence on
interesting characteristics have been of concern by means of sensitivity analysis
and analysis of uncertainty propagation. As microsystems feature the necessity
of taking into account multiphysics approach, in the model of microresonator
the phenomena of air flow and electrostatic field have been considered.

2. Uncertainty analysis

Uncertainty analysis is carried out in order to assess the influence of identified
uncertainties (input parameters of analysis) on studied characteristics (output
parameters). In case of mechanical structures, both the physical item of device
and the computer model can be used to obtain the value of output parameters,
namely by measurement (experimental tests) or with results of computer simula-
tions. The procedure present in uncertainty analysis includes the following steps:

a) identification and modelling of uncertainties,
b) elaboration, validation and parameterization of the model which describes

the studied characteristics of mechanical system in terms of uncertainty
parameters,

c) sensitivity analysis,
d) selection and application of the method used for assessment of uncertainty

propagation,
e) uncertainty propagation in characteristics of real prototypes, if possible, to

perform verification of results for uncertainty propagation.
First task during the uncertainty analysis is establishment of the set of un-

certain parameters which are taken into account. There is a well-known division
of uncertainties that distinguishes: reducible uncertainty (also defined as epis-
temic, subjective uncertainty) and irreducible uncertainty (also known as varia-
tion, aleatory uncertainty) [5–7]. The first group arises from potential deficiency
of knowledge on design parameters. Reducible uncertainty can be limited when
the required information is gradually gathered. Common sources of such uncer-
tainty are imprecision, inconsistency and lack of information. The examples are



352 T. Uhl et al.

different possible techniques of modelling of the same phenomenon, e.g. friction,
damping. Irreducible uncertainties are substantially connected with modelled
mechanical system and express inevitable variation of its properties within time,
subsequent items, changes of environmental conditions etc. The examples are
manufacturing tolerances. Uncertainties are present at all stages of life of a me-
chanical structure [5, 7]. Table 1 presents exemplary sources of uncertainties.

Table 1. Uncertainties present at subsequent stages of life of mechanical
structure

Design Manufacturing Operation

– choice of a solution concept
– topology and number of

structural elements
– incomplete information on

material properties
– variety of methods for mod-

elling physical phenomena
– approximation, numerical

errors

– change in quality of man-
ufacturing of components
and of the final product

– differences in geometry
due to manufacturing tole-
rances

– wearing and aging of tools
– imprecision of measuring

devices
– quality of joints

– changes of environmental
conditions (temperature,
humidity, pressure)

– variable loading conditions
– changes of properties due

to aging, wearing and dete-
rioration of original param-
eter values (corrosion, fa-
tigue, microcracks)

During modelling of uncertain parameters many factors should be taken into
account. Usually, it happens that there is no equal access to complete data and
their precision is problematic. Amongst all, the following factors determine the
choice of uncertainty model:

a) availability of information,
b) knowledge of statistical moments/probability density functions (PDF),
c) type of data: subjective/objective data, qualitative/quantitative judgment,

linguistic variables,
d) requested type of the output characteristics,
e) dependences between uncertain parameters.

Depending on the format of gained data, uncertain parameters can be modelled
as [5, 6, 8]: random variables or random fields (defined by means of statisti-
cal moments), intervals (defined with the extreme values of a parameter) and
fuzzy numbers/fuzzy sets (stand for alternative of random variables and allow
for linguistic definition of uncertain parameters i.e. representing subjective or
incomplete knowledge).

The format of uncertainties determines the usage of applicable method for
uncertainty analysis. Available methods for uncertainty analysis can be divided
into the following categories [6, 8]:

a) Probabilistic methods. They operate on random variables and random
fields. They allow to find histograms and selected statistics characterizing



Analysis of uncertainties in MEMS. . . 353

specific responses. The most commonly used method, among the proba-
bilistic ones, is the Monte Carlo simulation (MCS). It can be used in the
most basic form as a crude MCS and with some more sophisticated meth-
ods of sampling in parameter space, in order to reduce the required number
of samples and to improve their locations in input domain.

b) Possibilistic methods. They stand for major alternative for probabilistic
methods. Most commonly used in the design stage when there is available
only a limited knowledge on the PDF and statistics of the parameters. The
most popular methods are: interval analysis [9], vertex method [6], theory
of fuzzy sets with Zadeh’s extension principle [10], transformation method
and its modifications [11, 12].

