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The dynamic behaviour of elastomers is assumed to follow a constitutive dif-
ferential equation of non-integral (fractional) order. In order to describe the peculiar
frequency response of the loss factor, the constitutive equation has been refined by
introducing the fifth parameter to the classical fourth-order equation. The asymmetry
of the loss factor in the frequency domain comes from the different time-derivative
orders of the stress and strain. Either smooth asymmetry or stabilization by a plateau
at high frequency can be modelled by suitable difference between the two orders of
the time derivatives. The physical validity of the model is discussed and a paramet-
rical analysis is conducted on diagrams relating the height and the width of the loss
factor.
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1. Introduction

Recent developments in mathematical area have provided a powerful
tool to describe relaxation phenomena in a complex system: the fractional oper-
ators have performed indeed a simplified description of the linear viscoelastic be-
haviour of polymers. Among the aboundant literature on this subject, we can re-
fer to the precursory works (Baggley and Torvik, [1] and [2]; Friedrich, [3];
Nonnenmacher and Glöckle, [4]) and some meaningful applications con-
ducted on polymers (Heymans and Bauwens, [5]; Schiessel at al., [6]) or
dynamic problems (Rossikhin and Shitikova, [7]). A more complete review
may be found in Metzler and Nonnenmacher [8].

Elastomers are often used in damping applications due to their high energy-
absorption abilities. The combination of high damping and large bandwidth
in the frequency domain arose great practical interest. The material damp-
ing is mathematically described by the loss factor, that is the ratio between
the dissipated and stored energies during harmonic loading. This loss factor
is interpreted as the tangent of the phase angle separating the strain and the
stress for linear materials. One traditional way to describe the material damp-
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ing for a given frequency interval is based on the use of a constant loss fac-
tor. However, it has been proved that such a description cannot be inversed
in the time domain and consequently, it does not satisfy the causality condi-
tion stating that the response always occurs after the excitation. Alternative
models consist in taking a Newtonian, linear viscous damping. The induced
dissipated energy and the loss factor are proportional to the frequency on the
entire frequency range. This definition is in contradiction with the apparent
stabilization of the loss factor at a high-frequency regime (i.e. sudden stress
release).

Since the fundamental approach proposed by Cole and Cole [9] to de-
scribe the dielectric and mechanical properties of polymers via the equations
containing fractional operators, numerous models have been extensively used to
reproduce damping in the frequency domain. Four-parameter fractional deriva-
tive model (called also the fractional derivative Zener model) is frequently used
in the literature.

However, this classical model appears to be inadequate to describe the ex-
perimental asymmetry of the loss factor peak in frequency. The combination
between the broadening of the relaxation width and the asymmetrical frequency
behaviour is successfully described by the empirical formulation proposed by
Havriliak and Negami [10]. However, this formulation cannot be written in
an explicit form of a constitutive equation relating the stress and strain histories.
Recent papers have explored a new formulation including the experimental and
mathematical requirements. Davidson and Cole [11] proposed an empirical
description of the experimental asymmetry but failed to produce a proper band-
width evolution. Bagley and Torvik [1] assumed different derivative orders
of the stress and the strain in the constitutive behaviour which were not com-
patible with the causality condition [2]. Extensively, Friedrich and Braun
[12] suggested also the introduction of different derivative orders of strain in
the constitutive behaviour. Friedrich [3] also showed that the thermodynamic
condition was satisfied providing that the derivative order of the stress remained
smaller or equal to the one of the strain. Pritz [13] pursued this model to provide
a complete description of the loss factor peak. Nevertheless, the model initiated
by Friedrich and Braun is addressed to materials showing a plateau of the loss
factor at high frequency regime and a moderate asymmetry of the loss peak in
the maximum vicinity.

The purpose of this paper is to present a five-parameter fractional deriva-
tive model describing either smooth or marked frequency asymmetry of the loss
factor modulus. The possible existence of a plateau at a high-frequency regime
is also considered. This paper is organised as follows. The second section treats
the general constitutive equations containing fractional derivative operators. The
complex moduli are recalled for the sake of comparison with the improved five-
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parameter approach developed in Sec. 3. The influence of the second-order deriva-
tive is investigated in order to assess its efficiency in Sec. 4. Finally, the model
has been applied to predict the loss factor evolution for EAR C-1002 elastomer
exhibiting a plateau.

