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Magnus effect and dynamics of a spinning disc
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Magnus effect consists in deflection of the trajectory of a rotating body moving
in a gas. It is a direct consequence of the interaction between the body surface and
the gas particles. In this paper, we study the so-called inverse Magnus effect which
can be observed in rarefied gases. We restrict ourselves to the two-dimensional case,
namely a spinning disc moving through a sparse zero-temperature medium. We con-
sider general non-elastic interaction between the disc and the particles depending on
the incidence angle. We give a classification of auxiliary parameters with respect to
possible dynamical response. In the absence of other forces, three kinds of trajecto-
ries are possible: (i) a converging spiral, (ii) a curve converging to a straight line and
(iii) a circumference, the case intermediate between the two first ones. A specific 2-D
parameter space has been introduced to provide respective classification.
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1. Introduction

Let us consider a spinning body moving through a gas. Assuming that the
rotation axis is not parallel to the direction of the motion, the created drag force
is not parallel to the instant velocity and therefore tends to deflect the body
trajectory. This phenomenon is called Magnus effect and has been extensively
discussed in the literature. Its origin goes back to Newton [14] and Robins [20]
in relation with the dynamics of tennis and cannon balls; see [24] for a historical
account. The classical Magnus effect, discussed for a sphere or a cylinder with the
symmetry axis orthogonal to its velocity, is a consequence of the transverse force
acting on the body whose direction coincides with the instant rotation velocity of
the body’s front point. Further development of the subject has been maintained
during the 20th century due to the interest in sports and technological (mainly
military) applications [16, 8, 21, 3, 11, 26].



392 G. Mishuris, A. Plakhov

Recent development in the area related to Magnus effect, alongside with
the continuing interest from the modern sport industry and related applications
[7, 6, 12], bursts out from the enormous progress in space exploration. A crucial
part of the related projects consists of the investigation of satellite aerodynam-
ics in sparse atmosphere. In particular, the following important question should
be addressed: how the drag force affects the dynamics of artificial satellites on
low Earth orbit and the trajectories of planned space missions to other plan-
ets. Moreover, one can ask to what extent the trajectories can be controlled by
varying their aerodynamical characteristics [13, 1, 2, 18, 19, 4]. Among other
phenomena, a considerable amount of attention has been attracted to the Mag-
nus effect in rarefied gas [5, 9, 25, 27, 23]. In these papers, the gas is supposed
to be rarefied to that extent that mutual interaction of molecules can be ne-
glected and therefore, the method of free molecular flow [10, 22] is applicable.
The bodies have been supposed to be convex and symmetric with respect to the
rotation axis (usually a sphere or a cylinder; however, in [9] the general class
of bodies was considered). The interaction of the gas particles with the body is
considered to be non-elastic; a portion of the tangential component of the parti-
cles’ momentum is transmitted to the body and, as a result, the transverse force
is created. The following conclusion has been made: in extremely rarefied gases
the so-called inverse Magnus effect takes place. That is, the transverse force
acts opposite to the rotation velocity of the body’s front point. Assuming that
the rotation axis is perpendicular to the velocity of translational motion, the
formula for the transverse force has been derived (sometimes under additional
thermodynamical assumptions [5]):

(1.1) FT =
1

2
αmvω,

where α is the so-called Maxwellian accommodation coefficient. Here m is the
mass of the gas displaced by the body, α is a measure of ‘tangential friction’
varying between 0 and 1, v is the velocity of translational motion and ω is
the angular velocity of the body. It is important to underline that only one
parameter friction regime had been analysed thus far resulting in a fixed value
of the parameter α. Note also that the moment of the force has been additionally
evaluated in [9, 23].

