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Applying the general non-linear theory of shells undergoing phase transitions,
we derive the balance equations along the singular surface curve modelling the phase
interface in the shell. From the integral forms of balance laws of linear momentum,
angular momentum, and energy as well as the entropy inequality, we obtain the local
static balance equations along the curvilinear phase interface. We discuss general
forms of the constitutive equations for thermoelastic and thermoviscoelastic shells,
as well as propose their simple cases for the linear isotropic shell behaviour. We
also derive the thermodynamic condition allowing one to determine the interface
position on the deformed shell midsurface. The theoretical model is illustrated by
the example of thin circular cylindrical shell made of a two-phase elastic material
subjected to tensile forces at the shell boundary. The solution reveals the existence
of the hysteresis loop whose size depends upon values of several loading parameters.
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1. Introduction

Smart materials are widely used in modern technology. Examples of such
materials are shape memory alloys and shape memory polymers [45]. The dif-
fusionless (displacive) phase transitions (PT) of martensitic type are recognised
[7, 28] to be responsible for the shape memory effect in these materials. Phase
transitions in steel, alloys, polymers and other materials become very important
also for contemporary materials science.

Within continuum mechanics the PT phenomena can be modelled using dif-
ferent approaches. The approach used in this paper is based on introducing the
sharp phase interface, being a sufficiently smooth surface dividing two different
material phases. In this approach the position of the phase interface itself becomes
unknown, together with the translation, temperature and other unknown fields.
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Mechanics of two-phase media has been developed in a number of papers
and summarized in books, for example by Grinfeld [19], Gurtin [21, 22],
Romano [43], Bhattacharya [7], Abeyaratne and Knowles [2], Lagoudas

et al. [28], and Berezovski et al. [5]. Starting from the pioneering work by
Gibbs [16], the balance equations at the phase interface and the phase interface
motion during the deformation process are among the most discussed issues
in this field. Apart from the monographs mentioned above, let us remind here
some representative papers on equilibrium and motion of the phase boundary
[1–4, 6, 15, 26, 29, 30, 33, 38, 44, 53, 54]. In those works many one-dimensional
problems were discussed which also adequately described behaviour of bars, rods
and beams made of martensitic materials.

In technology there is a growing interest to understand the behaviour of
two-dimensional structures such as thin films, plates and shells made of shape
memory alloys and other materials undergoing PT. Thin films made of shape
memory alloys are regarded to be very prospective for design of microelectrome-
chanical systems (MEMS). Mechanics of such thin films was discussed, for ex-
ample, by Bhattacharya and James [8], and James and Rizzoni [23], see
also [7]. Let us note that experiments on shape memory alloys are usually per-
formed with thin-walled samples, for example rectangular plates [7, 11, 39, 40]
or tubes [14, 31, 50]. Thus, it is important to develop two-dimensional mechanics
of thin-walled structural elements made of materials undergoing PT, which is
based on the theory of shells.

Equilibrium conditions of elastic thin-walled structures (plates and shells)
undergoing PT of martensitic type were formulated by Eremeyev and Piet-

raszkiewicz [12], and Pietraszkiewicz et al. [42], within the dynamically and
kinematically exact theory of shells presented in the books [10, 32]. By analogy
to the 3D case, as the phase boundary in the shell we have taken in [12, 42]
a singular surface curve. Hence, the two-phase shell was regarded as a certain
material base surface, consisting of two material phases divided by a sufficiently
smooth surface curve. This assumption about existence of such a dividing curve
restricts the class of allowable deformations of the shell as 3D body, because not
for all types of PT the reduction of 3D body to 2D shell leads also to reduction
of the phase dividing surface to the surface interface curve. But in many cases,
existence of such a curve was confirmed by experiments made on thin-walled
samples, see [7, 11, 14, 39, 40, 50]. As examples of other approaches to model
PT in thin-walled elements, we note the papers by Shkutin [46, 47] and the
review published in [42].

From experimental data we know that PT depending on strain rates and
inelastic effects may considerably influence the stress state of the solid. The aim
of this paper is to extend the results [12, 42] by taking into account temperature
and viscoelastic effects of the shell material phases.
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The paper is organised as follows. In Sec. 2 we remind the notation, the exact
equilibrium conditions, the shell strain measures as well as the kinematic com-
patibility conditions and the jump conditions at the curvilinear phase boundary
already discussed in [12]. The 2D resultant counterparts of the 3D energy balance
and dissipation inequality, together with the corresponding jump conditions at
the phase boundary, are discussed in Secs. 3 and 4. Then using the jump con-
ditions we discuss in Sec. 5 the possible forms of the kinetic equation, allowing
one to describe motion of the curvilinear phase boundary in the quasistatic
deformation process. The initial-boundary value problem is completed by the
constitutive equations of thermoelastic and thermoviscoelastic shells whose gen-
eral structure is discussed in Secs. 6 and 7, where also their simple expressions
for the linear isotropic shell behaviour are proposed. Finally, in Sec. 8 we il-
lustrate the theoretical model developed here by an axisymmetric example of a
thin circular cylindrical shell made of an elastic material capable of undergoing
phase transformations. The cylinder is subjected to tensile forces on the one end
and is clumped on another one.

2. Shell equilibrium conditions

A shell is a three-dimensional (3D) solid body which in a reference (unde-
formed) placement is identified with a region B of the physical space E with E
as its translation 3D vector space. Geometry of B is usually described in the
system of normal coordinates {θα, ξ}, α = 1, 2, where ξ = 0 defines the shell un-
deformed base surface M ⊂ B, and −h− ≤ ξ ≤ h+ is the distance from M , with
h = h− + h+ denoting the shell thickness. Relative to an inertial frame (o, ik),
where o ∈ E and ik ∈ E, k = 1, 2, 3, are orthonormal vectors, the position vector
x of an arbitrary point x ∈ B is given by

x(θα, ξ) = x(θα) + ξη(θα),

where x(θα) = x(θα, 0) is the position vector of M , η =
1√
a
x,1 ×x,2 is the unit

normal vector orienting M , and a = det(x,α · x,β), (. . .),α ≡ ∂

∂θα
(. . .).