2. The fractional derivative model

2.1. General constitutive equation described by fractional derivative model

Polymer behaviour is modelled by linear viscoelastic relationships between
stress and strain, in accordance with the fading memory characteristics: the stress
does not only depend on the current strain, but also on the recent strain history.
A particular class of material constitutive laws has been formulated through
integral, hereditary or convolution form, following the superposition principle
introduced by Boltzmann [14]. The classical hereditary models correspond to
exponentially decaying memory issued from a continuous distribution of relax-
ation times of the generalized Maxwell model. Enelund and Olsson [15] gave
an alternative formulation of this spectral description using a fractional deriva-
tive operator. They proposed a mathematical frame to previous empirical de-
scriptions of constitutive equations, based on similarities observed between the
mechanical and dielectric relaxations. Enelund and Lesieutre [16] demon-
strated that a single form of fractional derivative model is sufficient to describe
the evolution equations for anelastic strains. The generic fractional order consti-
tutive equation is retained in the following:

(2.1) σ(t) + b1
dβ1σ(t)

dtβ1
+ b2

dβ2σ(t)
dtβ2

+ ... + bm
dβmσ(t)

dtβm

= a0ε(t) + a1
dα1ε(t)
dtα1

+ a2
dα2ε(t)
dtα2

+ ...an
dαnε(t)
dtαn

,

where σ and ε may be referred equally to the deviatoric or hydrostatic parts.
A set of initial conditions is added to (2.1) to render the pre-existence of the
stress with respect to the strain. It is noteworthy that the number and order of
time derivatives of strain and stress in (2.1) cannot be arbitrary to ensure the
description of an effective material behaviour and to satisfy the causality condi-
tion formulated as βm ≤ αn (see also Enelund and Olsson [15]). Samko et al.
[18] expressed the basic analytical conditions of the existence and uniqueness of
solutions to such fractional differential equations.

Among the several definitions of the fractional derivatives, we have followed
the definition in the sense of Riemann–Liouville as it is closely related to the
Laplace transform and consequently to the Fourier transform. The operator dα

of the fractional derivative of order α applied to the function x(t) is defined for
0 < α < 1 as:
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(2.2) dα[x(t)] =
1

Γ (1− α)
d

dt

t∫

0

x(u)
(t− u)α

du,

where Γ denotes the Gamma function defined for <(x) > 0 . The operator dα

allows the continuation at the singularity point t = 0. A unique expression of
the Fourier transform of the fractional derivative operator of order αth satisfies
(see Gel’fand and Shilov [17]):

(2.3) F [dα[x(t)]] = (iω)αF [x(t)],

where (iω)α corresponds to (exp(iαπ/2)(ω−i0+)α) simplified to (exp(iαπ/2)ωα)
for ω > 0.

So, the constitutive equation describing viscoelastic behaviour can be written
in the frequency domain:

(2.4) σ̄(iω) = Ḡ(iω)ε̄(iω).

The complex modulus Ḡ(iω) is distinguished between the real and imaginary
parts G′(ω) and G′′(ω), defined respectively as conservative and dissipative
moduli:

(2.5) Ḡ(iω) = G′(ω) + iG′′(ω).

The tangent of the phase angle between stress and strain is called the loss factor
tan δ(ω):

(2.6) tan δ(ω) =
G′′(ω)
G′(ω)

.

Two aspects of the relaxation process are of primary interest when describing
the damping abilities of polymeric materials: the height tan δm at the extremum
of the loss factor and the bandwidth W of the frequency band, taken at the half-
height tan δm/2. These points are analyzed in the diagrams presented hereafter
in Sec. 4.2.

2.2. Four-parameter fractional derivative model – Zener formulation

The fractional Zener formulation depends on the strain and the stress histo-
ries in the time domain as:

(2.7) σ(t) + τα dασ(t)
dtα

= G0ε(t) + G∞τα dαε(t)
dtα

,

where τ is the generalized relaxation time.
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The initial condition is expressed as:

(2.8)
dα−1σ(0+)

dtα−1
= G∞

dα−1ε(0+)
dtα−1

.

It is supposed that the generalized relaxation time τ is the only temperature-
dependent parameter stemming from the time-temperature superposition, usu-
ally admitted for a large range of temperature. G0 corresponds to the long time
or relaxed modulus and G∞ is also called the unrelaxed or instantaneous mod-
ulus. The index in moduli notation has to be interpreted as the frequency limit.
It is assumed hereafter that G∞/G0 > 1.