In [15], as opposed to the papers cited above, the particles are assumed
to interact with a non-convex body but in the perfectly elastic way. The body
is a rough disc rotating in the two-dimensional space around the fixed centre.
The transverse force here is created due to multiple reflections of particles from
small dimples on the disc boundary. The inverse Magnus effect is shown to
be predominant, and the drag force and the moment of the force have been
calculated as functions of the shape of dimples.
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By contrast in this paper, addressing the aforementioned question on control-
lability of the satellite trajectory, we extend the analysis to a general class of non-
elastic regimes determined by friction coefficients k1(ϕ) and k2(ϕ) which may
depend on the incidence angle ϕ. Following Weidman and Herczynski [27], we
assume that the thermal motion of gas particles can be neglected as compared
with the velocity of translational motion of the body. We restrict our analysis to
the case of a spinning disc translating through two-dimensional space. The main
result is that, depending on the friction regime and the inertial properties of the
disc, three possible tendencies of its motion can be identified: the trajectory cur-
vature remains constant (I), increases (II) or decreases (III) during the motion.
The case (I) is intermediate and separates the cases (II) and (III) determined by
two open domains in the parameter space. Stability of the trajectory type with
respect to small perturbation of the frictional parameters follows immediately
from these results.

The paper is organised as follows. Section 2 contains the main results while
Sec. 3 is devoted to numerical examples and discussions.

2. Equations of motion

Let us consider a spinning disc moving through a rarefied medium. The latter
means that mutual interaction of the particles can be neglected. Additionally,
the medium temperature is assumed to be absolute zero; that is, all the particles
are initially at rest [27]. The particles collide with the disc according to a non-
elastic law to be described below. We choose a local reference system Õx̃1x̃2

connected with the disc boundary in the standard way that the axes Õx̃1 and
Õx̃2 are, respectively, tangent and normal to the boundary and x̃2 > 0 outside
the disc (see Fig. 1).

Fig. 1. Non-elastic collision.
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In this system the velocity of a particle before collision is ṽ = (ṽ1; ṽ2)
T ,

ṽ2 ≤ 0 and

(2.1) ṽ+ = (k1ṽ1; −k2ṽ2)
T

after collision, where k1 = k1(ϕ) and k2 = k2(ϕ) (0 ≤ kj ≤ 1) can be interpreted
as generalised friction coefficients. Here ϕ ∈ [−π/2, π/2] is the angle formed by
the velocity of the incident particle and the normal to the disc boundary at the
point of collision, measured counterclockwise from the normal. It is natural to
assume that kj(ϕ) = kj(−ϕ).

The reflection law in the coordinate-free form states: ṽ+ = k1(ṽ − 〈ṽ, n〉n) −
k2〈ṽ, n〉n = k1ṽ − (k1 + k2)〈ṽ, n〉n. Here 〈· , ·〉 means the scalar product, and n
is the outer normal to the body surface.

Remark 1. As usual (see [5–27] we assume here and in what follows that
the interaction time ∆t is infinitesimal in such a sense that at every particular
moment t0 the moving reference system related with the body (the disc) can be
considered as inertial one during the time interval ∆t.

Note that the case k1 = k2 = 1 represents the classic elastic interaction
between the body and a particle. A similar model, in the three-dimensional
setting, was considered in [27] by Weidman and Herczynski. They studied
rotating convex bodies like a ball, a cylinder and a parallelepiped of polygonal
section in the particular case k2 = 1 with a specific tangential friction, and
calculated only the force (and not its moment).

We shall adopt the following notation:

M mass of the disc,
r its radius,
I its moment of inertia,
µ = I/Mr2 relative moment of inertia,
v disc velocity,
u = |v|
ω angular velocity,
λ = rω/u relative angular velocity,
ρ density of the medium.

Additionally to the system Õx̃1x̃2 we consider the reference system Ox1x2

moving together with the disc, where O is the disc center and the axis Ox1

points to the direction of its translation. Note that the system Õx̃1x̃2 from
Fig. 2 coincides with that in Fig. 1. The disc rotates around O with the an-
gular velocity ω. Here and in what follows, the angular velocity and angles are
measured counterclockwise. In this reference system, there is the rarefied flow
of velocity −v = (−u; 0)T . In fact both the systems Ox1x2 and Õx̃1x̃2 are not
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Fig. 2. Spinning disc in a rarefied flow.

inertial, however we will consider them as inertial ones due to the mentioned
above Remark 1.