Within the dynamically and kinematically exact theory of shells developed
in [10, 41], in the deformed placement the shell is represented by the position
vector y = χ(x) of the deformed material base surface N = χ(M) with attached
three directors (dα,d) such that

(2.1) y = x + u, dα = Qx,α, d = Qη,

where χ is the deformation function, u ∈ E is the translation vector of M , and
Q ∈ SO(3) is the proper orthogonal tensor, QT = Q−1, det Q = +1, given on
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Fig. 1. Shell kinematics.

M representing the work-averaged gross rotation of the shell cross-sections from
their undeformed shapes described by (x,α,η), Fig. 1.

In the shell undergoing phase transition, it is assumed that above some level
of deformation different material phases A and B may appear in different com-
plementary subregions NA and NB separated by the curvilinear phase interface
D ∈ N , Fig. 2. For a piecewise differentiable mapping χ we can introduce on
M a singular image curve C = χ−1(D) separating the corresponding image re-
gions MA = χ−1(NA) and MB = χ−1(NB), Fig. 2. The position vectors of C
and D are related by xC(s) = χ−1(yC(s)), where s is the arc length parameter
along C.
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Fig. 2. The shell with phase interface.
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The Lagrangian equilibrium BVP for elastic shells with PT was formulated
in [12] as the stationary problem for the functional of total potential energy. In
the present paper, however, we discuss the thermoviscoelastic shells which allow
for some energy dissipation during deformation with PT. But the exact, resul-
tant Lagrangian equilibrium conditions for the shell with the singular surface
curve modelling the phase interface, can always be derived by performing direct
integration across the shell thickness of the 3D global equilibrium conditions of
continuum mechanics, see for example [10, 48, 27].

Let f(θα), c(θα) be the resultant surface force and couple vector fields acting
on N\D, but measured per unit area of M\C, and let n�(s), m�(s) be the
resultant 1D boundary force and couple vector fields acting along ∂Nf , but
measured per unit length of ∂Mf . Then the exact, resultant, local Lagrangian
equilibrium conditions are [10, 27]

(2.2)
Divs N + f = 0, Divs M + ax(NF T − FNT ) + c = 0 in M\C,

Nν = n�, Mν = m� along ∂Mf\C,
where (N ,M) ∈ E ⊗TxM are the surface tangential stress resultant and stress
couple tensors of the first Piola–Kirchhoff type, following from the Cauchy the-
orem nν = Nν and mν = Mν of the resultant contact force nν and couple mν

vectors, F = Grads y is the surface deformation gradient, F ∈ E⊗TxM , ax(. . .)
is the axial vector associated with the skew tensor (. . .), ν is the surface unit
vector externally normal to ∂M , while Grads and Divs are the surface gradient
and divergence operators on M as defined in [10, 20], respectively.

Additionally, at the curvilinear phase interface C, which is the singular sur-
face curve with regard to the surface stress measures, we obtain the local La-
grangian equilibrium conditions

(2.3) [[Nν]] = 0, [[Mν]] = 0,

where the expression [[. . .]] = (. . .)B − (. . .)A means the jump at C.
More general Lagrangian equilibrium conditions along C, taking into account

also the elastic strain energy density of the interface itself as well as additional
resultant force and couple vectors acting only along C, were discussed in [27, 42].

In the general theory of shells considered here, the following two strain mea-
sures corresponding to the deformations (2.1) may be introduced, see [10, 12,
13, 41]:

(2.4) E = εα ⊗ aα, K = κα ⊗ aα, εα = y,α − dα, κα =
1

2
di × Q,αQT di,

where (aα,η) and (di) are the bases reciprocal to (x,α,η) and (dα,d), respec-
tively.
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When deformation is small, one can essentially simplify expressions of the
strain measures (2.4). In such a case εα and κα are given by, see [10],

(2.5) εα = u,α − ϕ × x,α, κα = ϕ,α,

where ϕ is the infinitesimal rotation vector such that Q ≈ 1−ϕ×1 if ‖ϕ‖ 	 1,
and 1 is the 3D identity tensor.

Let us consider a one-parameter family of shell deformations

(2.6) y(x, t) = x + u(x, t), dα(x, t) = Q(x, t)x,α, d(x, t) = Q(x, t)η(x),

where t is a time-like scalar parameter such that t = 0 corresponds to the
undeformed placement and t to the deformed one. Then v = u̇ is the transla-
tional velocity vector, and ω = ax(Q̇QT ) is the angular velocity vector, while
V = ẋC · ν is the exterior normal velocity of the phase curve C.

The curvilinear phase interfaces in shells can be either coherent or incoherent
in rotations, see Eremeyev and Pietraszkiewicz [12]. For the coherent inter-
face both fields y and Q are supposed to be continuous at C and the kinematic
compatibility conditions along C become, see [12], Eqs. (31) and (34),

(2.7) [[v]] + V [[Fν]] = 0, [[ω]] + V [[Kν]] = 0.

The phase interface is called incoherent in rotations if only y is continuous
at C but the continuity of Q may be violated. In this case the condition (2.7)1
is still satisfied, but (2.7)2 may be violated, [12].

From the physical point of view, the phase interface incoherent in rotations
model the singular surface curve at which the position vector remains continu-
ous, but the curvature of the base surface can have a jump discontinuity during
deformation process. Such singular surface curves correspond to formation of
folds or partial rotational damage of the base surface. In particular, such folds
were observed in thin martensitic films as the so-called tents and tunnels, see the
experimental data presented in [9, 8, 23, 24]. Of course, the notion of 1D phase
interface incoherent in rotations (as used in this paper) is somewhat idealized,
for in statics it corresponds to appearance of an ideal hinge associated with the
constraint mν = 0 along the interface. More realistic models of 1D incoherent
phase interface, which would allow creation of folds along which mν 
= 0, could
be obtained for example by introducing additional constitutive equations for the
forces, couples and energies associated with the interface itself, as in [42]. In such
a case the interface incoherent in rotations would model a deformable elastic or
thermoviscoelastic curvilinear joint. The 2D incoherent interfaces in 3D solids
were discussed by Grinfeld [19].
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3. Energy balance

To take into account the influence of temperature, let us discuss the balance
of energy in the shell. Thermodynamics of shells from various points of view was
presented for example in [17, 18, 34, 36, 48, 49, 55]. In the papers various sets
of surface fields responsible for temperature were used and several formulations
of the first and second laws of thermodynamics for shells were discussed. In
order to present here the reasonably simple results we confine ourselves to the
simplest version of these laws suggested by Murdoch [36, 37]. If additionally
the temperature changes across the shell thickness are disregarded, at the shell
midsurface we have the temperature field T which describes some through-the-
thickness average temperature.

