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1. Introduction

The theory of elastic materials with voids is a special case of that for
materials with microstructure. In this paper we consider the theory of materi-
als with voids introduced by Cowin and Nunziato [1]. The basic idea of this
theory is to suppose that there is a continuous distribution of voids throughout
the elastic body. In this theory, the bulk density is written as the product of
two fields: the matrix material density field and the volume fraction field. This
representation introduces an additional degree of kinematic freedom and it was
employed previously by Goodman and Cowin [2] to develop a continuum the-
ory of granular materials. The first investigations in the theory of thermoelastic
materials with voids are due to Nunziato and Cowin [3] and Ieşan [4]. The
intended applications of the theory are geological materials and manufactured
porous materials. A presentation of this theory can be found in [5, 6].

Saint–Venant’s problem consists of determining the equilibrium of an elastic
cylinder loaded by surface forces distributed over its plane ends. In the relaxed
Saint–Venant’s problem the pointwise assignment of the terminal tractions is
replaced by prescribing the corresponding resultant force and resultant moment.
Using the method introduced by Toupin [7] in classical elasticity, Batra and
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Yang [8] have proved that these changes of the ends conditions produce negli-
gible errors, except possibly near the ends.

In this paper we consider the relaxed Saint–Venant’s problem for right cir-
cular cylinders made of a transversely isotropic homogeneous elastic material
with voids. An elastic material is a transversely isotropic material [9] if at each
point there is a principal direction and an infinite number of principal direc-
tions in the plane normal to the first direction. The case of transversely isotropic
materials is an important branch of applied mathematics and engineering sci-
ence. In [10] Ding et al. have presented the methods to study different types
of problems which arise in the theory of transversely isotropic elastic materials.
Besides the well-known applications of this type of material in the mechanics
of rocks [11–16], the transversely isotropic materials are very useful in many
branches of biology [17–21]. The recent studies of fiber-reinforced composites
[22, 23] and the modern technologies also encourage the study of transversely
isotropic materials.

For the treatment of the deformation of a right circular cylinder filled with
a transversely isotropic porous material, we use the results established by
Ghiba [24]. These results are established using the method described by Ieşan in
the books [25, 26]. This method gives a possibility to reduce the Saint–Venant’s
problem to some generalized plane strain problems. In fact, in the paper [24],
two classes of semi-inverse solutions were described in the set of solutions of
Saint–Venant’s problem that may be expressed in terms of solutions of some gen-
eralized plane strain problems. We use these classes obtained in the anisotropic
case to solve the extension, bending, torsion and flexure problems of transversely
isotropic porous elastic circular cylinders.

We outline that a study of Saint–Venant’s problem for homogeneous and
isotropic porous elastic cylinders has been presented by Dell’Isola and Ba-

tra [27]. The semi-inverse method used in the present paper has been employed
to study the Saint–Venant’s problem for different types of materials in the papers
[28–33].

2. Formulation of the problem

We consider a right circular cylinder of length L and radius a, occupied by
an homogeneous porous, transversely isotropic elastic material. We denote by B
the interior of cylinder, by ∂B the boundary of B and by D ⊂ R2 the interior of
the bounded cross-section. As shown in Fig. 1, we choose a rectangular Cartesian
system Ox1x2x3 so that the Ox3-axis is parallel to the generator of the cylinder
and O is the center of one of its ends. The lateral boundary of the cylinder is
Π = ∂D × (0, L) and D0 and DL are, respectively, the cross-sections located at
x3 = 0 and x3 = L.
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Fig. 1. Schema of the problem studied.

The Latin subscripts and superscripts are understood to range over the inte-
gers 1, 2, 3, unless we specify else, whereas Greek subscripts and superscripts are
confined to the range 1, 2; summation over repeated subscripts is implied and
comma followed by a subscript denotes partial derivative with respect to the
corresponding Cartesian coordinate; where no confusion may occur, we suppress
the dependence upon the spatial variables.

