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This paper contains an extended presentation of a new approach to the macroscopic
description of anisotropic pore space structure of rigid permeable material, utilizing
the concept of Minkowski metric space. The metrics of the Minkowski and Euclidean
spaces are used to determine double measures of any line, surface and volume ele-
ments, and to define geometrical macro-parameters characterizing anisotropic pore
space structure: the volume and surface porosities, and the tortuosity of the pores. It is
shown that the metric tensor of the Minkowski space can be interpreted as a tensor of
the pore tortuosity, and its inverse as a tensor of the surface porosity. This means that
the pore tortuosity has a pure geometrical character and is of fundamental importance
for description of anisotropic pore space structure and for all physical processes taking
place in the pore space. The approach presented in this paper allows a description of
fluid dynamics in the anisotropic pore space in the framework of rational mechanics.

Key words: Minkowski metric space, pore space structure, permeable materials.

Copyright c© 2009 by IPPT PAN

1. Introduction

Description of the pore space structure of a permeable porous material
is one of the fundamental problems in modeling transport phenomena in satu-
rated porous materials. It plays an important role in many physical and chemi-
cal processes: transport of mass, momentum and energy, wave propagation, and
chemical reactions [38, 24, 7, 1]. The presence of pore structure is the reflection
of two basic features of such materials: separation of both physical constituents
(fluid and skeleton) at the microscopic level, and relative stiffness of the skeleton.
Their interface defines boundary limits of the pore space which is the real space
where the fluid motion takes place. Its structure imposes constraints on this
motion, strongly influencing the character and intensity of interactions between
fluid and skeleton. At the macroscopic level it appears as viscous, dynamical and
dilatational couplings of both constituents.

There were many approaches to the description of permeable porous ma-
terials: microscopic modeling [38, 1, 3], methods of homogenization [4, 21, 39]
and averaging [6, 33, 25, 28], theory of mixtures [12, 43, 7], variational methods
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[9, 10, 22], and mixed methods [23, 29, 30, 32]. In each of these, the parameters
of pore space structure, except the volume porosity, were defined and introduced
in different ways.

In models formulated at the microscopic level, the structure of the pore space
is determined by the form of the elementary cell. In the averaging procedures,
the pore structure parameters are often introduced as coefficients relating fluc-
tuations of kinetic energy of the fluid about its value represented by macroscopic
velocity. In the macroscopic models, the influence of pore space structure is sim-
ply described by constitutive relations for interaction forces and stresses, then
the pore structure parameters become coefficients in these relations. Similarly,
in descriptions based on variational principles, they appear in the equations as
a consequence of the assumed forms of dissipation function and kinetic energy
of the medium.

Another direction of studies on porous media structure is presented in papers
based on stochastic methods [26, 27, 11, 42, 41]. They apply such concepts as
local porosity distribution [26, 27, 11] and the correlation functions [42, 41] for
quantitative characterization of pore structure from two- and three-dimensional
images of microscopic pore geometry and for determination of their relations
with physical properties of the medium.

The existing macro-continuum models of the dynamics of fluid-saturated
porous materials do not explicitly recognize the kinematical domination of the
skeleton on the fluid motion. The kinematics is formulated in the context of
mixture theory, which does not incorporate explicitly the pore space structure.
This results in considerable difficulties in description of the related problems of
the dynamical, dilatational and even viscous couplings between the fluid and the
skeleton. This applies also to an isotropic structure and is unsolved for media
with anisotropic structure.

The aim of this paper is an extended presentation of a new approach to
macroscopic description of anisotropic pore space structure of rigid permeable
porous materials and modeling of fluid motion in such media, based on the
concept of anisotropic metric space as a model of anisotropic pore space.

The fluid flow through a rigid skeleton of an anisotropic pore structure is con-
sidered in the paper as motion of the material continuum (fluid) in an anisotropic
plane metric space. In this model the pore space of the permeable skeleton forms
at a macroscopic level the anisotropic metric space in which fluid motion takes
place. Therefore, the constraints imposed by the pore space structure on fluid
motion correspond to those imposed by the metric of the anisotropic space and
quantities describing the anisotropic properties of the metric space can be in-
terpreted as parameters characterizing the pore space structure. Such approach
enables a description of fluid dynamics in the anisotropic pore space, in the
framework of rational mechanics.
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The concept of a plane anisotropic space in modern geometry and differential
geometry is termed the Minkowski space [36, 40]. This plane space and its gen-
eralization – the Finsler space (curved) [31, 36] – are useful in modelling various
physical, biological and mechanical phenomena [2, 8, 37].