The energy balance of an arbitrary part Π of the shell midsurface M can be
described in analogy to the 3D energy balance, see [51], by the resultant surface
fields [34] as

(3.1)
d

dt
E = A+Q,

where E is the resultant total energy, A is the resultant mechanical power, and Q
is the resultant heat supply. In (3.1), E =

∫∫
Π

ρε da, ρ is the undeformed surface

mass density, ε is the internal surface energy density per unit undeformed surface
mass, and A in the quasistatic process can be given by the relation

A =

∫∫
Π

(f · v + c · ω) da+

∫
∂Π

(nν · v + mν · ω) ds.

In (3.1), Q is defined as

Q =

∫∫
Π

ρ(q+ + q− + qΠ) da−
∫

∂Π\∂Mh

qν ds−
∫

∂Π∩∂Mh

q∗ ds,

where q± are the heat influx densities through the upper (+) and lower (−) shell
faces defined as in [36, 37, 55], qΠ is the internal surface heat supply density,
while qν and q∗ are the heat supplies through the internal boundary contour ∂Π
and the external boundary contour ∂Mh, respectively. The field qν is defined
through the surface heat influx vector q according to qν = q · ν. We shall omit
q∗ in the following discussion.

From (3.1) we obtain the local energy balance at any regular point of M ,

(3.2) ρ
dε

dt
= ρ(q+ + q− + qΠ) − Divs q + N • E◦ + M • K◦,

where (. . .)◦ is the co-rotational time derivative, see [10, 13, 41],

E◦ = Q
d

dt

(
QT E

)
, K◦ = Q

d

dt

(
QT K

)
,
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and the scalar product of two tensors (A,B) ∈ E ⊗TxM is defined by A •B =
tr (AT B).

Introducing the referential shell stress and couple stress tensors as well as
the referential shell strain measures by the relations

N = QT N , M = QT M , E = QT E, K = QT K,

one can rewrite (3.2) as

(3.3) ρ
dε

dt
= ρ(q+ + q− + qΠ) − Divs q + N • dE

dt
+ M • dK

dt
.

From (3.1) we also obtain the local balance equation at C

(3.4) V [[ρε]] + [[nν · v]] + [[mν · ω]] − [[q · ν]] = 0.

The relation (3.4) is the special case of the general resultant continuity con-
dition proposed in [34], Sec. 3.6.

4. Clausius–Duhem inequality

We take the second law of the surface thermodynamics in the simple form
proposed by Murdoch [36, 37]

(4.1)
d

dt

∫∫
Π

ρη da ≥
∫∫
Π

ρ

(
q+

T+
ext

+
q−

T−
ext

+
qΠ
T

)
da−

∫
∂Π

qν
T
ds,

where η is the surface entropy density. In (4.1), by T+
ext and T−

ext we denote
temperatures of the external media surrounding the shell from above and below,
respectively.

The local form of (4.1) at any regular point of M is

(4.2) ρ
dη

dt
≥ ρ

(
q+

T+
ext

+
q−

T−
ext

+
qΠ
T

)
− Divs

(
1

T
q

)
.

Solving (3.3) for qΠ and eliminating it from (4.2), we obtain the reduced
dissipation inequality for the shell

(4.3) ρ
dψ

dt
≤ −ρηdT

dt
+ N • dE

dt
+ M • dK

dt
+ T Grads

(
1

T

)
· q

+ ρq+
(

1 − T

T+
ext

)
+ ρq−

(
1 − T

T−
ext

)
,

where ψ = ε−Tη is the surface free energy density. Equation (4.3) is analogous
to the reduced dissipation inequality in 3D continuum mechanics [51],
Eq. (XV.2-2), or [52], Eq. (1.19).
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From (4.1) also follows the jump condition at C,

(4.4) V [[ρη]] −
[[

1

T
q · ν

]]
≡ δ2 ≥ 0.

The quantity δ2 represents creation of entropy at the interface C. If δ = 0
then the phase transition is called reversible. In such a case the balance equation
at C reduces to

V [[ρη]] −
[[

1

T
q · ν

]]
= 0.

More complete local forms of (4.3) and (4.4) are discussed in [34], Sec. 3.7.

5. Thermodynamic continuity condition

Let us discuss the relations (2.3), (2.7), (3.4) and (4.4) for jumps of vari-
ous fields at C. We remind that these relations should be satisfied for arbitrary
shells, also elastic, thermoelastic and thermoviscoelastic. This is so because these
relations either represent continuity as (2.7), or balance equations of some fields
at the singular curve C quasistatically moving on the base surface M . Addi-
tionally, we assume that the temperature field T is continuous in M , that is
[[T ]] = 0 at C.

Eliminating [[q · ν]] from (3.4) and (4.4), we obtain

V [[ρψ]] + Tδ2 + [[nν · v]] + [[mν · ω]] = 0.

Using the identities

[[nν · v]] = 〈nν〉 · [[v]] + [[nν ]] · 〈v〉, [[mν · ω]] = 〈mν〉 · [[ω]] + [[mν ]] · 〈ω〉,
where 〈. . .〉 = 1

2 [(. . .)A + (. . .)B] is the mean value at C, and taking into account
the static balance equations (2.3), we obtain the relation

V [[ρψ]] + 〈nν〉 · [[v]] + 〈mν〉 · [[ω]] + Tδ2 = 0 at C,

or
V [[ρψ]] + ν · NT [[v]] + ν · MT [[ω]] + Tδ2 = 0 at C.

For the coherent phase interface from (2.7) it follows that

(5.1) Tδ2 = −V {
[[ρψ]] − ν · NT [[Fν]] − ν · MT [[Kν]]

}
at C.