Suppose the velocity of a particle hitting the disc at the point Õ is written
as ṽ = (ṽ1; ṽ2)

T in the former reference system, and v = (v1; v2)
T , in the latter

one. Then the formulas of instantaneous change of variables are as follows:

[
v1

v2

]
=

[
sinϕ cosϕ

− cosϕ sinϕ

] [
ṽ1
ṽ2

]
+ rω

[
− sinϕ

cosϕ

]
,

[
ṽ1
ṽ2

]
=

[
sinϕ − cosϕ
cosϕ sinϕ

] [
v1

v2

]
+ rω

[
1
0

]
,

where at the given instant the radius vector OÕ forms the angle ϕ with Ox.
Substituting v = (0; −u)T , the velocity of a flow particle incident on the

disc, in the former reference system one gets ṽ = (rω − u sinϕ; −u cosϕ)T . The
velocity of the reflected particle computes as ṽ+ = (k1(rω−u sinϕ); k2u cosϕ)T .
Making the reverse change of variables, one arrives at

v − v+ = ((1 − k1)rω + (k1 + k2)u sinϕ)

[
sinϕ

− cosϕ

]
− (1 + k2)

[
u
0

]
.

Further, the angular momentum per unit mass transmitted by the particles at
each boundary point

Ω = −r(1 − k1)(rω − u sinϕ).

The force (which is usually called force of resistance) and the moment of the
force are obtained by integrating both v−v+ and Ω over the part of the surface
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involved in the interaction, that is,

R = ruρ

π/2∫

−π/2

(v − v+) cosϕdϕ = −ruρ
(
uκ1e1 + rωκ3e2

)
,(2.2)

RI = −r2uρ
π/2∫

−π/2

(1 − k1)(rω − u sinϕ) cosϕdϕ = −r3ωuρκ2,(2.3)

where e1 = (1; 0)T and e2 = (0; 1)T .
Here we have introduced the new notation:

κ1 = 2 − 2

π/2∫

0

k1(ϕ) sin2 ϕ cosϕdϕ+ 2

π/2∫

0

k2(ϕ) cos3 ϕdϕ,(2.4)

κ2 = 2 − 2

π/2∫

0

k1(ϕ) cosϕdϕ(2.5)

and

κ3 = π/2 − 2

π/2∫

0

k1(ϕ) cos2 ϕdϕ.(2.6)

These coefficients are dimensionless and reflect corresponding modes of interac-
tion between the body and the particles. Namely, the coefficient κ1 is responsible
for slowing down the disc, the coefficient κ2, for its revolution slowing down, and
κ3, for deflection of the trajectory. Thus, κ1, κ3 and κ2 can be identified as gen-
eralised drag, lift and spin decay coefficients, respectively.

For example, the parameter κ1, and therefore the drag force, is minimal when
k1 = 1 and k2 = 0 and maximal for k1 = 0 and k2 = 1. It is interesting to note
that the friction parameter k2(ϕ) does not influence the generalised coefficients
κ2 and κ3.

Remark 2. In case when the parameter k1 takes its maximal value (k1 = 1),
that corresponds to perfectly slippery disc boundary, the moment transmitted
to the disc by a particle is directed toward the disc centre. No wonder that in
this particular case the drag is parallel to the disc velocity and the moment of
the force equals 0, while R = −ru2ρκ1e1 and RI = 0. Therefore the disc moves
along a straight line with the angular velocity being constant. If, additionally,
k2 = 1, that is, in the case of perfectly elastic collisions, the force R = −8

3 rρu
2 ·e1
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equals two thirds of the corresponding force for the circumscribed square with
the sides parallel and perpendicular to the direction of motion. Since the case of
perfectly slippery boundary, k1 = 1, is trivial in the sense of the disc dynamics,
it is excluded from the further consideration.

As we will see later, the specific kind of asymptotic behaviour of the system
(circumference, curve converging to a straight line, or converging spiral) is de-
termined by the two parameters κ1 and κ2, as well as by the relative moment
of inertia µ, whereas the parameter κ3 determines quantitative properties of the
special kind of trajectory. One can easily see that

4/3 < κ1 ≤ 10/3, 0 < κ2 ≤ 2, 0 < κ3 ≤ π/2.