The complex modulus Ḡ(iω) of the fractional Zener model is expressed
with (2.4):

(2.9) Ḡ(iω) =
G0 + G∞(iωτ)α

1 + (iωτ)α
.

The loss factor modulus tan δ(ω) defined by (2.6) becomes:

(2.10) tan δ(ω) =
(G∞ −G0) sin(απ/2)(ωτ)α

G0 + (G∞ + G0) cos (απ/2) (ωτ)α + G∞ (ωτ)2α .

The parameter α appears as the slope of the curve ln(tan δ) versus ln(ωτ).
A qualitative physical interpretation of the parameter α can be based on the
suggestion of Davies and Lamb [19] that single relaxation time behaviour is ob-
served in liquids for which only pairs of molecules contribute to the relaxation.
As many-body interactions become more significant, the relaxation broadens.
Thus, α is a measure of the strength of coupling among the different modes of
vibration in the polymer.

2.3. Havriliak–Negami empirical formulation

A generalization of the fractional Zener model was proposed by Havriliak
andNegami in [10] to describe the α-dispersions in polymer system: the complex
modulus Ḡ (iω) was empirically written as:

(2.11)
Ḡ(iω)−G∞

G0 −G∞
=

1
(1 + (iωτ)α)β

where the parameter β controls the asymmetry of the loss factor. The parameters
α and β are taken as 0 < β < α < 1. The relevant parameter fractional derivative
order α ranges from about 0.4 to 0.8 and the calibrating asymmetry parameter
β ranges from 0.1 to 0.4.
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The loss factor modulus was calculated by Hartmann, Lee and Lee [20]:

(2.12) tan δ(ω) =
(1−G0/G∞) sin(βθ)

[1 + 2 cos(απ/2)(ωτ)α + (ωτ)2α] + (1−G0/G∞) cos(βθ)

with

(2.13) θ = arctan
(ωτ)α sin(απ/2)
1 + cos(απ/2)

.

The extremum of the loss factor corresponds to the normalized frequency ωnmax

satisfying the equation:

[sin(απ/2− βθ)− ωα
nmax

sin(βθ)](1 + 2ωα
nmax

cos(απ/2) + ω2α
nmax

)β/2

= (1−G0/G∞) sin(απ/2).

The height tan δm and the bandwidth W are calculated after substitution of
ωnmax into (2.12).

3. Improved five-parameter fractional derivative model

3.1. Classical asymmetry description in the constitutive law

As observed in the Havriliak–Negami formulation of the loss factor (2.12) and
(2.13), the asymmetry results mathematically from a different order exponent
at the numerator and the denominator in tan δ(ω). A simplified way to obtain
this difference is to consider a different derivation order of the stress and strain
(Bagley and Torvik [2]):

(3.1) σ(t) + τβ dβσ(t)
dtβ

= G0ε(t) + G∞τα dαε(t)
dtα

with β > α to ensure a finite instantaneous modulus calculated as limω→∞ Ḡ(iω)
= G∞. This model fits correctly the experimental data but has to be dismissed
for not satisfying the causality condition β < α.

A conventional way to increase the number of time derivative is to add a sec-
ond fractional derivative of strain in the second member of the four-parameter
fractional derivative model (Friedrich and Braun [12] and Pritz [13]):

(3.2) σ(t) + τβ dβσ(t)
dtβ

= G0ε(t) + G∞τβ dβε(t)
dtβ

+ (G∞ −G0) τα dαε(t)
dtα

with β < α to describe a meaningful behaviour. However, this model is restricted
to a polymer category presenting an undefined value for the instantaneous mod-
ulus G∞ and a limit value of the loss factor tan δ (ω) ≈ tan[(α− β) π/2] when
ω → ∞. It can be observed that broadening of the loss factor is poor in the
vicinity of the peak (Pritz [13], Fig. 3).
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3.2. Formulation of the improved model

To increase the time derivative orders, it is chosen to multiply the classical
four-parameter fractional derivative equation at the αth order (2.8) by the dis-
tributive derivative operator (1 + τβdβ) with β < α. The relaxation time τ is
preserved for the sake of simplicity. The constitutive equation resulting from this
operation can be written as:

(3.3) (1 + ταdα)(1 + τβdβ)σ(t) = (G0 + G∞ταdα)(1 + τβdβ)ε(t).