Assuming the relation ν ·MT = 0 used in [12], for the phase interface incoherent
in rotations the following relation holds at C:

(5.2) Tδ2 = −V {
[[ρψ]] − ν · NT [[Fν]]

}
.
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Equations (5.1) and (5.2) can be rewritten using the Eshelby tensors, intro-
duced in [12] within the general nonlinear theory of elastic shells, in the form

(5.3) Tδ2 = −V ν · [[C]]ν,

where C = Cc ≡ ρψA − NT F − MT K for the coherent interface and
C = Ci ≡ ρψA − NT F for the interface incoherent in rotations. Here A =
1−η⊗η, η ·Aη = 0, while 1 ∈ E⊗E and A ∈ TxM ⊗TxM are metric tensors
of the 3D space and of the undeformed base surface, respectively.

Equation (5.3) follows from the general balance for jumps of the fields. Hence,
this equation should also be satisfied for any other type of the singular curve C
describing a slow (quasistatic) motion of various defects such as, for example,
shear bands, dislocations, etc. From the point of view of configurational mechan-
ics [22, 35, 25], the quantity ν · [[C]]ν represents the configurational (or driving)
force acting on C and responsible for its motion. In the papers [12, 27] we formu-
lated the balance equations along the phase interface C in the equilibrium state.
In [12] it was found that in equilibrium the condition ν · [[C]]ν = 0 should be
satisfied. This condition was necessary to find the position of the phase interface
C in the equilibrium state.

According to the second principle of thermodynamics, the entropy pro-
duction δ2 remains always non-negative for all thermodynamic processes.
Equation (5.3) allows us to postulate the kinetic equation, describing motion
of the phase interface for all quasistatic processes, in the form

(5.4) V = −F (ν · [[C]]ν) ,

where F is the non-negative definite kinetic function depending on the jump
of C at C, i.e. F(ς) ≥ 0 for ς > 0, where C = Cc for the coherent interface
and C = Ci for the incoherent one. In the 3D theory of elasticity the kinetic
equations of the type (5.4) were discussed in a number of papers among which
let us note [1–4, 6, 15, 26, 29, 30, 33, 44]. Equation (5.4) can also be viewed as
a kind of constitutive relation consistent with the thermodynamic requirement
δ2 ≥ 0.

One can also discuss other forms of the kinetic equation different from (5.4).
As an example of such relations one can postulate a simpler relation ν ·[[C]]ν = 0
not only in equilibrium but also in quasistatic motion. From the physical point of
view this would mean that the velocity towards phase equilibrium is assumed to
be much higher than the characteristic velocity of deformation. In other words,
the phase equilibrium at each quasistatic deformation is being attained much
faster than the body deforms. One can also formulate more complex relations
depending on the linear energy density or on other factors. In what follows we
restrict our discussion to the kinetic equation (5.4).
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Since in the equilibrium state ν · [[C]]ν = 0 and V = 0, it is natural to require
that F(0) = 0. The form of the function F depends mainly upon the type of phase
transition, material behaviour, temperature and other factors. After [2], let us
assume F(ς) in the form

(5.5) F(ς) =

⎧⎨
⎩
k(ς − ς0) ς ≥ ς0,
0 −ς0 < ς < ς0,
k(ς + ς0) ς ≤ −ς0.

Here ς0 describes the effects associated with nucleation of the new phase and
action of the surface tension, see [2], and k is a positive kinetic factor. If ς0 = 0 then
the function (5.5) reduces to the linear kinetic function F(ς) = kς. Such a kinetic
functionwasused for example in [54] in the stability analysis of two-phase continua.

Summarising, in the case of finite deformations the BVP for the shell under-
going phase transitions consists of the equilibrium equations and static boundary
conditions (2.2) supplemented by appropriate kinematic boundary conditions for
u and Q, the energy transfer equation (3.2) with appropriate boundary condi-
tions for T , as well as the balance equations (2.3), (2.7), (3.4) and (5.4) along the
interface C. Equation (5.4) distinguishes the considered problem from the one for
a compound shell, because in our case it is used to find position of the curvilinear
interface C in its quasistatic motion. It is apparent that it is not possible to solve
such a BVP without the constitutive equations expressing N , M (or N, M),
ψ, η, q, q± in terms of deformation and temperature.

6. Thermoelastic shells

Let us discuss the simple case of thermoelastic shell. In this case N, M, ψ, η,
q, q± do not depend on prehistories of deformations and temperature but only
upon their actual values

(6.1)

N = N(E,K, T, g), M = M(E,K, T, g),

ψ = ψ(E,K, T, g), η = η(E,K, T, g),

q = q(E,K, T, g), q± = q±(E,K, T, g),

where g = Grads T . One can check that the constitutive equations (6.1) satisfy
the principle of material frame-indifference [51]. Notice that Eqs. (6.1) can also
depend on T±

ext as parameters.
Substituting (6.1) into (4.3), we obtain the inequality

(6.2)

(
ρ
∂ψ

∂E
−N

)
• dE
dt

+

(
ρ
∂ψ

∂K
−M

)
• dK
dt

+ ρ

(
∂ψ

∂T
+ η

)
dT

dt
+ ρ

dψ

dg
· dg
dt

≤ T Grads
1

T
· q + ρq+

(
1 − T

T+
ext

)
+ ρq−

(
1 − T

T−
ext

)
.
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Applying the method of [51], from (6.2) follow the reduced constitutive equations
of thermoelastic shells

(6.3) ψ = ψ(E,K, T ), η = −∂ψ
∂T

, N = ρ
∂ψ

∂E
, M = ρ

∂ψ

∂K
,

and the inequality (6.2) restricts only the heat influxes

(6.4) T Grads
1

T
· q + ρq+

(
1 − T

T+
ext

)
+ ρq−

(
1 − T

T−
ext

)
≥ 0.

Inequality (6.4) is the 2D analogue in shell theory of the 3D Fourier inequal-
ity [51]. The inequality is satisfied for example by the following constitutive
equations for q and q±:

(6.5) q = −cGrads T, q± = −c±(T − T±
ext),

where c is the positive coefficient of heat conductivity of the shell in tangential
direction, and c± are coefficients describing the heat exchange between the shell
and the surrounding media according to the Newton law (heat influx through
the surface is proportional to temperature difference).

For thermoelastic shells the local energy balance (3.3) takes the form of the
heat conductivity balance

(6.6) ρT
dη

dt
= −Divs q + ρ(qΠ + q+ + q−).