In the paper, the results of uncertainty analysis have been obtained by the use of
MCS for the study of histogram of the chosen resonance frequency. Additionally,
the vertex method and genetic algorithms (GA) have been applied to search for
extremes of the interesting characteristics.

3. FE model of microresonator

The variation of chosen resonance frequency of MEMS microresonator was
of concern. Prediction of studied dynamic characteristics has been facilitated
by computer simulations of numerical model, as it is normally done within the
frame of virtual prototyping procedure [13]. To study the influence of assumed
uncertainties on the output parameter, a FE model of microresonator has been
elaborated. It is shown in Fig. 1.

Fig. 1. FE model of microresonator and operational normal mode.
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The FE model consists of a movable shuttle mass suspended over the sub-
strate using two area-efficient folded flexures. Microresonator features two comb
drives enabling both to activate the device and to measure the displacement
along the longitudinal axis x. By mounted drives the microresonator can be
externally actuated to vibrate with fundamental frequency of operation. The
overall dimensions of the moving part of the device are 288 µm and 186 µm.
The thickness of microresonator is 3 µm. The gap between the moving part and
substrate is also 3 µm. The mesh is composed by 634 FE connected in 2072
nodes. The description of all structural elements is presented in Fig. 2.

Fig. 2. Numbering of structural elements of the FE model of microresonator.

The considered normal mode stands for the third global mode, defined as
the vibration of shuttle mass along axis x and presented in Fig. 1 on the right.
The stability of resonance frequency related to the mentioned vibration mode
is most important since it is activated while the microresonator is in operation
in accelerometer or in the electric circuit applied for signal filtering. The value
of resonance frequency calculated for nominal design equals 137.0 Hz. During
calculation, the analysis of Modal Assurance Criterion (MAC) is performed every
single iteration to prevent the results from confusion of the modes which may
happen as the consequence of mode swapping phenomenon.

In the model, the presence of air damping and electrostatic field is consid-
ered. The mentioned phenomena are introduced in a simplified way, by addition
of the discrete mechanical elements: dampers and springs. They express viscous
damping of the surrounding air as well as approximate resultant stiffness of elec-
trostatic influence and stand for an alternative to coupled problems [1]. Solved
matrix equation of motion for FE model takes the form:
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(3.1) Mü + CDAMPERSu̇ + (K + KSPRINGS)u = 0,

where u stands for nodal displacements, M, K are global mass and stiffness
matrices representing respectively pure mechanical parts of microresonator con-
sidered as an undamped system. Added parts consist of matrices CDAMPERS

and KSPRINGS which introduce resultant damping and stiffness coefficients be-
tween the selected degrees of freedom. Considered approximation enables one-
way coupling. Only the influence of air and electrostatic field on mechanical
part is taken into account. The interaction of mechanical part on electrostatic
field and flow of air has not been considered. Therefore there have not been
introduced any additional degrees of freedom (DOF) describing the mentioned
phenomena.

Fig. 3. Mechanical elements representing air damping and electrostatic field in numerical
simulations.

Figure 3 presents localizations of introduced mechanical elements expressing
the influence of air and electrostatic field. Six nodes have been chosen to which
dampers and springs are connected. All of them are paired to represent both
connections at top and bottom horizontal surfaces (in plane x-y). The localiza-
tions are as follows: 1 – in the middle of the flexure 1 for the introduction of air
damping related to this part, 2 – the same purpose but for the flexure 2, 3 – in
the middle of shuttle mass, for dampers introducing the influence of air on mov-
ing mass and springs that express the presence of electrostatic field generated by
comb drives. Free element connections are fixed to the substrate. Summing up,
6 dampers and 2 springs are considered, acting only in the direction of fundamen-
tal operational resonance vibrations, i.e. along axis x. It has been assumed that
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the influence of surrounding air and electrostatic field on other normal modes
is skipped. Introduced elements have been modeled using PBUSH/CBUSH ele-
ments in MSC/Nastran. In the following two Sections 4 and 5, the introduction
of air damping and electrostatic field is described.