Three derivative orders appear after the development of (3.3):

(3.4) σ(t) + τα dασ(t)
dtα

+ τβ dβσ(t)
dtβ

+ τα+β dα+βσ(t)
dtα+β

= G0ε(t) + G0τ
β dβε(t)

dtβ
+ G∞

dαε(t)
dtα

+ G∞τα+β dα+βε(t)
dtα+β

.

In the frequency domain, the constitutive equation and the complex modulus
may be simplified by the complex term (1 + (iωτ)β) which is the Fourier trans-
form of the derivative operator (1 + τβdβ). The foregoing analysis of the model
described by the Eq. (3.4) is identical to the initial four-parameter model (2.8).

As the time derivative in the constitutive equation (3.4) is increased twice
from the four-parameter model, it is suggested to remove the terms at the deriva-
tion order (α + β) (similar results may be obtained by suppression of orders α
or β, but the parameter interpretation is more intricate). The constitutive dif-
ferential equation is simplified to:

(3.5) σ(t) + τα dασ(t)
dtα

+ τβ dβσ(t)
dtβ

= G0ε(t) + G0τ
β dβε(t)

dtβ
+ G∞

dαε(t)
dtα

.

The complex modulus is calculated as:

(3.6) Ḡ(iω) =
G0 + G0(iωτ)β + G∞(iωτ)α

1 + (iωτ)α + (iωτ)β
.

This improved five-parameter model provides the instantaneous modulus G∞
for high-frequency regime when the condition β < α is imposed. The relaxed
modulus G0 is retrieved at low frequencies.

A normalized frequency ωn = ωτ is introduced in order to simplify the moduli
and loss factor expressions. The conservative and dissipative moduli are given by
the definition (2.5) as a function of the dispersion modulus c = (G∞/G0) > 1:
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(3.7)

G′(ωn)
G0

=
1+(c+1) cos

`
απ
2

´
ωα

n +2 cos
`

βπ
2

´
ωβ

n+cω2α
n +ω2β

n +(c+1) cos
` (α−β)π

2

´
ωα+β

n

1+2 cos
`

απ
2

´
ωα

n +2 cos
`

βπ
2

´
ωβ

n+ω2α
n +ω2β

n +2 cos
` (α−β)π

2

´
ωα+β

n

,

G′′(ωn)
G0

=
(c−1)

`
sin
`

απ
2

´
ωα

n +sin
` (α−β)π

2

´
ωα+β

n )

1+2 cos
`

απ
2

´
ωα

n +2 cos
`

βπ
2

´
ωβ

n+ω2α
n +ω2β

n +2 cos
` (α−β)π

2

´
ωα+β

n

.

The loss factor tan δ(ω) is determined by the definition (2.6):

(3.8) tan δ(ωn)= (c−1)
`
sin
`

απ
2

´
ωα

n +sin
` (α−β)π

2

´
ωα+β

n

´

1+(c+1) cos
`

απ
2

´
ωα

n +2 cos
`

βπ
2

´
ωβ

n+cω2α
n +ω2β

n +(c+1) cos
` (α−β)π

2

´
ωα+β

n

.

3.3. Thermodynamic requirements

The model parameters have to satisfy some thermodynamic requirements to
enable a realistic behaviour description. The dissipativity condition stating that
energy should be removed rather than introduced, is formulated as =(Ḡ(iω)) > 0
for ω > 0 and =(Ḡ(iω)) an odd function. The positivity condition imposing a
positive relaxed stiffness is formulated as <(Ḡ(0)) > 0. < and = extract respec-
tively the real and imaginary parts of a complex function. As the instantaneous
modulus G∞ and the relaxed modulus G0 are positive and the calculated disper-
sion modulus c = G∞/G0 is greater than 1, the above-mentioned conditions are
satisfied. The causality condition is satisfied since the same orders of derivation
are imposed for the stress and the strain (3.5).

3.4. Asymptotic expansion of conservative and loss moduli

Low frequency regime. The behaviour at low frequencies is described via the
asymptotic expansion of formulas (3.7) and (3.8) for the normalized frequency
ωn tending to zero:

(3.9)

G′(ωn) ≈ G0,

G′′(ωn) ≈ G∞ sin(απ/2)ωα
n ,

tan δ(ωn) ≈ (G∞/G0) sin(απ/2)ωα
n .