Let u be the displacement field over B and ϕ the volume distribution func-
tion [2]. We denote by U the four-dimensional vector (ui, ϕ). The linear strain
measure eij is given by

(2.1) eij(u) =
1

2
(ui,j + uj,i).

The components of the stress tensor, the components of the equilibrated
stress vector and the intrinsic equilibrated body force for anisotropic porous
material [1] are

(2.2)

tij(U) = Cijrsers +Bijϕ+Dijrϕ,r,

hi(U) = Drsiers + diϕ+Aijϕ,j ,

g(U) = −Bijeij − ξϕ− diϕ,i,

where Cijrs, Bij , Aij , Dijk, di and ξ are the constitutive coefficients which satisfy
the symmetry relations

(2.3) Cijrs = Crsij = Cjirs, Aij = Aji, Bij = Bji, Dijk = Djik.

We suppose that the axis Ox3 is an axis of elastic symmetry and the planes
normal to this axis are planes of isotropy. In the case of transverse isotropy, the
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mechanical response of the body remains unaffected due to arbitrary rotations
from the direction of Ox3 and due to reflections from the planes perpendicular
to this direction. Thus, the symmetry group is [34]

(2.4) G =








± cos θ − sin θ 0
± sin θ cos θ 0

0, 0 ±1


; θ ∈ [0, 2π)



 .

For this class of materials we have only ten non-zero independent constitutive
coefficients

(2.5)

cij ≡ Ciijj , i, j ∈ {1, 2, 3} (not summed), c11 = c22, c13 = c23,

c44 ≡ C2323 = C1313, b1 ≡ B11 = B22, b3 ≡ B33,

a1 ≡ A11 = A22, a3 ≡ A33 and ξ.

We note that in the case of isotropic materials with voids, the number of inde-
pendent constitutive coefficients is five [1].

The constitutive equations (2.2), in the case of transversely isotropic mate-
rials are reduced to

(2.6)

t11(U) = c11e11 + c12e22 + c13e33 + b1ϕ,

t22(U) = c12e11 + c22e22 + c13e33 + b1ϕ,

t33(U) = c13e11 + c13e22 + c33e33 + b3ϕ,

t12(U) = (c11 − c12)e12,

t13(U) = 2c44e13,

t23(U) = 2c44e23,

h1(U) = a1ϕ,1,

h2(U) = a1ϕ,2,

h3(U) = a3ϕ,3,

g(U) = −b1(e11 + e22) − b3e33 + ξϕ.

The surface force and the equilibrated stress at a regular point of ∂B, are
given by

(2.7) ti(U) = tij(U)nj , h(U) = hj(U)nj ,

respectively, where nj are the components of the outward unit normal to ∂B.
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The equilibrium equations, in the absence of the body force and the extrinsic
equilibrated body force, are

(2.8) tji,j = 0, hi,i + g = 0 in B.

Throughout this paper we assume that the internal energy density

(2.9) W(U)=
1

2
c11e

2
11 + c12e11e22 + c13e11e33 +

1

2
c11e

2
22 + c13e22e33

+
1

2
c33e

2
33 + 2c44e

2
23 + 2c44e

2
13 + (c11 − c12)e

2
12 + b1e11ϕ+ b1e22ϕ

+ b3e33ϕ+
1

2
ξϕ2 +

1

2
a1ϕ,1ϕ,1 +

1

2
a1ϕ,2ϕ,2 +

1

2
a3ϕ,3ϕ,3

is positive definite quadratic in terms of eij, ϕ and ϕ,i. This is true if and only if

(2.10)

c11 > 0, c11 > c12 > −c11, (c11 + c12)c33 > 2c213,

c44 > 0, a1 > 0, a3 > 0,

ξ[−2c213 + (c11 + c12)c33] > b23(c11 + c12) − 4b1b3c13 + 2b21c33.

The cylinder is assumed to be free from lateral loading, so that the conditions
on the lateral surface are

(2.11) ti = 0, h = 0 on Π.