Results of this paper in the condensed form were partially presented in the
papers [17] and [18] published in the proceedings of international symposia, and
their extended form have been published till now only in Polish [19]. Due to the
mathematical complexity of the metric-based approach and applied original no-
tation of vector and tensor algebra, the fundamentals of the proposed description
and implementation of the Minkowski metric space to the needs of anisotropic
pore space modeling are presented in extended form. The explicit form of met-
rics for surface and volume elements in the anisotropic space are derived and
examples of Minkowski metrics are given. Additionally, the principal directions
in anisotropic pore space and corresponding structure parameters (tortuosity of
pores and surface porosity) have been determined. To illustrate the power of the
metric-based approach to description of the pore space structure of permeable
porous materials, an example of the metric for tetragonal pore space has been
presented.

It was shown that metric tensor of Minkowski space plays a fundamental role
in the description of the geometrical structure of the pore space. It determines
measures of any line, surface and volume elements in the pore space, which in
turn define geometrical parameters characterizing the pore space structure, i.e.
the volume and surface porosities and the tortuosity of the pores. This metric
tensor can be interpreted as a tensor of the pore tortuosity, and its inverse as
a tensor of the surface porosity.

2. Basic definitions and notations

Vectors and tensors. Denote by V the three-dimensional real vector space,
and by V? the dual vector space of a space V. If u ∈ V and v? ∈ V?, the scalar
u · v? = v? · u ∈ R is the dual product of vector u and covector v?, and the
“dot” (( ) · ( )) denotes the bilinear operation (the dual multiplication) defined
on V and V?.

The multilinear transformations of vector spaces are called tensors. They are
elements of linear spaces formed by the tensor products of vector spaces. For
example, a tensor A ∈ V ⊗ V? is an endomorphism of V and V?. For u ∈ V and
v? ∈ V?,

A · u ∈ V, v? ·A ∈ V?.

The tensor product u⊗v? of a vector u and covector v? is the simplest form of
a tensor in the space V ⊗ V?.
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Since tensors of order three and four arise later, operations on them are
simplified by introducing new, alternative, notations for tensor products. For
t,u,v,w ∈ V,

t⊗u ≡
(

t
u

)
∈ V⊗V = ⊗V2, t⊗u⊗v ≡




t
u
v


 ∈ ⊗V3,(2.1)

t⊗u⊗v ⊗w ≡
(

t v
uw

)
≡

(
t⊗v
u⊗w

)
≡

(
t
u

)
⊗

(
v
w

)
∈ ⊗V4.(2.2)

Such representations of the tensor products render their factors accessible for
various operations, e.g. the dual multiplication or transposition. Since each tensor
can be represented as a linear combination of the tensor products of the basis
vectors of V (and of V? ), the notations (2.1) and (2.2) also have consequences
for operations performed on general tensors. For example, taking into account
(2.1)2, three different dual products of a tensor B ∈ ⊗V?3 and a vector u ∈ V
can be denoted as follows:

(2.3) B ·u, B ·u, B ·u.

In this notation, the position of the vector u indicates the type of dual product
of both quantities.

Representations of surface and volume elements. Similarly to a vector which
is an algebraic model of a directed segment, the skew-symmetric tensors of or-
der two and three are natural models of surface and volume elements [13], re-
spectively. These elements, spanned by two (u,v) and three (u,v,w) linearly
independent vectors, can be represented by their exterior products u ∧v and
u ∧v ∧w defined by

σ = u ∧v ≡
[
u
v

]
≡

(
u
v

)
−

(
v
u

)
,(2.4)

ϑ = u ∧v ∧w ≡



u
v
w


(2.5)

≡



u
v
w


 +




v
w
u


 +




w
u
v


−




v
u
w


−




u
w
v


−




w
v
u


 .

The surface elements σ form a three-dimensional space ∧V2 of the skew-sym-
metric tensors of order two,

σ ∈ ∧V2 ⊂ ⊗V2,
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and the volume elements ϑ form a one-dimensional space ∧V3 of the skew-
symmetric tensors of order three,

ϑ ∈ ∧V3 ⊂ ⊗V3.