Moreover, the following inequality can be easily proven:

(2.7) κ1 ≥ κ2.

Indeed, from (2.4) and (2.5), it immediately follows

κ1 ≥ 2 − 2

π/2∫

0

k1(ϕ) cosϕ sin2 ϕdϕ ≥ 2 − 2

π/2∫

0

k1(ϕ) cosϕdϕ = κ2.

Let us determine the complete set of admissible values (κ1,κ2). We have already
seen that all values (κ1,κ2) belong to the rectangle [0, 2] × [4/3, 10/3] and are
situated above the line κ1 = κ2; therefore the set is contained in the polygon
ABFDE shown on Fig. 3a.

Note also that in the particular case when the coefficients k1 and k2 are
constants, the following formulae hold true

(2.8) κ1 =
2

3
(3 − k1 + 2k2), κ2 = 2(1 − k1), κ3 =

π

2
(1 − k1).

The first two relations establish a one-to-one correspondence between the space
of constant parameters (k1, k2) (the square ABCD on Fig. 3b) and the paral-
lelogram ABCD on Fig. 3a. This implies that the set of admissible parameters
contains this parallelogram.

The following proposition shows that the space of admissible (κ1,κ2) de-
picted on the Fig. 3a is bounded by the segments AB, CD and the curves AD:
κ1 = gmin(κ2) and BC: κ1 = gmax(κ2).

Proposition 1. The minimal and maximal values

(2.9) gmin(x) = inf{κ1 : κ2 = x} = 4/3 + x3/12,

and

(2.10) gmax(x) = sup{κ1 : κ2 = x} = 10/3 − (2 − x)3/12,
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are attained at the functions

(2.11) k∗1(ϕ) =

{
1, if ϕ ≥ arcsin(κ2/2),
0 otherwise,

k∗2(ϕ) ≡ 0,

and

(2.12) k̃1(ϕ) =

{
1 if ϕ ≤ arcsin(1 − κ2/2), ,
0 otherwise,

k̃2(ϕ) ≡ 1,

respectively. All the intermediate values between gmin(x) and gmax(x) are obtained

by varying (continuously in L1) the functions k1 and k2 between their minimising

(2.11) and maximising (2.12) values.

P r o o f. Here we prove that the infimum of

κ1(k1, k2) = 2 − 2

π/2∫

0

k1(ϕ) sin2 ϕ cosϕdϕ+ 2

π/2∫

0

k2(ϕ) cos3 ϕdϕ,

under the condition

(2.13) 2 − 2

π/2∫

0

k1(ϕ) cosϕdϕ = x,

is attained at k1 = k∗1, k2 = k∗2.
Make the change of variable z = sinϕ and denote f(z) = k1(arcsin z). Then

the condition (2.13) takes the form

1∫

0

f(z) dz = 1 − x/2.

The function f∗(z) = k∗1(arcsin z) is obviously given by f∗(z) = 1 if z ≥ x/2 and
f∗(z) = 0 otherwise.

One has

(2.14) κ1(k1, k2) − κ1(k
∗
1, k

∗
2) ≥

1∫

0

(f∗(z) − f(z)) z2 dz.

Denote by Φ(z) the primitive of f∗(z) − f(z) such that Φ(0) = 0, then Φ(1) =∫ 1
0 f

∗(z) dz −
∫ 1
0 f(z) dz = 0. Moreover, the inequality Φ(z) ≤ 0 holds for all

0 ≤ z ≤ 1. Indeed, if z ≤ x/2, one has Φ(z) = −
∫ z
0 f(z) dz ≤ 0, otherwise
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Φ(z) = −
∫ 1
z (1 − f(z)) dz ≤ 0. Thus, the right-hand side of (2.14) equals