We consider the loading at the end D0 to be statically equivalent to the given
force R and the given moment M. Then, for x3 = 0, we have the conditions

(2.12)
∫

D

t3i(U)da = −Ri,

∫

D

εijkxjt3k(U)da = −Mi.

From the existence results [5], for the equilibrium, we must have similar condi-
tions at the end DL.

The relaxed Saint–Venant’s problem for B consists in determination of the
displacement field u and the volume distribution function ϕ on B, solution of the
equilibrium equations (2.8), which satisfy the requirements (2.11) and (2.12).

We decompose the relaxed Saint–Venant’s problem (P), into the problems
(P1) and (P2) characterized by

(P1) (extension–bending–torsion): Rα = 0,

(P2) (flexure): R3 = Mi = 0.

In this paper we study the Saint–Venant’s problem reducing the above prob-
lems to some generalized plane problems.
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By the state of generalized plane strain for the interior of the cross-section
domain, D ⊂ R2, of the considered cylinder, we mean the state in which the
displacement field w and the volume distribution ψ depend only on x1 and x2:

(2.13) wi = wi(x1, x2), ψ = ψ(x1, x2), (x1, x2) ∈ D.

In this case, the components of the stress tensor, the components of the equili-
brated stress vector and the intrinsic equilibrated body force are functions of x1

and x2.
For a state of generalized plane strain W=(wi(x1, x2), ψ(x1, x2)), (x1, x2)∈D,

we define the operators

(2.14)

S1(W) = c11w1,11 + c12w2,21 +
1

2
(c11 − c12)(w1,22 + w2,12) + b1ψ,1,

S2(W) = c11w2,22 + c12w1,12 +
1

2
(c11 − c12)(w2,11 + w1,21) + b1ψ,2,

S3(W) = w3,αα,

C(W) = a1ψ,αα − b1wα,α − ξψ,

H1(W) = (c11w1,1 + c12w2,2 + b1ψ)n1 +
1

2
(c11 − c12)(w1,2 + w2,1)n2,

H2(W) =
1

2
(c11 − c12)(w2,1 + w1,2)n1 + (c11w2,2 + c12w1,1 + b1ψ)n2,

H3(W) = w3,αnα,

D(W) = a1ψ,αnα.

In what follows, we construct a solution of the problems (P1) and (P2) using
the semi-inverse method [25, 26].

3. Construction of solution of the problem (P1)

Let us consider W(s) = (w(s), ψ(s)), s = 1, 2, 3 solutions of the problems
characterized by the equations

(3.1) Si(W
(s)) + f

(s)
i = 0, C(W(s)) + ℓ(s) = 0 in D,

and the boundary conditions

(3.2) Hi(W
(s)) = T̃

(s)
i , D(W(s)) = H̃(s) on ∂D,
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where

(3.3)

f
(γ)
α = c13δαγ , f

(β)
3 = 0, f

(3)
i = 0,

ℓ(γ) = −b3xγ , ℓ(3) = −b3,
T̃

(γ)
α = −c13xγnα, T̃

(i)
3 = 0,

T̃
(3)
α = −c13nα, H̃(i) = 0.

According to the existence results presented in [5], these generalized plane strain
problems have solutions.

In view of the results established in [24], we find a solution of the problem
(P1) to be

(3.4) UI =

4∑

s=1

asU
(s),

where the vectors U(s) = (u(s), ψ(s)), s = 1, 2, 3, 4 are defined by

(3.5)

u
(β)
α = −1

2
x2

3δαβ + w(β)
α (x1, x2),

u
(β)
3 = xβx3 + w

(β)
3 (x1, x2),

u
(3)
α = w

(3)
α (x1, x2), u

(3)
3 = x3 + w

(3)
3 (x1, x2),

u
(4)
α = ε3βαxβx3, u

(4)
3 = 0,

ϕ(i) = ψ(i), i = 1, 2, 3, ϕ(4) = 0

and the unknown constants as, s = 1, 2, 3, 4, are solutions of the following alge-
braic system:

(3.6)

4∑

s=1

asDαs = ε3αβMβ ,
4∑

s=1

asD3s = −R3,

4∑

s=1

asD4s = −M3.

with

(3.7)

D3s =

∫

D

t33(U
(s)) da,

Dβs =

∫

D

xβt33(U
(s)) da,

D4s =

∫

D

ε3αβxαt3β(U(s))da.
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Because the internal energy is positive definite, we can prove [24] that

(3.8) det(Drs) 6= 0,

so that the system (3.6) uniquely determines the constants as, s = 1, 2, 3, 4.
In what follows, we solve the three problems defined by relations (3.1)–(3.3).