Any two elements of the space ∧V3 are related to each other by a scalar multi-
plier. For example, for two skew-symmetric tensors of the form




u
v
w


 ,




A · u
A · v
A ·w


 ∈ ∧V3,

the scalar is the determinant of automorphism A ∈ V ⊗ V?; that is,

(2.6)




A · u
A · v
A ·w


 =




A
A
A


 ...




u
v
w


 = det(A)




u
v
w


 .

This identity can be used as a definition of the determinant of tensor A.

Normed vector spaces. A vector space V is called a normed space if there is
a real-valued function LA(u) defined on V, that each vector u ascribes a real
value u ∈ R, called the length of vector u,

u = LA(u),

and satisfies the following axioms [5]:

LA(u) > 0 for u 6= 0, and LA(0) = 0;(2.7)

LA(k u) = k LA(u) for k > 0;(2.8)

LA(u + v) < LA(u) + LA(v);(2.9)

for all linearly independent vectors u,v ∈ V.
The function LA(u) is called the norm of space V. It is positive definite,

positively homogeneous of order one, and strictly convex. Due to the positive
homogeneity (2.8), the length of a vector u can depend on its sense,

LA(−u) 6= LA(u),

which means that the norm does not have to be symmetric. The norm LA(u) gen-
erates a metric in the vector space V that defines the distance dA(u,v) between
any of its two elements u and v,

(2.10) dA(u,v) ≡ LA(v − u).
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Below, we present examples of a symmetric and an asymmetric metric

L4
A(u) =

(
u
u

)
: C :

(
u
u

)
,(2.11)

LA(u) =
au ·M · u√

u ·M · u + bu ·M · n ,(2.12)

where
C ∈ ⊗V?4, M ∈ ⊗V?2, n ∈ V, a, b ∈ R,

and the tensors C, M, and scalar parameters a, b must be chosen to satisfy the
axioms (2.7) and (2.9).

Affine spaces. The pair (P , V) composed of a point P and a vector space
V defines an affine point space, because the algebraic structures of both objects
are isomorphic. Point P is called the reference point and V is the space of the
position vectors of points. The affine space (P , V) is normed if the space V of
the position vectors is normed.

3. Geometry of Euclidean point space

The Euclidean point space is the simplest special case of a normed affine
point space. The affine space is Euclidean when the norm L(u) generating its
metric is given by

(3.1) L2(u) ≡ u ·M · u = M :
(
u
u

)
,

where the metric tensor M ∈ ⊗V?2 of the Euclidean space is independent of u .
Tensor M is non-singular, symmetric and positive definite, and therefore L(u)
satisfies the axioms of a symmetric norm.

The pair (V, M) form the Euclidean vector space, and the triple (P , (V, M))
form the Euclidean point space. Due to its affine structure, this space is plane.
Because metric tensor M is independent of the position vector of points and of
the vector u, it is also homogeneous and isotropic. Euclidean point space is used
in the classical mechanics as a model of the physical space.

The existence of a distance metric in the Euclidean space (P , (V, M)) allows
definitions of metrics for surface elements σ ∈ ∧V2, and for volume elements
ϑ ∈ ∧V3. They are given by

(3.2) S2(σ) = σ : S : σ, V 2(ϑ) = ϑ
...V

...ϑ,

where

(3.3) S =
1
2

(
M
M

)
, V =

1
6




M
M
M


 ,
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are the metric tensors in the spaces of surface elements ∧V2 and volume elements
∧V3, respectively. These tensors are of order four and six.

The metrics defined by expressions (3.2) satisfy all the axioms of a norm.
They are positive definite, homogeneous, symmetric and strictly convex. Their
application to the elements represented by the exterior products (2.4) and (2.5) of
two and three linearly independent vectors, gives the Gram’s determinants that
define the area and volume of the parallelogram and parallelepiped, respectively.

4. Geometry of Minkowski point space

The normed affine point space, the norm of which has the general properties
(2.7)–(2.9), is called Minkowski space [36]. Like the Euclidean space, it is plane
but has anisotropic properties, and may not be symmetric. This determines the
peculiar features of its internal, geometrical structure.