It should be noted that in case of the presented model, i.e. when only one
normal mode is studied, there is a possibility of further simplification consider-
ing the complexity of the model. As it is done in modal analysis, one normal
mode can be represented be a simple one-DOF oscillator. This kind of simplic-
ity enables the analyst to perform numerical simulation much quicker. However,
the use of such model in the context of uncertainty analysis could be problem-
atic. FE model takes some time to be simulated but also enables to consider all
changes in geometry easily, e.g. via mesh morphing procedure, while in case of
one-DOF system there is a necessity to calculate the resultant mass, stiffness and
damping coefficients using very complicated, probably empirical, formulas. FE
model guarantees that all geometric properties are accurately calculated with
respect to geometric uncertainties.

4. Air damping

There have been considered four different types of air damping in the model
of microresonator, connected with: slide-film damping force (considered paral-
lel movement of an object with respect to surrounding air; area of longitudi-
nal cross-section is important), drag force (during movement through the air;
area of transversal cross-section is important), squeeze-film damping force (when
movement of an object against other element which is very closely located) and
acoustic energy dissipation (activating acoustic waves spreading through air).
Damping coefficients have been calculated separately for each damper, for given
combination of the values of uncertain parameters.

In the model, two kinds of slide-film damping force have been introduced
taking into account the difference between gap dimensions over and under the
moving part of microresonator. Under the shuttle mass, where the dimension of
gap distance equals 3 µm, Couette flow has been considered. Over the microres-
onator, the Stokes flow has been taken into account as the gap over the model has
been assumed to be much greater than the effective decay distance δ = 5.7 µm,
defined by the formula (4.3). In case of the sidewalls, both the Couette and
Stokes flows have been considered, depending on the distance between model
parts (Couette flow has been applied mainly between fingers of comb drives).
Figure 4 shows the areas taken for the calculation of slide-film damping related
to top and bottom surfaces of moving part. Mentioned areas are divided into
3 domains, each connected with different pairs of dampers (flexure 1: top and
bottom, etc.).
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Fig. 4. Slide-film damping force; considered areas for bottom and top surfaces of moving
part.

Both the Couette and Stokes flow have been taken into account while cal-
culating slide-film damping of the sidewalls. The definition of flows for selected
sidewalls is presented in Fig. 5.

Fig. 5. Slide-film damping force; considered areas for sidewall surfaces of moving part.

The formulas presented below have been used to calculate damping coeffi-
cients c. Slide-film damping forces can be calculated using the following equa-
tions [14]:
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a) for Couette flow (when distance between the moving part and anchor/sub-
strate is small, i.e. less than the effective decay distance δ):

(4.1) F = µ
A

d
ẋ = cẋ;

b) for Stokes flow (when distance between the moving part and anchor/sub-
strate is greater than effective decay distance δ):

(4.2) F = µ
A

δ
ẋ = cẋ,

where: µ is kinematic viscosity of fluid (for air it equals 1.81 · 10−5 Pa · s), A is
the area of moving part at top or bottom of the microresonator, d is distance
(thickness of air film), ẋ is velocity of shuttle mass along axis x, c is the damping
coefficient used to define the property of damper.

Effective decay distance δ (in the model it equals 5.7 µm) is calculated as
follows:

(4.3) δ =
√

2µ/ρω,

where: ρ is fluid density (for air it equals 1.2 kg/m3), ω is circular frequency of
vibration.

Figure 6 presents all areas that have been taken into account to calculate
damping coefficients representing the drag force, squeeze-film damping and dis-
sipation via acoustic energy.

Fig. 6. Drag force, squeeze-film damping force and acoustic wave dissipation; considered
areas for sidewall surfaces of the moving part.
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To calculate the damping coefficient which represents the drag force the fol-
lowing formula has been used [14]:

(4.4) F =
32

3
µrẋ = cẋ,

where r is a characteristic dimension, which means a half of the greater dimension
in case of rectangular shape of the object moving through air.