As an example of the constitutive description for the isotropic thermoelastic
shell one may consider the following form of the surface free energy density:

2ρψ = α1tr
2E‖ + α2trE

2
‖ + α3tr

(
ET

‖ E‖
)

+ α4η · EET η + 2α(T )trE‖

+ β1tr
2K‖ + β2trK

2
‖ + β3tr

(
KT

‖ K‖
)

+ β4η · KKT η
(6.7)

+ 2β(T )trK‖ + 2ρψ0(T ),

E‖ = E −ET η, K‖ = K − KT η,

where (. . .)‖ means the part of the tensor (. . .) in the tangent space TxM⊗TxM
to M at x ∈ M . This equation is a direct generalization of the density of
the physically linear elastic shell [13]. In (6.7) the function ψ0(T ) describes
dependence of the free energy density on temperature in the undeformed state,
while α(T ) and β(T ) are connected with the shell expansion due to temperature
changes. In the simplest case these functions are linear in T . In the expression
(6.7) we also have eight constitutive factors αk, βk (k = 1, 2, 3, 4) which can
depend on T as well, in general.
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The function (6.7) generates the following constitutive equations for the
isotropic thermoelastic shell:

(6.8)

N = α1A trE‖ + α2E
T
‖ + α3E‖ + α4η ⊗ET η + α(T )A,

M = β1A trK‖ + β2K
T
‖ + β3K‖ + β4η ⊗KT η + β(T )A,

ρη = −dα
dT

trE‖ −
dβ

dT
trK‖ − ρ

dψ0

dT
.

In [10] the following relations for the elastic moduli appearing in (6.7) and
(6.8) were used:

(6.9)

α1 = Cν, α2 = 0, α3 = C(1 − ν), α4 = αsC(1 − ν),

β1 = Dν, β2 = 0, β3 = D(1 − ν), β4 = αtD(1 − ν),

C =
Eh

1 − ν2
, D =

Eh3

12(1 − ν2)
,

where E and ν are the Young modulus and the Poisson ratio of the bulk ma-
terial, respectively, αs and αt are dimensionless coefficients, while h is the shell
thickness.

The constitutive equations (6.8) are written assuming that ψ = 0 in the
absence of deformation. In some cases of phase transition it is necessary to
write the constitutive equations for deformation relative to some intermediate
configuration following from a certain value of the phase transformation strain,
see for example [19, 54]. In the case of small deformations discussed here, such
constitutive equations follow from (6.8) if we change there E and K for E−Ep

and K−Kp, respectively, where Ep and Kp are now values of the surface strain
measures corresponding to shell deformation during the phase transition without
loading.

7. Viscoelastic shells of differential type

As an example of shells with memory effects let us discuss the constitutive
equations ([34], Chapter 9)

(7.1)

N = N

(
E,K,

dE

dt
,
dK

dt
, T, g

)
, M = M

(
E,K,

dE

dt
,
dK

dt
, T, g

)
,

ψ = ψ

(
E,K,

dE

dt
,
dK

dt
, T, g

)
, η = η

(
E,K,

dE

dt
,
dK

dt
, T, g

)
,

q = q

(
E,K,

dE

dt
,
dK

dt
, T, g

)
, q± = q±

(
E,K,

dE

dt
,
dK

dt
, T, g

)
.
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These constitutive equations satisfy the principle of material frame-indifference
[51] as well. They are counterparts in the general theory of shells of the Voigt
viscoelastic material model. Substituting (7.1) into (4.3), we obtain the in-
equality

(7.2)

(
ρ
∂ψ

∂E
− N

)
• dE
dt

+

(
ρ
∂ψ

∂K
− M

)
• dK
dt

+ ρ

(
∂ψ

∂T
+ η

)
dT

dt
+ ρ

dψ

dg
· dg
dt

+ ρ
∂ψ

∂(dE/dt)
• d

2E

dt2
+ ρ

∂ψ

∂(dK/dt)
• d

2K

dt2

≤ T Grads
1

T
· q + ρq+

(
1 − T

T+
ext

)
+ ρq−

(
1 − T

T−
ext

)
.

Let us represent the constitutive equations for N and M as the sum of
equilibrium and dissipative parts

(7.3) N = NE + ND, M = ME + MD,

where

NE = NE(E,K, T, g), ME = ME(E,K, T, g),

ND = ND

(
E,K,

dE

dt
,
dK

dt
, T, g

)
, MD = MD

(
E,K,

dE

dt
,
dK

dt
, T, g

)
,

with restrictions

ND (E,K,0,0, T, g) = 0, MD (E,K,0,0, T, g) = 0.

Substituting (7.3) into the inequality (7.2) we obtain

(7.4)

(
ρ
∂ψ

∂E
− NE

)
• dE
dt

+

(
ρ
∂ψ

∂K
−ME

)
• dK
dt

+ ρ

(
∂ψ

∂T
+ η

)
dT

dt

+ ρ
dψ

dg
· dg
dt

+ ρ
∂ψ

∂(dE/dt)
• d

2E

dt2
+ ρ

∂ψ

∂(dK/dt)
• d

2K

dt2
−ND • dE

dt
− MD • dK

dt

≤ T Grads
1

T
· q + ρq+

(
1 − T

T+
ext

)
+ ρq−

(
1 − T

T−
ext

)
.

From (7.4) it follows that

(7.5) ψ = ψ(E,K, T ), η = −∂ψ
∂T

, NE = ρ
∂ψ

∂E
, ME = ρ

∂ψ

∂K
,

and the dissipation inequality (7.4) reduces to
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(7.6) ND• dE
dt

+MD• dK
dt

+T Grads
1

T
·q+ρq+

(
1− T

T+
ext

)
+ρq−

(
1− T

T−
ext

)
≥ 0.

Indeed, since the second derivatives d2E/dt2 and d2K/dt2 can take arbitrary

values, and signs and their multipliers do not depend on these derivatives, in
order to satisfy (7.4) it is necessary that

∂ψ

∂(dE/dt)
= 0,

∂ψ

∂(dK/dt)
= 0.