The metric tensor of distance in Minkowski space is

(4.1) MA(u) =
1
2

∂2L2
A(u)

∂u ∂u
∈ V? ⊗ V?,

and due to the homogeneity of LA(u) given by (2.8), has the properties:

(4.2) u ·MA(u) · u = L2
A(u), MA(k u) = MA(u) for k > 0.

In expressions (4.1) ∂L2
A(u)/∂u denotes the gradient of the function L2

A(u),
defined by the identity

(4.3) v · ∂

∂u
L2

A(u) ≡ ∂

∂h
L2

A(u + hv)
∣∣∣∣
h=0

,

which must be satisfied for all v ∈ V.
From (4.2)2, the metric tensor MA(u), in general, depends on the direc-

tion and sense of the vector u and is independent of its length. This defines
the anisotropic properties of Minkowski space. The metric tensor MA(u) deter-
mines a set of anisotropic spheres (Minkowski spheres), i.e. closed and convex
surfaces, the points of which are equally distant from the reference point P with
respect to the Minkowski metric. The sphere of unit radius is defined by equa-
tion

L2
A(N) = N ·MA(N) ·N = 1,

and is called the indicatrix of the metric space. The indicatrix may also be
used for characterizing the geometry of Minkowski space. The restrictions im-
posed on the norm LA(u) by the axioms (2.7)–(2.9) imply that the indica-
trix can be formed by any strictly convex surface surrounding the reference
point.
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For the metric of Minkowski space given by (2.12), the indicatrix is asymmet-
ric and forms a surface of revolution, the cross-section of which is the limaçon
curve [5], shown in Fig. 1. In turn, the form of indicatrix generated by the met-
ric (2.11) depends on the properties of tensor C, which can be interpreted as
the structure tensor of Minkowski space. It can define the indicatrix for each
three-dimensional anisotropic pore space characterized by any group of its point
symmetries. The example of such a metric for the tetragonal pore space structure
is presented in the Sec. 8. The indicatrix of Euclidean space is a special case of
the Minkowski indicatrix which can be represented by the usual sphere (Fig. 1).

Fig. 1. Cross-section of the Euclidean indicatrix (circle) and the Minkowski indicatrix (the
limaçon given by (2.12)) and their unit vectors n and N, normal to the surface element σ.

The metric tensor MA(u) determining the distance of points in the Min-
kowski space is used in the paper to define the metrics of surface and volume
elements in this space.

Similar to the Euclidean space, these metrics have the form

(4.4) S2
A(σ) = σ : SA(r) : σ, V 2

A(ϑ) = ϑ
...VA

...ϑ,

where

(4.5) SA(r) = α(r)
1
2

(
MA(r)
MA(r)

)
, VA = α(r)

1
3!




MA(r)
MA(r)
MA(r)


 ,

are the metric tensors in the spaces of surface elements ∧V2 and volume elements
∧V3, respectively. These tensors are of order four and six.

The vector r in (4.5)1 is orthogonal to the surface element σ with respect to
metric MA(r), and so it satisfies the condition

σ ·MA(r) · r = 0.
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Moreover, in expressions (4.5), the scalar-valued vector function α(r) has been
introduced to ensure that the measure of volume elements (4.4)2 is indepen-
dent of the vector r. Applying definition (2.6) of the determinant, the following
relation can be written:

ϑ
...




MA

MA

MA


 = ϑ

...




M
M
M


 ...




M−1 ·MA

M−1 ·MA

M−1 ·MA


 = det(M−1 ·MA(r)) ϑ

...




M
M
M


 .

Then, the measure (4.4)2 is independent of r if the coefficient α(r) has the form

(4.6) α(r) =
β

det(M−1 ·MA(r))
,

where β is a positive constant parameter. In that case the Minkowski measure
(4.4)2 of a volume element becomes proportional to the Euclidean measure (3.2)2

(4.7) VA(ϑ) =
√

β V (ϑ),

and the parameter β is independent of the Minkowski metric MA(r). This means
that the metric of the surface and volume elements in Minkowski space are not
fully determined by the metric of distance.

From equality (4.7), the Minkowski measure of volume VA(ϑ) satisfies all the
axioms of the norm, satisfied by the Euclidean measure V (ϑ). It can be shown
that the metric of surface elements (4.4)1 also satisfies all the axioms of the
norm. It is positive definite, homogeneous and strictly convex.