When distances between the neighbouring elements moving one against an-
other are small, the squeeze-film damping should be considered. Mentioned
damping expresses the phenomenon of under- or overpressure that occurs in
case of small gaps. Squeeze-film damping force is calculated as follows:

(4.5) F = µ
LB3

d3
β

(
B

L

)
ẋ = cẋ,

where: L, B are dimensions of rectangular shape (L > B). Factor β(B/L) can
be found by the formula [14]:

(4.6) β

(
B

L

)
=

{
1 − 192

π5

(
B

L

) ∞∑

n=1,3,5

1

n5
th

(
nπL

2B

)}
.

The last kind of damping which has been considered in the study is related
to energy dissipation via acoustic waves. Each object vibrating in the fluid is
a source of acoustic energy. Therefore the resistant damping force is observed
and can be calculated from the following formula [14]:

(4.7) F = ρυA

{
1 − 2J1

(
4πr

λ

)/(
4πr

λ

)}
ẋ,

where: υ is speed of sound wave in the fluid (assumed as 343 m/s for air), λ is
length of sound wave and J1 is the first order Bessel function.

Figure 7 presents the bar diagram of all damping coefficients calculated for
nominal values of uncertain parameters.

While modeling viscous damping, slide-film damping and drag force are the
most important phenomena and should be taken into account. Coefficients which
represent squeeze-film and acoustic wave dissipation have values approximately
20 times smaller than the values of coefficients expressing slide-film and drag
force. Therefore, they can be neglected for the analyzed model. Moreover it is
seen that for the studied microresonator, clear division between all kinds of vis-
cous damping can be made with respect to the part of model they mostly influ-
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Fig. 7. Damping coefficients for nominal configuration.

ence on. Thus, slide-film damping and squeeze-film damping affect mostly shuttle
mass, whereas drag force and acoustic dissipation influence mainly the flexures.

5. Electrostatic field

Since the comb drives can be treated as collection of capacitors in which
normal and tangential forces act, in the studied case, both the mentioned forces
have been used to model the influence of electrostatic field. Figure 8 symbolically
defines all capacitors that have been taken into account, both being responsible
for generating the tangential and normal forces.

Fig. 8. Considered areas of capacitors and supplied voltage.
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For the reason of simplicity, fringe effect has been neglected [14]. The presence
of electrostatic filed is considered by means of two springs, for which approximate
stiffness coefficients have been calculated by the use of the following formulas
defining:

a) tangential force:

(5.1) F =
bεε0
2d

V 2;

b) normal force:

(5.2) F =
Aεε0

2
V 2 1

x2
≈
(
∂F

∂x

)

x=x0

· x = kx,

where: ε is the relative permittivity of air, ε0 is the permittivity of vacuum, V is
voltage, b is thickness of comb drive finger, d is the gap between electrodes (gap
between elements of comb drives that lie one in front of another and make hori-
zontal and vertical capacitors), A is the area of electrodes of vertical capacitors,
x and x0 are respectively displacement and initial displacement of shuttle mass
along the x-axis.

Tangential forces, calculated for horizontal capacitors, do not depend on the
displacement observed in considered mode of vibration. Hence, they are not taken
into account in calculation of stiffness coefficients. Resultant tangential force is
constant because the applied voltages do not change their values. Moreover, the
voltages are symmetrical (each 100 V with the same polarization) and it has
been assumed that all tangential forces cancel their influences on the behaviour
of microresonator. For normal forces, resultant stiffness coefficient is calculated
by the following formula, derived from Eq. (5.2):

(5.3) k ≈
(
∂F

∂x

)

x=x0

= −Aεε0V 2 1

x3
0

.

Nominal value for resultant stiffness coefficient (the sum of stiffness coefficients
calculated for bottom and top springs) equals −0.256 N/m. To make the com-
parison, it should be noted that for nominal design, the resultant stiffness coeffi-
cient of two flexures (i.e. calculated in case when microresonator is considered as
a single-DOF mechanical system elaborated only for the studied normal mode)
and equals 52.0 N/m.