Otherwise, by choosing appropriate signs and values of the second derivatives
we can give the inequality any of the two signs. The proof idea is thus reduced
to the statement that the inequality 0 ≤ ax+b is satisfied for any x if and only if
a = 0, b ≥ 0. Analogously we can show that dψ/dg = 0. Hence, ψ = ψ(E,K, T ).
Repeating the discussion concerning the first time derivatives of E and K, we
obtain that their multipliers should vanish as well. As a result, from (7.4) follow
(7.5) and (7.6) indeed.

For thermoviscoelastic shells the local energy balance (3.3) becomes

(7.7) ρT
dη

dt
= −Divs q + ND • dE

dt
+ MD • dK

dt
+ ρ(qΠ + q+ + q−).

As an example of simple constitutive relations of the type (7.3), one may
consider the constitutive equations of thermoviscoelastic isotropic shells con-
sisting of the relations (6.8) and (6.5) for the equilibrium parts and the linear
constitutive equations for dissipative parts

ND = ζ1A tr
dE‖
dt

+ ζ2
dET

‖
dt

+ ζ3
dE‖
dt

+ ζ4η ⊗ dET

dt
η,

MD = µ1A tr
dK‖
dt

+ µ2

dKT
‖

dt
+ µ3

dK‖
dt

+ µ4η ⊗ dKT

dt
η,

where ζk and µk (k = 1, 2, 3, 4) are the viscoelastic coefficients. If one takes the
constitutive equations (6.5), it is possible to show that the inequality (7.6) is
equivalent to the following inequalities:

2ζ1 + ζ2 + ζ3 ≥ 0, ζ2 + ζ3 ≥ 0, ζ3 − ζ2 ≥ 0, ζ4 ≥ 0,

2µ1 + µ2 + µ3 ≥ 0, µ2 + µ3 ≥ 0, µ3 − µ2 ≥ 0, µ4 ≥ 0.

These moduli can also be taken in the form analogous to (6.9) if one ex-
changes E and ν there for the corresponding viscoelastic moduli of the bulk
material.
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8. Example: Tension of two-phase tube

Let us discuss the thin circular cylindrical shell of length L and radius R
made of an elastic material undergoing phase transition. The shell is extended
by forces P uniformly distributed at the right shell boundary, Fig. 3. The left
shell boundary at z = 0 is clamped.

x

y

z

PC ν

RMB MA

Fig. 3. Tension of the two-phase thin-walled tube.

We assume that the shell deformation is infinitesimal so that for the strain
measures we can use the relations (2.4)1,2 with (2.5). In such a case we approx-
imately have N ∼= N, M ∼= M, E ∼= E, K ∼= K.

At z = 0 the kinematic boundary conditions

(8.1) u = 0, ϕ = 0

are satisfied, and at z = L we use the static boundary conditions

(8.2) Nν = Pν, Mν = 0, (ν = i3).

Under such loading there is an axisymmetric deformation state

(8.3) u = u(z)ez + w(z)er, ϕ = ϕ(z)eφ,

where er = cosφi1 + sinφi2, eφ = − sinφi1 + cosφi2, ez = i3 are the unit base
vectors of cylindrical system of coordinates. With (8.3) the linearized strain
measures are

(8.4)
E = Grads u − ϕ × A = u′ez ⊗ ez + (w′ − ϕ)er ⊗ ez +

w

R
eφ ⊗ eφ,

K ≡ Grads ϕ = ϕ′eφ ⊗ ez − ϕ

R
er ⊗ eφ,

where (. . .)′ =
∂

∂z
(. . .).
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The surface stress measures N and M of the axisymmetric stress state can
be represented by

(8.5)
N = Nzzez ⊗ ez +Nφφeφ ⊗ eφ +Nrzer ⊗ ez,

M = Mφzeφ ⊗ ez +Mzφez ⊗ eφ +Mrφer ⊗ ez.

The equilibrium conditions (2.2) with f = c = 0 take the simple form

(8.6)
N ′

zz = 0, N ′
rz −

Nφφ

R
= 0, M ′

φz +
Mrφ

R
+Nrz = 0, in M\C,

Nzz = P, Nrz = 0, Mφz = 0 at z = L.

From (8.6)1 it immediately follows that Nzz = P , ∀z ∈ [0, L].
Let us assume that the deformation process is isothermic, and additionally

that T = T+
ext = T−

ext = const. and qΠ = 0. In such a case the energy balance
Eq. (6.6) or (7.7) is not discussed and the problem is reduced to the stress-
induced phase transitions.

Let us consider the following free energy densities for the elastic phases A,B:

(8.7) 2ρψA,B = αA,B
1 tr 2Ẽ‖ +αA,B

2 tr Ẽ2
‖ +αA,B

3 tr
(
ẼT

‖ Ẽ‖
)
+αA,B

4 η ·EET η

+ βA,B
1 tr 2K‖ + βA,B

2 trK2
‖ + βA,B

3 tr
(
KT

‖ K‖
)

+ βA,B
4 η · KKT η + 2ρψA,B

0 .

Here Ẽ = E − E
A,B
p , where E

A,B
p is a phase transformation strain. We assume

that E
A,B
p = εA,B

p A with εBp = 0. Such a phase transformation strain corresponds
to an isotropic extension of a material under the phase transition. The relations
(8.7) mean that both material phases differ by values of the elastic moduli and
free energy densities in the undeformed state.

According to the assumption of axisymmetric deformation, we search for the
phase interface C in the form of the circle with radius R, the position of which
on M is given by the equation z = �(t), 0 ≤ �(t) ≤ L. Hence, V = �̇(t). For the
coherent interface, the kinematic and static balance equations on C, together
with the kinetic equation, lead to the relations

(8.8)
[[u]] = [[w]] = 0, [[ϕ]] = 0, [[Nzz]] = 0, [[Nrz]] = 0, [[Mφz]] = 0,

�̇ = −F(ς), ς = [[ρψ −Nzz(1 + u′) −Nrzw
′ −Mφzϕ

′]] at z = �(t).

For the phase interface incoherent in rotations we obtain

(8.9)
[[u]] = [[w]] = 0, [[Nzz]] = 0, [[Nrz]] = 0, Mφz = 0,

�̇ = −F(ς), ς = [[ρψ −Nzz(1 + u′) −Nrzw
′]] at z = �(t).
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The ordinary differential equation �̇ = −F(ς) should be supplemented by the
initial condition �(0) = �0. The parameter �0 indicates the place within the
cylinder in which the phase transition occurs first. In this example we assume
that �0 describes the cylinder edges.