1∫

0

Φ′(z) z2 dz = −
1∫

0

Φ(z) 2z dz ≥ 0,

that finishes the proof. Finally, one readily calculates that κ1(k
∗
1, k

∗
2) = 8/3 +

x3/12.
To prove the second statement on supremum of Proposition 1, one can use

the same line of reasoning as above.
Now, it remains to check whether all points are lying between the aforemen-

tioned limiting cases on the diagram from Fig. 3a. Indeed, consider the charac-
teristic function of an interval [ϕ1, ϕ2], k1(ϕ), satisfying the condition (2.13), and
choose k2(ϕ) = k2 to be constant. By changing the parameters ϕ1, ϕ2 and k2

continuously from k∗1, k
∗
2, 0 to k̃1, k̃2, 1, one can observe that the value κ1(k1, k2)

runs all the points of the interval [gmin(x), gmax(x)].

Recall that the set of values (κ1,κ2) corresponding to constant values
of k1, k2, is the parallelepiped ABCD on Fig. 3a.

a) b)κ1

κ20

10
3

8
3

4
3

2

2

D

C

B

A

E

F
k2

k10

1

10.5

A

B C

D

Fig. 3. The admissible spaces of auxiliary parameters κ2, κ1 (Fig. 3a) and constant friction
parameters k1, k2 (Fig. 3b). The curves AD and BC are given (see (2.9), (2.10)) by the
equations κ1 = gmin(κ2) and κ1 = gmax(κ2), respectively. The curve AD is convex and
touches the lines DE and AE: κ1 = κ2 at the points D and A. The curve BC is concave and
touches the line BF at the point B. The space of parameters κ1, κ2 corresponding to constant

values k1 and k2 is the parallelogram ABCD on Fig. 3a.

Remark 3. From (2.2) one can see that the transverse component of the
force R equals RT = −r2uρωκ3e2 and thus is opposite to the instant rotation
velocity of the disc front point, ωre2, and therefore the inverse Magnus effect is
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observed. Moreover, denoting by m the total mass of gas particles displaced by
the disc, m = πr2ρ, the absolute value of this component can be written in the
form (1.1) with the Maxwellian accommodation coefficient

α =
2

π
κ3 = 1 − 4

π

π/2∫

0

k1(ϕ) cos2 ϕdϕ.

In the case of constant k1 one gets α = 1 − k1.

Remark 4. Although constant friction coefficients look at first glance like
a natural choice, the opposite case is, in fact, more realistic. Thus any diffusion
interaction leads to such relationships, if one will rewrite results from e.g. [28].
Moreover, as it has been discussed in [29, 30], at “grazing” angles of incidence,
ϕ ≈ 90◦, the specular reflection significantly raises. The simplest model for such
an interaction can be written in the following quasi-linear form

ṽ+
1 = (k0

1 ṽ1 − k12 sgn ṽ1|ṽ2|)+, ṽ+
2 = k2ṽ2,

where k0
1, k12 and k2 are constants. Rewriting these equations in the form (2.1),

we get
k1(ϕ) = k0

1(1 − f | cotϕ|)+, k2 = const,

where f = k12/k
0
1 > 0. Note that the same relationship could be obtained from

the contact mechanics point of view where f is the Newton friction coefficient.
Then formulae (2.4)–(2.6) can be computed to give:

κ1(f) = 2 +
4

3
k2 −

2

3
k0

1

(
1 − f√

f2 + 1

)
,

κ2(f) = 2 − 2k0
1

(
1 + f ln

(
f√

f2 + 1 + 1

))
,

κ3(f) =
π

2
− k0

1

(
arctan

1

f
+ 2f ln

f√
f2 + 1

)
.

Note that the law (2.1) nonuniformly converges to the case k1 = const if f → 0,
while the other limiting case f → ∞ leads to k1 = 0. One can easily obtain (2.8)
passing to limit f → 0, and κ1(∞) = 2

3(3 + 2k2), κ2(∞) = 2, and κ3(∞) = π/2
in the other case, that coincides with the expectations.