6. Uncertainties in FE model

63 different uncorrelated uncertain parameters have been of concern, express-
ing both the geometric and material properties of FE model of microresonator.
Table 2 gives detailed information on uncertainty characteristics. All parameters



362 T. Uhl et al.

Table 2. Uncertain parameters introduced in FE model of microresonator.

No. of Description Nominal Maximal range
parameter value of variation

1–16 Finger length (comb drives, fingers 1–16) 50 µm +/−0.5 µm

17–32 Finger width (comb drives, fingers 1–16) 4 µm +/−0.1 µm

33–48 Finger y-axis shift (comb drives, fingers 1–16) 0 µm +/−0.2 µm

49–50 Flexure length (flexures 1, 2) 100 µm +/−1 µm

51–60 Width of flexure beams (flexure beams 1–10) 4 µm +/−0.1 µm

61 Resonator thickness 3 µm +/−0.2 µm

62 Chamfer angle of deposited layers (moving part) 0 deg 0–2 deg

63 Young’s modulus of polysilicon 165 GPa +/−3 % (+/−5 GPa)

have been modelled as intervals. In case of MCS (description in Sec. 8), normal
PDF have been used considering that +/−3σ corresponds to maximal range of
variation (Table 2).

In this section, it should be noted that there is a number of different char-
acteristics changes connected with the geometry and material used for MEMS
construction. Some of them are catastrophic changes (i.e. faults, defects) which
disable proper operation. Most known are [15]:

a) not full release of a suspended microstructure,
b) presence of unwanted oxide residuals, contaminants,
c) re-deposition of etched material,
d) break of supporting beams,
e) sticktion of the parts as a result of adhesion forces and voltage overrange

(pull-in effect),
f) misalignment during etching and deposition,
g) residual stress that causes the beam structures to deform.

The phenomena presented above are not included into the study unless they
influence material and geometry properties shown in Table 2. Anyway they are
not taken into account explicitly.

The described FE model has been parameterized with respect to introduced
uncertainties. Fig. 9 presents the scheme of performed calculations that give the
results of simulated model characteristics (frequency of operational vibration
mode) for a given combination of input uncertain parameters. This model has
been used for sensitivity analysis and to assess the uncertainty propagation.

Model updating done within each calculation loop consists of: calculation of
all damping and stiffness coefficients which are used to parameterize dampers



Analysis of uncertainties in MEMS. . . 363

Fig. 9. The scheme of simulation loop.

and springs (presented in Fig. 3) and FE mesh morphing performed to change
the geometry of the model.

7. Sensitivity analysis

Sensitivity analysis has been carried out in order to quantify the influences of
all uncertain parameters on operational frequency of vibration. Finite difference
method has been applied to approximate the first derivatives [16]. Central plan
has been used for uncertainties apart from the chamfer angle, where forward plan
has been applied. Figure 10 shows the results obtained in sensitivity analysis.
All parameters are ordered according to numbering presented in Fig. 2.

Fig. 10. Calculated sensitivities.

The most influential parameters are: chamfer angle, Young’s modulus of
polysilicon material and all 12 geometric characteristics describing flexures. Pa-
rameters presented above should be as first of engineers’ concern while improv-
ing manufacturing process to keep variation of operational resonance frequency
within required ranges. Thickness does not influence the interesting parameter
significantly as it means the same scaling of stiffness and mass of moving part.
Geometry of comb drive fingers and their shifts along axis y can be neglected
because of their slight influence on the interesting natural frequency.
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8. Uncertainty propagation

To perform the analysis of uncertainty propagation, the following methods
have been applied:

a) MCS. MCS has been used to find histograms of the studied parameter.
Normal PDF have been considered with the assumption that −/+3σ in-
tervals correspond to maximal ranges of variations (Table 2). Technique of
Latin hypercube has been applied to improve the covering of input domain
with generated samples [17]. Number of samples is 2500.

b) The vertex method. The method has been used to search for the bounds of
variation of the interesting frequency and means checking all the vertices
of input domain that are considered as combinations of extreme values of
input parameters. For the analysis, 14 most influential parameters have
been chosen by sensitivity analysis (flexure lengths – 2 parameters, flexure
widths – 10 parameters, chamfer angle and Young’s modulus of polysilicon)
and 16384 iterations performed.

c) The application of GA [18, 19]. GA have been used in order to find extremes
of the chosen natural frequency. Therefore two search tasks have been per-
formed. The first one for the search of minimal value and the second one
to find the maximal value. Used population consists of 25 individuals that
have been subjected to crossover and mutation procedures. The genera-
tion gap equals 0.8. 120 generations have been carried out in both tasks.
Probabilities of crossover and mutation are equal 0.7 and 0.4 respectively.