As a result, the discussed example is reduced to solving the boundary-value
problem consisting of the system of equilibrium equations (8.6)1, the consti-
tutive equations (8.7), the boundary conditions (8.1) and (8.2) as well as the
compatibility conditions (8.8) or (8.9) along C.

Let us discuss pure tension of the elastic one-phase cylinder. With notation
(6.9), the equilibrium equations and the constitutive equations can be written
as the following system of ordinary differential equations:

(8.10)

u′ =
P

C
− ν

w

R
+ εp,

N ′
rz =

Nφφ

R
, Nφφ = νP + C(1 − ν2)

w

R
,

M ′
φz = −Mrφ

R
−Nrz, Mrφ = −β4

ϕ

R
,

w′ =
Nrz

α4
+ ϕ, ϕ′ =

Mφz

D(1 − ν)
.

This is the system of five ODE with constant coefficients, expressed in terms of
independent functions u, w, ϕ, Nrz, Mφz. The solution of (8.10)1 can be found
by direct integration when the other four equations have been solved.

The system (8.10) has always the particular solution

(8.11) u(z) =

(
P

Eh
+ εp

)
z + const, w = −νu′R ≡ −

(
P

Eh
+ εp

)
νR,

for which Nrz = 0, Nφφ = 0, ϕ = 0, M = 0. This solution describes the axisym-
metric membrane equilibrium state of the cylinder. In the two-phase cylinder
such a solution is possible only when νA = νB = 0 or νA/EAhA = νB/EBhB

and εAp = εBp since otherwise, according to (8.11), deformations of parts A and B
would not coincide: wA 
= wB. This means that the pure membrane equilibrium
state is not possible, in general, in the axisymmetric problem of the cylinder.
Although (8.11) can adequately describe the solution far from the shell bound-
aries and far from the interface curve, for the full description of the two-phase
cylinder one should construct the full solution of (8.10).

To illustrate the 2D model of phase transitions in the cylinder, in this pa-
per we restrict ourselves to the simplest case when νA = νB = 0. Then the
equilibrium solution of the two-phase shell is (8.11). Since in this case ϕ = 0,
M = 0, there is no difference between the coherent interface and the interface
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incoherent in rotations, and this problem becomes entirely analogous to the 1D
problem discussed by Abeyaratne and Knowles [2] as a model problem of the
3D continuum model. If indices A and B denote solutions for different material
phases, from (8.6) with the boundary conditions uB(0) = 0, uB(�) = uA(�) it
follows that

(8.12) uB(z) =
P

CB
z, uA(Z) =

(
P

CA
+ εAp

)
z + P�

(
1

CB
− 1

CA

)
− εAp �.

Then the free energy densities take the form

(8.13)

ρψB =
CB

2
E2

B , ρψA =
CA

2
(EA − εAp )2 + ∆,

EA ≡ u′A =
P

CA
+ εAp , EB ≡ u′B =

P

CB
.

Since the initial values of the free energies can be assumed to be arbitrary, in
(8.13) we have assumed ρψB

0 = 0, ρψA
0 = ∆. The graphical illustration of ψA,B

as functions of the stretch E is given in Fig. 4.

0 EεAp

∆

ψ

ψB

ψA

Fig. 4. Free energy densities.

For the discussed cylinder the variable ς becomes

(8.14) ς = [[ρψ −Nzzu
′]] = [[ρψ]] − P [[u′]] =

P 2

2

(
1

CA
− 1

CB

)
+ PεAp − ∆.

The equilibrium position of the interface should follow from the equation
ς = 0. For the uniform stretch state it is easy to see that this equation is
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satisfied by only one value of the force

(8.15) P = P ∗ ≡

√
εAp

2 + 2
(

1
CA

− 1
CB

)
∆ − εAp

1
CA

− 1
CB

.

Thus, in this case it is impossible to determine uniquely the position � of the
interface, because with P = P ∗ the value of � can be arbitrary within [0, L]. For
the sake of simplicity we consider below only the case εAp = 0.

Let us consider the dependence of displacements of the right edge of the
cylinder upon P . From (8.12)2 we obtain that

(8.16) P = CA

[
1 +

�

L

(
CA

CB
− 1

)]−1

EL,

where � ∈ [0, L], EL = uA(L)/L. The cases � = 0 and � = L correspond to the
cylinder consisting entirely of the phases A and B, respectively.

The relation how the force P depends on deformation in the equilibrium
states follows from (8.16). It is illustrated in Fig. 5. This relation takes the form
of piecewise-straight line OABC. The segment OA corresponds to deformation
of the cylinder consisting of the phase B and is defined by P = CBEL. When
P reaches the value P ∗, it becomes possible to have different equilibrium states
with two phases of the material. For definiteness, we assume that during loading
the new phase A is first created at the right boundary of the cylinder, z = L.
Then the two-phase cylinder behaves similarly as an elastic-perfectly plastic one:
the deformation increases with constant value P = P ∗ of the extension force,
see the segment AB in Fig. 4. When P increases above P ∗, the deformation of
the cylinder follows the segment BC corresponding to the one-phase A state.
The segment BC is more inclined than the one OA, since it is a part of the
straight line P = CAEL with CA < CB. For decreasing P through P ∗ up to 0,
the equilibrium states follow the graph in the reverse order: CBAO.

Let us now discuss the quasistatic motion of C governed by the kinetic equa-
tion (5.4). The loading is assumed to be linearly increasing in time: P = P0t,
P0 = const, while the unloading rule to be again linear in time: P = −P0t. By
changing variables t = ±P/P0 the kinetic equation can be written as

(8.17) ±P0
d�

dP
= −F(ς).

In Fig. 5 we show the respective graphs AB′ for the loading and BA′ for
the unloading obtained from (8.17). With the kinetic equation the phase tran-
sition process in the cylinder proceeds as follows. If P ∈ (0, P ∗), the cylinder
deforms as consisting entirely of the phase B. This is the segment OA in Fig. 5.
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When P = P ∗, the new phase A is nucleated at the right boundary, and when
the force P is growing above P ∗ the interface is moving towards the left bound-
ary. This behaviour is described by the path AB′ in Fig. 5. After reaching B′

the cylinder consists entirely of the phase A and deforms further according to
the segment B′C. In the process of unloading the cylinder deforms according to
the path CBA′O.