5. Modelling the anisotropic pore space

The concepts of Euclidean and Minkowski spaces introduced in the previ-
ous sections are now applied to describe the pore space of a permeable porous
material, and to define the parameters characterizing its structure.

The interconnected pores in permeable porous materials form a very compli-
cated network of channels, which are filled with a fluid, determine the real space
for the fluid motion. Therefore, at the microscopic level, the fluid particles mov-
ing in pores between any two points of the medium have a much longer distance
to travel than the distance between these points in the physical space. Generally,
that length depends on the direction of the macroscopic (mean) flow of the fluid.
It may also happen that fluid particles flowing in the opposite direction would
travel a different distance. From the macroscopic point of view, such situations
may be modelled by an unsymmetric pore space metric. Such complex geome-
try of a microscopic fluid flow through porous materials strongly influences the
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mechanical behavior of the fluid at the macroscopic level, and motivates the use
of the Minkowski metric space as a macroscopic description of the pore space.

The porous skeleton is embedded in the physical space described in classical
mechanics by an Euclidean point space. Therefore, the anisotropic Minkowski
space describing the pore space, is considered here to be embedded in the Eu-
clidean space and points of both spaces are identified. They may be repre-
sented by

(P, (V,M)), (P, (V,MA)).

Such embedding imposes restrictions on the relations of the measures of any
line, surface and volume elements in the two spaces, following from the physical
requirement that embedding should not disturb the geometrical structure of the
basic (Euclidean) space. This means that the length of a line segment measured
with respect to the Minkowski metric, cannot be smaller than its length with
respect to the Euclidean metric. The measures of volume elements in both spaces
should satisfy the inverse relation.

For any vector u ∈ V and any volume element ϑ ∈ ∧V3, the following
inequalities hold:

(5.1) LA(u) ≥ L(u), VA(ϑ) ≤ V (ϑ).

It can be shown that the inequalities (5.1) also induce a relation between the
measures of surface elements in Minkowski and Euclidean spaces. For any surface
element σ ∈ ∧V2,

(5.2) SA(σ) ≤ S(σ).

In turn, from the inequality (5.1)1, it follows that the Minkowski indicatrix is
always contained in the Euclidean indicatrix.

Note that the above relations between the Euclidean and Minkowski mea-
sures of line, surface and volume elements do not satisfy the commonly used
Kolmogoroff’s monotonicity requirement [40], described by [14]: if a space has
two metrics, one of which dominates the other, then the smaller metric should
induce smaller areas.

6. Macroscopic parameters of pore space structure

The line, surface and volume elements measured with respect to the Minkow-
ski and the Euclidean metrics allow defitions of the tortuosity of pores, and the
volume and surface porosities. These parameters characterize the macroscopic
pore space structure of an anisotropic porous medium and play very important
role in the mechanics of fluid-saturated porous materials.
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Tortuosity of pores. The concept of tortuosity was first introduced into the
theory of porous materials by Carman [15]. The tortuosity of the pores was
defined as the square of ratio of the averaged length of fluid particles paths,
measured in the pore space in the direction of macroscopic fluid flow, to the
distance in the physical space. Later [16], the tortuosity parameter was defined
as the ratio of these quantities.

Here, the tortuosity parameter for the pores in the direction determined by
a vector u ∈ V in the porous medium, is defined as the ratio of the length of the
vector u measured with respect to the Minkowski metric, to the length of this
vector with respect to the Euclidean metric. Denoting the tortuosity parameter
by δ(u),

(6.1) δ2(u) ≡
(uA

u

)2
=

u ·MA(u) · u
u ·M · u ,

or

(6.2) δ2(n) = n ·MA(n) · n,

where n = u/u is the Euclidean unit vector (n ·M ·n = 1) indicating direction
in the physical space. The parameter δ(u) is a homogeneous scalar-valued
function of order zero:

δ(k u) = δ(u), k > 0,

which for an unsymmetric metric of anisotropic pore space will take different
values for the opposite sense of the vector u,

δ(−u) 6= δ(u).

It follows from the restriction (5.1)1 that the tortuosity parameter δ(n) takes
values not less than unity; that is,

(6.3) δ(n) ≥ 1.