Let us investigate now an impact of the generalised friction coefficients dis-
cussed above on possible disc trajectory in the rarefied medium. We will need
the following dimensionless parameters: the relative angular velocity, λ, and the
relative moment of inertia, µ, defined as follows
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(2.15) λ = rω/u, µ = I/(Mr2).

One always has 0 < µ ≤ 1; if the mass is concentrated on the disc boundary
(like in a football) then µ = 1, if the mass is uniformly distributed over the disc
(like in a golf ball) then µ = 1/2, and if the mass is concentrated near the centre
of the disc then µ≪ 1.

It is convenient to introduce a complex velocity (corresponding to the initial
coordinate system related to the particles). Namely, let us define v = ueiθ;
then the first coordinate vector in the system Ox1x2 from Fig. 2 takes the form
ǫ1 = eiθ, whereas the second one ǫ2 = iǫ1. Moreover, uǫ2 = iv and u = u(t) and
θ = θ(t) depend on time. Recall here that u = |v|. In the complex notation, (2.2)
and (2.3) can be written down as

R = −ρru(κ1 + iλκ3)v, RI = −ρr2u2λκ2,

so the equations of disc dynamics

M
dv

dt
= R, I

dω

dt
= RI ,

can be rewritten in the following form

M

(
d

dt
u+ iu

d

dt
θ

)
= ρru2(−κ1 − iκ3λ),

µM
d

dt
(λu) = −ρru2

κ2λ.

In terms of new dimensionless variable τ defined by dτ = (ρru/M)dt, one finally
gets the following set of differential equations in real variables

du

dτ
= −κ1u,(2.16)

dλ

dτ
= (κ1 − κ2/µ)λ,(2.17)

dθ

dτ
= −κ3λ,(2.18)

with the initial conditions: u(0) = u0, λ(0) = λ0, θ(0) = θ0.
The first equation is trivially integrated to obtain

(2.19) u = u0e
−κ1τ ,

and the distance passed by the disc is computed as

s =

t∫

0

u dt = s∗τ, where s∗ =
M

ρr
.
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Remark 5. The dimensionless variable τ is, in fact, the normalised distance.
Moreover, it is easy to see that the path length, s, depends on time as ln t or
more precisely

(2.20) s(t) =
s∗
κ1

ln

(
1 +

u0κ1

s∗
t

)
.

Remark 6. Without solving the rest of the system, one can immediately
conclude that for any λ0 > 0, κ2 > 0 and for a sufficiently small value of the
parameter µ, solution to the equation (2.17), λ(t), exponentially vanishes, which
is consistent with the definition of this parameter (see (2.15)).

Referring to the last two equations (2.17) and (2.18), there are three different
cases corresponding to the sign of κ1 − κ2/µ, namely

I. µκ1 = κ2. Solving the equations (2.17)–(2.18), one gets λ = λ0 and θ =
θ0 − κ3λ0τ . Thus, the trajectory is a circumference of radius s∗/(λ0κ3).

II. µκ1 < κ2. The solution is

λ = λ0e
−(κ2/µ−κ1)τ ,

θ = θ0 +
µκ3

κ2 − µκ1
λ0

(
e−(κ2/µ−κ1)τ − 1

)
.

The trajectory is a curve converging to a straight line.

III. µκ1 > κ2. The solution is formally the same as in the Case II,

λ = λ0e
(κ1−κ2/µ)τ ,

θ = θ0 −
µκ3

µκ1 − κ2
λ0

(
e(κ1−κ2/µ)τ − 1

)
,

but now the trajectory is a converging spiral.

Regardless of the three discussed cases, the angular velocity of the disc can
be written in a uniform way as

ω =
λ0u0

r
e−κ2τ/µ.

Finally one can rewrite all the variables as functions of time, t, instead of the
dimensionless normalised distance, τ , by adopting relation (2.20). In particular,

u = u0

(
1 +

u0κ1

s∗
t

)−1

,

ω =
u0λ0

r

(
1 +

u0κ1

s∗
t

)−
κ2

µκ1

.
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θ = θ0 −
µκ3λ0

µκ1 − κ2

((
1 +

u0κ1

s∗
t

)µκ1−κ2

µκ1 − 1

)
.