Figure 11 presents histograms of selected damping coefficients obtained in
MCS, namely for slide-film damping and acoustic energy dissipation. More de-

Damping coefficients – histograms (TOP + BOTTOM)

Slide-film damping Acoustic energy dissipation

Fig. 11. Histograms of selected damping coefficients.
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tailed information on all damping coefficients is shown in Table 3. It contains
Coefficient of Variation (COV; known also as Coefficient of Variance [20]) as
a reliable quantity used for the assessment of obtained scatters.

Table 3. Damping coefficients – uncertainty propagation.

Damping coefficients c – Mean Standard
COV [–]

Minimal value Maximal value

sum for all dampers value deviation (relative change with respect
[10−10 kg/s] to the mean value [%])

Slide-film
1136.7 0.1310 0.0012

1132.6 1141.2
Top/Bottom (−0.36) (0.40)

Slide-film
300.76 0.6695 0.0223

277.68 324.15
Sidewalls (−7.67) (7.78)

Drag 938.30 0.1868 0.0020
931.08 944.36
(−0.77) (0.65)

Squeeze-film 4.210 0.0258 0.0613
3.3822 5.2075
(−19.7) (23.7)

Acoustic energy
12.336 0.0293 0.0238

11.415 13.256
dissipation (−7.47) (7.46)

Although slide-films for the top and bottom surfaces of microresonator and
drag characterize the highest values of damping coefficients, they seem to be the
most insensitive in terms of the considered uncertainties. Calculated COV equal
0.12% and 0.20% respectively and are much smaller than the COV calculated for
other damping coefficients. Amongst the three most influential damping coeffi-
cients, only that calculated for slide-film of sidewalls characterizes a considerable
value of COV (2.23%) i.e. it is more sensitive to the assumed changes of design
parameters. COV determined for the remaining damping coefficients, calculated
for squeeze-film phenomenon and acoustic energy dissipation, are the highest
ones, 6.13% and 2.38% respectively. However, their overall contribution to the
sum of all damping coefficients equals 0.69%. Therefore we should not pay much
attention to the accuracy of modelling of the mentioned phenomena.

Variation of the stiffness coefficient determined for MCS is described by the
histogram presented in Fig. 12. Its numerical characteristics is collected in Ta-
ble 4. The results of uncertainty propagation for operational frequency of vibra-
tion are presented in Fig. 13 and Table 5.

Results obtained by the applications of GA and by the vertex method are
almost the same. Significant difference appears while comparing results yielded
by MCS. MCS can be successfully applied to assess the selected statistics and
histograms, but it is very time-consuming to use this method to perform reliable
search for extremes of interesting characteristics. Even after the use of Latin
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Stiffness coefficient – histogram (TOP + BOTTOM)

Fig. 12. Histogram of stiffness coefficient.

Table 4. Stiffness coefficient – uncertainty propagation.

Stiffness coefficient k –
Mean Standard

COV [–]
Minimal value Maximal value

sum for all springs
value deviation (relative change with respect

[N/m]
to the mean value [%])

−0.2547 0.0066 −0.0257
−0.2804 −0.2324
(−9.53) (9.22)

Fig. 13. Uncertainty propagation for studied frequency – graphical representation.

Table 5. Uncertainty propagation for studied frequency – the case with 3% of
variation of Young’s modulus.

Analysis
Resonance frequency [kHz]

Mean value Standard deviation COV [–] Minimal value Maximal value

MCS 134.79 1.2114 · 103 0.0090 130.50 138.60

GA – – – 123.60 146.26

Vertex – – – 124.22 146.02
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hypercube sampling techniques, the number of 2500 samples is not sufficient to
cover properly the whole input parameter domain.