From (6.2), the metric tensor MA(n) fully determines the value of the tortu-
osity parameter δ(n), and can therefore be interpreted as a tortuosity tensor of
the pore space. This tensor characterizes the anisotropic properties of the pore
space structure. Even if the tensor MA(n) does not depend on the unit vector
n, the Minkowski and Euclidean spaces may be relatively anisotropic, i.e. if one
is isotropic, the metric of the other space may be anisotropic with respect to the
first one.

The tensor MA(n) describes an isotropic pore structure if it is proportional
to the Euclidean metric tensor M. By (6.2),

(6.4) MA(n) = δ2 M,

where δ denotes the tortuosity of pores in the isotropic pore space.
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Volume porosity . Similar to tortuosity, the volume porosity fv can be defined
by the ratio of the measures of volume element ϑ ∈ ∧V3 with respect to the
Minkowski and Euclidean metrics. Then, with the definitions (3.2)2 and (4.4)2,

(6.5) f2
v ≡

(
VA(ϑ)
V (ϑ)

)2

=
ϑ
...VA

...ϑ

ϑ
...V

...ϑ
= E3

...VA
...E3,

where E3 = ϑ/V is the Euclidean unit volume element (E3
...V

...E3 = 1). The
volume porosity parameter fv, due to the restriction (5.1)2, must satisfy the
condition

(6.6) fv ≤ 1.

The definition (6.5) and relation (4.7) determine the constant parameter β in
the coefficient α(r) of the metric tensors (4.5); thus

(6.7) β = f2
v .

Surface porosity . The third parameter characterizing the pore space structure
is the surface porosity denoted by λ(σ). This parameter is defined as the ratio
of measures of a surface element σ ∈ ∧V2 with respect to the Minkowski and
Euclidean metrics. With the definitions (3.2)1 and (4.4)1,

(6.8) λ2(σ) ≡
(

SA(σ)
S(σ)

)2

=
σ : SA(N) : σ

σ : S : σ
,

or

(6.9) λ2(E2) = E2 : SA(N) : E2,

where E2 = σ/S is the Euclidean unit surface element (E2 : S : E2 = 1), and N
is the Minkowski unit vector orthogonal to the surface element σ with respect
to the metric MA(N) (Fig. 1). The parameter λ(σ), due to the restriction (5.2),
must satisfy the condition

(6.10) λ ≤ 1.

From the definition (6.9), the metric tensor of a surface element σ can be inter-
preted as the tensor of surface porosity.

The definition (6.9) can be reduced to a simpler form if the unit surface
element E2 is replaced by the Euclidean unit vector n orthogonal to that element.
Since

(6.11) E2 = E ·M·n
3 ,

(6.9) gives

(6.12) λ2(E2) = n ·MS(N) · n
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where, due to the definition (2.6) and identity

(6.13) E3 :
(
M
M

)
: E ·M

3 = 2 I,

the tensor MS(N) is given by

(6.14) MS(N) = f2
v M ·M−1

A (N) ·M,

whereas I ∈ V⊗V? is the identity automorphism of spaces V and V?. In expres-
sions (6.11) and (6.13) the notation (2.3) has been used.

Relations (6.12) and (6.14) show that the inverse of the Minkowski metric
tensor MA(N), together with the volume porosity fv, defines the value of the
surface porosity λ(σ). Therefore the tensor M−1

A (N) may be interpreted as the
surface porosity tensor. This means that the directional properties of the surface
porosity are closely related to the directional properties of the pore tortuosity,
characterized by the metric tensor of an anisotropic pore space.

In the case of the isotropic pore space structure, due to relation (6.4), the
tensor (6.14) reduces to the form

(6.15) MS(N) =
(

fv

δ

)2

M,

then from definition (6.12),

(6.16) fv = λδ.

Since the tortuosity of the pores is not less than unity, from (6.16) it follows
that, in general, the volume porosity cannot be equal to the surface porosity.
This means that the surface porosity λ defined at the macroscopic level, does
not have a simple microscopic interpretation. It can be shown that, for a pore
space composed of cylindrical tubes (pores), the surface porosity defined by (6.8)
represents the total area of normal cross-sections of tubes on the unit surface of
the porous medium. Representations of the surface porosity and the tortuosity of
pores in isotropic and anisotropic pore space, in terms of microscopic geometrical
parameters, will be considered in a separate paper.