Note that ω(t)/u(t) is constant in the Case I, whereas ω(t)/u(t) vanishes as
t→ +∞ in the Case II and goes to infinity in the Case III.

Let us remind the specific case k1 = 1 discussed earlier in Remark 2 and
excluded from the analysis as a trivial case. Indeed, in this case according to
(2.6) κ3 = 0 and, regardless of the three cases defined above, one immediately
concludes from (2.18) that θ = θ0, so any possible trajectory is a straight line.

The three aforementioned cases completely describe dynamics of the spinning
disc in the medium of motionless particles. However, the answer to the question
which type of movement appears in each specific situation will depend on the
friction parameters. We discuss this with examples in the next sections.

3. Discussions and numerical examples

Let us consider the simplest case when both the friction coefficients k1 and
k2 are constants. Then the aforementioned Case I is defined by the condition

(3.1) (3 − µ)k1 + 2µk2 = 3(1 − µ),

and the Cases II and III are given by the inequalities (3−µ)k1 +2µk2 < 3(1−µ)
and (3−µ)k1 + 2µk2 > 3(1−µ), respectively. The straight line (3.1) divides the
parameter square 0 ≤ k1 < 1, 0 ≤ k2 ≤ 1 into two parts, L(µ) and S(µ). On
Fig. 4b the respective lines are depicted by solid line (for the case µ = 1/2) and

a) b)
κ1

κ2

L(µ)S(µ)

0

10
3

8
3

4
3

2

µ << 1

µ = 1
2 µ = 3

5

µ ≈ 1

2

k2

k1

L(µ)

S(µ)

0

1

1

µ = 3
5 µ = 1

2 µ << 1

µ ≈ 1

0.5

Fig. 4. Three possible cases of dynamical behaviour indicated in space of the auxiliary
parameters κ1, κ2 (Fig. 4a) and the constant friction parameters k1, k2 (Fig. 4b)
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dashed lines (for µ = 3/5 and two limiting cases µ ≈ 1 and µ ≈ 0). On the left
part (L), the corresponding trajectory is asymptotically a straight line, and on
the right part (S), it is a converging spiral. On the separation line, the trajectory
is a circumference.

It is interesting to discuss influence of the inertia parameter µ on the possible
disc trajectory. For three specific values, µ ≈ 1, µ = 1/2 and µ ≈ 0, we obtain
the following statements:

(i) Let µ = 1 − ε where ε ≪ 1 takes a small value. That corresponds to
a all with mass concentrated near the boundary (football). Then for any couple
(k1, k2) lying outside ε-neighbourhood of the origin of the parameter space (see
Fig. 4b), the trajectory is always a converging spiral.

(ii) Let µ = 1/2 (golf ball). Then the separation line (3.1) takes the form
5k1 + 2k2 = 3. This special case is depicted by solid line on Fig. 4b).

(iii) Let µ = ε (the disc mass is concentrated near the centre). The separation
line is located closely to the right vertical side of the square; so the trajectory is
asymptotically straight for most parameters with couple (k1, k2) separated from
the line k1 = 1.

Finally, on Fig. 5, three cases of disc dynamics are provided for the particular
values k1 = 0.5, k2 = 0.25, (or, equivalently, κ1 = 2, κ2 = 1, κ3 ≈ 0.753),
λ0 = u0 = 1, s∗ = 0.1. The cases L, C and S are realised for different kinds
of mass distribution inside the disc, characterised by the values µ = 0.4, 0.5
and 0.6, respectively. In particular, the intermediate case of circumference (C)
is realised in the case of uniform mass distribution.

Fig. 5. Three cases of disc trajectory for κ1 = 2, κ2 = 1: circumference (C), asymptotic
straight line (L) and converging spiral (S).

Summarizing the results presented in this paper, for any specific law of gas
surface interaction (or, in other words, any friction regime) one can immediately
conclude the trend of the body trajectory, knowing the inertial properties of
the disc. Moreover, this enables to control the trajectory by varying the friction
parameters and the moment of inertia.
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