Although the originally assumed range of variation of Young’s modulus equals
+/−3% (i.e. +/−5 GPa; as presented in Table 2), additional analysis of uncer-
tainty propagation has been performed to study the influence of scatter of the
mentioned material property on the variation of the considered resonance fre-
quency. Figure 14 and Table 6 present the results obtained in the analysis, both
in the form of histograms and statistic characteristics.

Fig. 14. Histograms of operational resonance frequency for different scatters of Young’s
modulus.

Table 6. Variation of studied frequency with respect to variation of Young’s
modulus.

Range of
Resonance frequency [kHz]

variation of
Mean Standard

COV [–]
Minimal value Maximal value

Young’s modulus
value deviation (relative change with respect

[%] to the mean value [%])

0 134.79 1.007 · 103 0.0075 1.314 (−2.486) 1.380 (2.399)

2 134.80 1.114 · 103 0.0083 1.308 (−2.984) 1.394 (3.443)

4 134.79 1.369 · 103 0.0102 1.300 (−3.711) 1.399 (3.803)

6 134.79 1.671 · 103 0.0124 1.292 (−4.135) 1.403 (4.053)

8 134.78 2.056 · 103 0.0153 1.268 (−5.896) 1.428 (5.948)

10 134.78 2.503 · 103 0.0186 1.255 (−6.902) 1.430 (6.130)
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For the analysis, all geometric parameters can vary within the bounds defined
in Table 2. Studied domain of material property covers ranges up to +/−10% of
nominal value of Young’s modulus. Approximately linear relationship between
the range of variation of Young’s modulus and COV calculated for the stud-
ied frequency is observed. COV increases twice when the range of variation of
Young’s modulus grows from 0% to 8%. Calculated mean values of resonance fre-
quency are almost the same (from 134.78 kHz up to 134.80 kHz), however they
significantly differ from the nominal value of this parameter (137 kHz). This ob-
servation can be explained by linear relationship between the studied frequency
and Young’s modulus and simultaneous strongly nonlinear relationships between
this frequency and geometric parameters.

9. Summary and concluding remarks

In the paper an application of uncertainty analysis is presented on the ex-
ample of simulation of dynamic properties of microresonator. As an object of
the study, i.e. the output parameter of the analysis, a chosen resonance fre-
quency of operational mode has been selected and its variation in terms of the
assumed uncertainties has been assessed. Selected geometric parameters and ma-
terial property have been considered as uncertain.

FE model of microresonator has been elaborated and parameterized with
respect to the established list of uncertain parameters. The model has taken
into account multiphysics. The influence of air damping and electrostatic field
has been modeled by the use of discrete mechanical elements: dampers and
springs. The following phenomena connected with air damping have been of
concern: slide-film damping, drag force, squeeze-film damping and dissipation of
acoustic energy. FE model has been used in sensitivity analysis and to assess
the uncertainty propagation. Performed analysis has shown that acoustic energy
dissipation and squeeze-film damping can be neglected for the studied device.

Amongst all geometric parameters, flexure characteristics and chamfer angle
are most important for variation of the studied resonance frequency. It is so
since stiffness of the structure vibrating in operational mode depends mostly
on flexure geometry. Geometry of comb drive fingers can be skipped, since its
changes slightly participate in variation of the output parameter. Thickness of
the microresonator can be neglected because of small effect of this parameter on
the studied frequency.

Different methods, both probabilistic and possibilistic, have been applied in
order to study the uncertainty propagation for interesting natural frequency,
namely: MCS, the application of GA and the vertex method. The first one has
been used to obtain mean values and histograms of the output parameter. Re-
maining two methods have been used to calculate the extreme values of natural
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frequency. The results obtained by the applications of the vertex method and GA
are consistent. Minimal and maximal values yielded in MCS are different since
the number of samples is supposed to be insignificant and covering of area of low
probability seems to be of poor quality. During the analysis, linear relationship
between operational resonance frequency and elastic modulus has been found
as well as the nonlinear ones between the output parameter and the geometry
characteristics of FE model of microresonator.
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