First, it is easy to see that W(3) defined by

(3.9) w
(3)
1 = −ν1x1, w

(3)
2 = −ν1x2, ψ(3) = −ν2, w

(3)
3 = 0,

with

(3.10) ν1 =
c13ξ − b1b3

(c11 + c12)ξ − 2b1
, ν2 =

(c11 + c12)b3 − 2c13b1
(c11 + c12)ξ − 2b21

,

is a solution of the third problem.
Next, we search a solution W(1) of the first problem in the form

(3.11)

w
(1)
1 = v

(1)
1 − 1

2
ν1(x

2
1 − x2

2),

w
(1)
2 = v

(1)
2 − ν1x1x2,

w
(1)
3 = 0,

ψ(1) = φ(1) − ν2x1,

where V(1) = (v
(1)
1 , v

(1)
2 , φ(1)) is a solution of the problem defined by the equa-

tions

(3.12) Sα(V(1)) = 0, C(V(1)) = 0 in D,

and the boundary conditions

(3.13) Hα(V(1)) = 0, D(V(1)) = a1ν2n1 on ∂D.

To solve the above problem we use the method presented by Ieşan and
Nappa in [29]. Thus, we rewrite this problem in the polar coordinates (r, θ).

We denote by u and v the components of the vector v(1) = (v
(1)
1 , v

(1)
2 ) in polar

coordinates. Because the properties of materials are invariants of rotations about
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the axis Ox3, the constitutive equations in polar coordinates are

(3.14)

trr(V
(1)) = c11err(v

(1)) + c12eθθ(v
(1)) + b1φ

(1),

tθθ(V
(1)) = c12err(v

(1)) + c11eθθ(v
(1)) + b1φ

(1),

trθ(V
(1)) = (c11 − c12)erθ(v

(1)),

hr = a1
∂φ(1)

∂r
,

hθ = a1
1

r

∂φ(1)

∂θ
,

g = −b1
[
1

r

∂

∂r
(ru) +

1

r

∂v

∂θ

]
− ξφ(1),

where

(3.15) εrr =
∂u

∂r
, εθθ =

1

r

(
∂v

∂θ
+ u

)
, εrθ =

1

2

(
1

r

∂u

∂θ
+
∂v

∂r
− 1

r
v

)
.

The equilibrium equations become

(3.16)

∂trr

∂r
+

1

r

∂trθ

∂θ
+

1

r
(trr − tθθ) = 0,

∂trθ

∂r
+

1

r

∂tθθ

∂θ
+

2

r
trθ = 0,

1

r

∂

∂r
(rhr) +

1

r

∂hθ

∂θ
+ g = 0.

The boundary conditions (3.2) become

(3.17) trr = 0, trθ = 0, hr =
1

a
a1ν2 cos θ.

Let us introduce the quantities

(3.18) c1 =
1

2

(
1 − c12

c11

)
, c2 =

b1
c11

.

As in [29], we search a solution of the above problem in the following form:

(3.19) u(r, θ) = U (1)(r) cos θ, v(r, θ) = V (1)(r) sin θ, φ(r, θ) = Ψ (1)(r) cos θ,

where U (1), V (1) and Ψ (1) are solutions of the following system of differential
equation:
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(3.20)

r2
d2U (1)

dr2
+ r

dU (1)

dr
− (1 + c1)U

(1) + r(1 − c1)
dV (1)

dr

− (1 + c1)V
(1) + c2r

2 dΨ
(1)

dr
= 0,

c1

(
r2
d2V (1)

dr2
+ r

dV (1)

dr

)
− (1 + c1)V

(1) − r(1 − c1)
dU (1)

dr

− (1 + c1)U
(1) − c2rΨ

(1) = 0,

a1

[
1

r

d

dr

(
r
dΨ (1)

dr

)
− 1

r2
Ψ (1)

]
− b1

[
1

r

d

dr
(rU (1)) +

1

r
V (1)

]
− ξΨ (1) = 0.