7. Principal directions of the pore space

The existence of the two metrics: MA(N) and M, defined on a vector space V,
which describe the geometry of the anisotropic pore space embedded in a physical
space, allows the formulation of an automorphism of the space V:

M−1 ·MA(u) ∈ V ⊗ V?.



438 M. Cieszko

The properties of this automorphism are closely connected with the geometrical
properties of the pore space. Specifically, its eigenvalues µ ∈ R, and eigenvectors
k ∈ V, defined by

(7.1) M−1 ·MA(k) · k = µk,

determine the principal directions, in the pore space, of particular properties.
These are now determined from relations between the Euclidean unit vector n,
and the Minkowski unit vector N orthogonal to the surface element σ, with
respect to a suitable metric (Fig. 1).

Similar to (6.11), the unit surface element EA
2 is related to its Minkowski

unit normal vector N by

(7.2) EA
2 = EA ·MA(N)·N

3 ,

where EA
3 is the Minkowski unit volume element (EA

3

...VA
...EA

3 = 1). In expres-
sion (7.2) the notation (2.3) has been used. For a surface element σ co-planar
with E2 and EA

2 , and with the same orientation,

σ = S E2 = SA EA
2 .

Since

(7.3) SA = λ(σ) S, E3 = fv EA
3 ,

from (6.11) and (7.2) follows a relation between the unit vectors n and N or-
thogonal to surface element σ, with respect to Euclidean and Minkowski metrics,
respectively:

(7.4) fv M · n = λ(σ)MA(N) ·N.

Relation (7.4) is fundamental for the geometry of the anisotropic pore space,
since it contains the basic information about its structure. For example, the
definition of surface porosity (6.12) can be obtained directly from (7.4).

Comparing relation (7.4) with condition (7.1), the eigenvectors k of the au-
tomorphism M−1 · MA(k) determine directions in the pore space which are
orthogonal to the surface element σ, with respect to both the Euclidean and
Minkowski metric. That is, the principal directions in the pore space are those
for which the unit vectors n and N are co-linear. Then,

(7.5) n = δ(N)N,

and setting n = k in (7.4) yields

(7.6) δ(k) λ(σ) = fv,
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which must be satisfied for each principal direction of the pore space. Therefore,
the eigenvalue of the automorphism M−1 ·MA(k) for the eigenvector k is given
by

(7.7) µ = δ2(k).

It can be proved that the principal directions of the pore space determine the
directions for which the parameters of pore tortuosity take their extreme values.

8. Description of tetragonal pore space

This section illustrates the power of the metric-based approach to description
of the pore space structure of permeable porous materials. It presents the main
results of the paper [20] devoted to macroscopic description of the pore space
with tetragonal symmetry. The anisotropic properties of such media are predicted
by the theory given in this paper. Such prediction is not consistent with the
description presented e.g. in papers [35] and [34], in which problems of mass,
linear momentum and energy transport are considered in porous media that have
the tetragonal symmetry of microscopic structure formed by a bundle of parallel
cylindrical fibers arranged in a square network. It is proved that the macroscopic
pore space structure of such media is isotropic in the plane perpendicular to the
axes of fibres.

The solution of the apparent contradiction between these two descriptions is
extension of the class of porous materials, the pore space of which is modeled
as the Minkowski metric space. An example of microscopic structure of such
a medium is shown in Fig. 2. In that case, the material consists of a bundle of
parallel fibres with rhomboidal cross-sections which are able to rotate free around
the axis formed by one of their edges. These axes are ordered in a square net.

Fig. 2. Tetragonal architecture of porous medium with rotary rhomboidal fibres.
Configuration of fibres cross-section for transport processes in the main (a), (b) and

diagonal (c) directions of the pore space [20].
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It was assumed that during the process (e.g. a fluid flow), the fibres take position
of balance minimizing the resistance to flow. For a transport process in the main
directions of the square net (Fig. 2a, b), the configurations of fibres placement
are the same. Therefore, the properties of such a medium in both directions are
identical. In turn, for a transport process in the diagonal direction of the square
net (Fig. 2c), the configuration of fibres placement is essentially different from
those for a transport process in the main direction.