A′

ELO

P

P ∗ A

A′′′

A′′

B

B′′

B′′′

C

B′

Fig. 5. P − E curves for two-phase shell for different values of k̂.

As a result, in the deformation process of the two-phase cylinder we observe
the existence of the hysteresis loop AB′BA′ characteristic to the behaviour of
phase transition of martensitic type. The size of the loop depends essentially on
the form of function F, and particularly upon values of the kinetic factor k and
the parameter P0 determining the loading velocity. When k̂ ≡ k/P0 increases,
the area of hysteresis loop decreases. Examples of several deformation paths for
different values of k̂ are given in Fig. 5. It is seen that with the growing k̂ we ob-
tain the narrowing loops AB′BA′, AB′′BA′′, AB′′′BA′′′, etc. The limit k̂ → ∞
corresponds both to the infinitely large kinetic factor k → ∞ and to the infinitely
small loading velocity P0 → 0. In the limit k̂ → ∞ the hysteresis loop reduces to
the equilibrium segment AB. This means in particular that with the infinitely
small loading velocity the deformation follows the equilibrium path OABC.

We have discussed above the case ς0 = 0. Let us now analyse the cylin-
der deformation when ς0 
= 0. Remember that ς0 is associated with threshold
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effects when the new phase is nucleated, [2]. For nucleation to occur it is nec-
essary for the driving force ς to exceed some threshold value ς0. It follows from
(8.14) that ς = ±ς0 when P = P ∗±, and the inequality P ∗− < P ∗ < P ∗

+ holds
true. At the beginning the cylinder deforms similarly as above following the lin-
ear rule P = CBEL. In Fig. 6 this corresponds to the segment OAA+. When
P = P ∗

+ the new phase A nucleates at the right boundary. The correspond-
ing relation P (EL) is shown as the path A+B+ in Fig. 6. When � attains the
zero value, the cylinder becomes entirely consisting of the one phase A. For
P > P ∗

+ the cylinder deforms again according to the linear rule P = CAEL (the
segment B+C).

A−

ELO

P

P ∗

P ∗−

P ∗
+

A

A∞ B−

A+

B

B∞

B+

C

Fig. 6. P − E curves for ς0 �= 0.

In the unloading process P = −P0t the cylinder, initially consisting entirely
of the phase A, deforms according to the linear rule P = CAEL until P attains
the value P ∗−. Its further quasistatic motion is described by the kinetic equation
with the initial condition �(P ∗−) = 0. The corresponding relation P (EL) is illus-
trated in Fig. 6 as the path B−A−. When � reaches the value L, the cylinder
becomes again consisting entirely of one phase B and its further deformation is
governed by the linear rule P = CBEL (the segment A−O).

With ς0 
= 0, the size of hysteresis loop becomes larger with the growing value
of ς0. But in this behaviour there is a qualitative difference as compared with
the case ς0 = 0. When ς0 
= 0, growing values of k̂ also lead to decreasing areas
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of the hysteresis loops. But for k̂ → ∞ the limiting paths reduce to two different
respective segments A+B∞ and B−A∞. In other words, the hysteresis loop takes
place also in this limit case corresponding to the infinite kinetic factor and to
the infinitely small loading velocity. Such limit cases describe the so-called rate-
independent phase transitions observed in martensitic materials, see for example
[2, 6, 28].

The simple example discussed here indicates that the general theory of shells
with PT developed in this paper allows one to solve complex shell problems and
obtain the results which in the special 1D case generalise the results reported in
[1, 2, 6, 15, 26, 29] based on the assumed 1D models of PT in 3D elastic solids.
In particular, the present example shows which assumptions about the stress
state and the bulk material properties can lead to the 1D models discussed in
those papers.

We have solved the problem of PT in the extended elastic circular cylinder
using several simplifying assumptions about the external loads and the form of
constitutive equations. In particular, we have assumed that νA = νB = 0. If this
were not the case, we would obtain also additional solutions of the boundary
layer type near the shell edges and near the phase interface. These solutions may
considerably complicate the motion of the interface itself. Also a more complete
loading applied on the shell edges (e.g. boundary shear, bending and/or torsion)
might considerably complicate the solution. Additionally, in this example we
have implicitly assumed that there is only one phase interface; it is possible
to remove this assumption and analyse the problem with several moving phase
boundaries as well. Detailed analysis of quasistatic deformation of the elastic
circular cylindrical tube capable of undergoing phase transformations with the
full account of the factors mentioned above is beyond the aim of this paper and
should be presented separately.

9. Conclusions

We have worked out the complete 2D model of quasistatic deformations of
the non-linear thermoelastic and thermoviscoelastic shells made of materials
capable of undergoing phase transformations of martensitic type.

The new balance equations of linear momentum, angular momentum, and
energy as well as the dissipation inequality at the curvilinear phase interface
have been derived from the resultant balance laws of the general non-linear
theory of shells. These balance equations at the quasistatically moving phase in-
terface have been presented for thermoelastic and thermoviscoelastic two-phase
materials. They generalize our earlier results obtained in [12, 42] by variational
methods valid for the case of thermodynamic equilibrium state. In particular,
we have used the kinetic equation (5.4) with the function (5.5) which allows
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one to describe the motion of the curvilinear phase interface in the quasistatic
deformation process.

To illustrate the 2D model we have solved analytically the simple 1D exam-
ple of phase transition in the elastic circular cylindrical tube subjected to tensile
forces applied to its end. For the linearly elastic cylinder one observes the ex-
istence of hysteresis loop characteristic to the behaviour of phase transitions in
martensitic materials. The size of the loop depends upon the values of several
loading parameters. This example contains, as particular cases, many existing
1D models of phase transformation in elastic bodies.

The proposed 2D model allows one to take into account several additional
factors unavailable in the existing 1D models of phase transitions, such as so-
lutions of the boundary layer type, or more differentiated ways of loading and
unloading. We are also able to analyse, even analytically, quite complex problems
which in the 3D models are possible to discuss only by numerical methods.
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