It is easy to see that, in view of (2.10), we have

(3.21) ξ − 2b21
c11 + c12

>
(b3(c11 + c12) − 2b1c13)

2

(c11 + c12)(−2c213 + (c11 + c12)c33)
> 0.

For this type of system, Ieşan and Nappa [29] give the following solution:

(3.22)

U (1) = A1 +Q1A2r
2 − c2

2p
A3[I0(pr) + I2(pr)],

V (1) = −A1 −Q2A2r
2 +

c2
2p
A3[I0(pr) − I2(pr)],

Ψ (1) = A3I1(pr) +
8b1c1

α(1 − 3c1)p2
A2r,

where In is the modified Bessel functions of order n and

(3.23)

p2 =
ξ

a1
− b21
c11a1

,

Q1 =
1

1 − 3c1

(
1 − 3c1 −

3c1c2b1
a1p2

)
,

Q2 =
1

1 − 3c1

(
3 − c1 −

c1c2b1
a1p2

)
.

We note that in view of relation (3.21) and (2.10), it follows that the real number
p is well-defined.

From the boundary conditions (3.17), the unknown constants A2 and A3 are

(3.24)

A2 = − 2c1b1I2(pa)ν2p
2a1(1 − 3c1)

Γa2p4(1 − 3c1)a1I ′1(pa) − 16c21b
2
1aI2(pa)

,

A3 =
1

apI ′1(pa)

(
ν2 −

8b1c1a

a1p2(1 − 3c1)
A2

)
,
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where

(3.25) Γ = (2c11 + c12)Q1 − c12Q2 +
8b21c1

a1(1 − 3c1)p2
.

From the above discussion we can conclude that

(3.26)

w
(1)
1 =

(
U (1)(r) − 1

2
ν1r

2

)
cos2 θ −

(
V (1)(r) − 1

2
ν1r

2

)
sin2 θ,

w
(1)
2 = (U (1)(r) + V (1)(r) − r2) sin θ cos θ,

w
(1)
3 = 0,

ψ(1) = (Ψ (1)(r) − r) cos θ

is a solution of the first problem defined by (3.1)–(3.3).
Similarly, we can find the solution of the second problem to be

(3.27)

w
(2)
1 = (U (1)(r) + V (1)(r) − r2) sin θ cos θ,

w
(2)
2 =

(
U (1)(r) − 1

2
ν1r

2

)
sin2 θ −

(
V (1)(r) − 1

2
ν1r

2

)
cos2 θ,

w
(2)
3 = 0,

ψ(2) = (Ψ (1)(r) − r) sin θ.

From relations (3.5), (3.7), (3.9), (3.26) and (3.27) we obtain the components of
the matrix (Dij)4×4

(3.28)
D11 = D22 = J, D33 = Eπa2, D44 =

c13πa
4

2
,

D12 = D21 = Dβ3 = D3β = Dβ4 = D4β = D43 = D34 = 0,

where

(3.29)

J =
π

4
a4Q+

πa

p2
(b3 − c13c2)A3 (apI0(pa) − 2I1(pa)) ,

Q = E + c13(3Q1 −Q2)A2 +
8b1b3c1

a1p2(1 − 3c1)
A2,

E = −2ν1c13 − b3ν2 + c33.

From the algebraic systems (3.6) we find the unknown constants as to be

(3.30) a1 =
M2

J
, a2 = −M1

J
, a3 = − R3

Eπa2
, a4 = − M3

c13πa4
.