To describe the anisotropic properties of the tetragonal space, the norm of
the form (2.11) has been applied. It was assumed that the fourth-order tensor
has internal properties of the compliance tensor used in the linear theory of
elasticity of anisotropic materials. After spectral decomposition of this tensor
and application of the automorphisms group describing point symmetries of the
square net, the general form of the norm (2.11), for tetragonal pore space was
obtained,

(8.1) L4
A(u) = δ4

o

[
(u ◦ u)2 + 4(α− 1)(u ◦ e1)2(u ◦ e2)2

]

where

(8.2) α = (δp/δo)
4 ,

and u ◦ v ≡ u ·M · v is the Euclidean scalar product of vectors in the space V,
whereas e1 and e2 (e1 ◦ e2 = 0) are the Euclidean unit vectors indicating main
directions of the tetragonal pore space.

Then, the pore tortuosity δ(n) in direction n of the pore space, defined by
the formula (6.2) can be represented by expression

(8.3) δ4(n) = δ4
o

[
1 + 4(α− 1)(n ◦ e1)2 (n ◦ e2)2

]
,

and in the polar coordinates it reduces to the form

(8.4) δ4 = δ4
o

[
1 + (α− 1) sin2(2ϕ)

]
,

where ϕ is the angle between versors e1 and n.
Quantities δo and δp in expressions (8.1) and (8.2) stand for parameters of

tortuosity in the main directions of the pore space, defined by vectors e1 and
e2 and in the diagonal directions defined by (e2 + e1)/

√
2 and (e2 − e1)/

√
2,

respectively. The norm (8.1) is positively definite for any values of parameters
δo and δp and their ratio α is restricted by the convexity condition (2.9) of
function LA(u),

1/2 < α < 2.
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9. Concluding remarks

This paper is the first one of a series devoted to a description of the dynamics
of fluid-saturated porous materials, utilizing the concept of a Minkowski metric
space to model the anisotropic pore space. It introduces the basic concepts for the
proposed approach. Special attention was paid to the mathematical description
of anisotropic metric spaces, and their adaptation to a model of anisotropic pore
space. The metric of Minkowski space was used to define macroscopic measures
of distance, surface and volume elements, in the pore space, which in turn allow
the definitions of macroscopic parameters characterizing the anisotropic pore
space structure: surface and volume porosities and pore tortuosity, together with
their associated tensors directly related to the metric tensor of the pore space.
Examples of metrics for spaces with symmetric and asymmetric anisotropy were
proposed.

From considerations performed in the paper it results that the pore tor-
tuosity parameter and its tensor characteristics are essential for proper macro-
scopic description of the pore space structure and transport processes in ani-
sotropic porous materials. Its importance was not estimated enough in the lit-
erature, mainly because of big troubles with its definition and introduction into
description of physical processes. The approach proposed in the paper radi-
cally changes this situation. The definition of the tortuosity results directly
from the applied model and the fact that it is defined by the metric tensor
of the pore space indicate that this parameter, similarly to the volume poros-
ity and the specific pore surface, has a purely geometrical character. It means
also that tortuosity is of fundamental importance for all physical processes tak-
ing place in the pore space. For example, it strongly influences the velocity
of wave propagation in a fluid filling a rigid skeleton and also the resistivity
of an electrolyte filling a non-conductive skeleton. Therefore, this parameter
can be determined from the microscopic geometry of the pore space, e.g. by
simulation of current passage. At the pore level it is described by the Laplace
equation, and macroscopic relative resistivity (formation factor) of such mate-
rial depends only on the pore structure parameters: volume porosity and pore
tortuosity. Also, measurements of both quantities: wave velocity and electric re-
sistivity in porous materials are commonly used for identification of the pore
tortuosity.

Since the pore tortuosity is defined by the metric tensor of the Minkowski
(pore) space (see Eq. (6.2)), both types of measurement can be used to deter-
mine components of the metric tensor. This, in turn, allows determination of
the surface porosity for any cross-section of the porous material (see Eq. (6.12))
provided that the volume porosity is measured by the other method. Such identi-
fication needs, however, a proper description of the transport processes in porous
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materials which should relate the coefficients characterizing these processes to
the pore structure parameters.

The problem of a fluid motion in an anisotropic pore space, and its constitu-
tive description, will be treated in subsequent papers. It should be emphasized
that the proposed approach is also applicable to modeling deformable fluid-
saturated porous materials with anisotropic pore space, where the concept of
a deforming anisotropic space would have to be used.
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