With these, we have a complete expression of the solution of the problem (P1).
In view of the constitutive equations (2.6) we can observe that the solution
constructed in this section corresponds to the null-equilibrated stress vector’s
values on the ends of the cylinder.
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4. Solution of the problem (P2)

In this section we construct a solution of the problem (P2). The form proposed
for this solution is suggested by the results presented in [24]. The general type
of solution proposed in [24] for anisotropic case and for arbitrary cross-section of
the cylinder have a complex form. Using the results established in the previous
Section, we propose the following simplified expression for a solution, UII =
(uII , ϕII), of the problem (P2):

(4.1)

uII
α = −1

6
bαx

3
3 +

∑

β=1,2

x3bβw
(β)
α ,

uII
3 =

1

2
bρxρx

2
3 + w∗

3,

ϕII =
∑

β=1,2

x3bβϕ
(β),

where W(s) = (w(s), ψ(s)) are solutions of the generalized plane strain prob-
lem defined in the previous section, bβ are unknown constants which will be
determined, while the function w∗

3 is a solution of the following problem:

(4.2)

∆w∗
3 = −

∑

β=1,2

bβt33(U
(β)) − c44

∑

β=1,2

bβw
(β)
α,α,

w∗
3,αnα = −c44

∑

β=1,2

bβw
(β)
α nα,

where ∆ =
∂

∂x2
1

+
∂

∂x2
2

is the Laplace operator in two dimensions.

We can observe that, in view of (3.7), (3.28), the necessary condition for the
existence of solution of the above Neumann-type problem holds.

With the help of relations (3.4), (3.26) we can rewrite this problem in the
polar coordinates (r, θ)

(4.3)
∆w∗

3 = (Mr +NI1(pr))(b1 cos θ + b2 sin θ),

∂w∗
3

∂r
= −(U (1)(a) − 1

2
ν1a

2)(b1 cos θ + b2 sin θ),

where

(4.4)

M = −
{(

1 +
c13

c44

)
[(3Q1 −Q2)A2 − 2ν1]

+
8b1c1

a1(1 − 3c1)c44p2
A2 +

c13

c44
c33 +

b3
c44

}
,

N =

[(
1 +

c13

c44

)
c3 −

b3
c44

]
A3.
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In [24], Ghiba gives the expression of solution of this type of problem in the
form

(4.5) w∗
3 = W (r)(b1 cos θ + b2 sin θ),

with

(4.6) W (r) = M
r3

8
+N

I1(pr)

p2
−
[
3

4
Ma2 + 2N

I ′1(pa)

p2
+ 2(U (1)(a) − 1

2
ν1a

2)

]
r

2
.

On the other hand, in view of the end conditions characteristic for the flexure
problem (see also Remark 4.2 from the paper [24]), the unknown constants bα
must satisfy the equations

(4.7)

∑

β=1,2

bβDαβ = −Rα.

Thus, we obtain

(4.8) b1 = −R1

J
, b2 = −R2

J
.

The solution of the problem (P2) corresponds to the following equilibrated stress
on the ends of cylinder:

(4.9)
h =

a1

J
(φ− ν2r)(R1 cos θ +R2 sin θ) on D0,

h = −a1

J
(φ− ν2r)(R1 cos θ +R2 sin θ) on DL

and we can observe that the resultant flux of porosity vanishes on the ends of
cylinder.

5. Conclusion

In the present paper we study the relaxed Saint–Venant’s problem for circular
cylinders filled with a transversely isotropic elastic porous material. The solution
of the extension–bending–torsion problem is given by the relations (3.4), (3.9),
(3.26), (3.27), (3.30) and the solution of the flexure problem is given by the
relations (4.1) and (4.8). From the linearity of the problem, we note that the
relaxed Saint–Venant’s problem has a solution of the form

U = UI + UII .

Thus, the relaxed Saint–Venant’s problem for an elastic elastic transversely
isotropic porous circular cylinder is completely solved. As a particular case we
can retrieve the solution obtained for isotropic porous materials [24].
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