These responses at low frequencies are identical to the ones given by the clas-
sical four-fractional derivative model at the αth order. It follows that the as-
cending branches of the loss factor for low frequencies are the same for the four-
and five-parameter models. Approximations given by (3.9) are also identical to
the expansions of the Havriliak–Negami moduli and the loss factor for slow
regime.
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High frequency regime. The high frequency regime is analyzed by expansions
for the normalized frequency ωn tending to infinity:

(3.10)

G′(ωn) ≈ G∞,

G′′(ωn) ≈ G∞ sin((α− β)π/2)ω−(α−β)
n ,

tan δ(ωn) ≈ sin((α− β)π/2)ω−(α−β)
n .

The conservative and dissipative factors are bounded for a high-frequency regime.
These results are compared to the similar expansions derived for the four-

fractional derivative model at the αth order which are recalled below:

(3.11)

G′(ωn) ≈ G∞,

G′′(ωn) ≈ G∞ sin(απ/2)ω−α
n ,

tan δ(ωn) ≈ sin(απ/2)ω−α
n .

It appears that for five-parameter model β balances the effect of the parameter
α in order to reproduce the asymmetrical descending branch of the loss factor,
whose slope is characterised by the exponent −(α − β). This balance effect is
absent in the case of Zener fractional model.

Another meaningful comparison is conducted with the Havriliak–Negami ap-
proximations for ωn →∞:

(3.12)

G′(ωn) ≈ G∞,

G′′(ωn) ≈ G∞ sin(αβπ/2)ω−αβ
n ,

tan δ(ωn) ≈ sin(αβπ/2)ω−αβ
n .

It appears that in the Havriliak–Negami model, the frequency asymmetry of the
loss factor is obtained by multiplication of the two derivative orders.

3.5. Loss factor properties

The loss factor is plotted in logarithmic scale as a function of the normalized
frequency ωn in Fig. 1 for a constant dispersion modulus c and constant frac-
tional derivative order α. It is shown that either smooth or marked frequency
asymmetry may be obtained. The loss factor may also be stabilized in a plateau
value at high frequencies. This latter characteristic can not be predicted by the
Havriliak–Negami model.

The maximum value of the loss factor occurs at the normalized frequency
which is a solution of the following equation:

(3.13) 0 = −β sin(απ/2) + (sin(απ/2) + sin((α− β)π/2)ωβ
n)

×
[
(α + β)(1− (1 + c) cos((α− β)π/2)ωα+β

n )

− ((1 + c) cos(απ/2) + 2cωα
n)αωα

n − 2(cos(βπ/2) + ωβ
n)βωβ

n

]
.
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Fig. 1. Effect of the parameter β on the loss factor at given dispersion modulus c.

This equation is solved numerically in ωnmax , the corresponding loss factor peak
is calculated as tan δm = tan δ(ωnmax) by using (3.8). The bandwidth W in
logarithmic scale is expressed as the ratio of the two frequencies associated with
the half-height of the loss factor maximum tan δm/2. Equation (3.13) may be
simplified to a second-order equation for small values of β or close derivation
orders α and β; the positive solution ωα

n is then expressed as a function of the
dispersion modulus and the derivative order.

4. Efficiency of the improved five-parameter model

The improved five-parameter model allows a good analytical description of
the glass transition centered at the loss factor peak (ωnmax , tan δm). Large classes
of polymeric materials may be described by the new parameters set (α, β, c).
The extreme values of the dispersion modulus c are taken between 10 and 104

to describe the glass transition in polymers. Experimental evidence proves that
the parameter α varies between 0.4 and 0.8.

4.1. Conservative and dissipative moduli

Figure 2 shows that the inflexion point of the conservative modulus G′(ωn)
appears at almost the same normalized frequency ωn whatever is the combina-
tion (α, β). It is noteworthy that the high frequency value G∞ is always retrieved.

The maximum value of the dissipative modulus G′′(ωn) drawn in Fig. 3 is
shifted towards the higher frequencies and the peak is slightly increased with aug-
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Fig. 2. Effect of the parameter β on the conservative modulus at given dispersion modulus c.

Fig. 3. Effect of the parameter β on the dissipative modulus at given dispersion modulus c.

menting (α− β). For close derivative orders, (α− β) tends to zero and ω
−(α−β)
n

tends to 1 at high frequency regime, inducing a quasi-constant dissipative value
estimated by G∞ sin((α − β)π/2). As experimental evidence shows the satura-
tion value of the loss factor tan δ∞ to be around 0.01, the high frequency limit
tan δ∞ ≈ sin((α− β)π/2) gives the maximal difference

(4.1) (α− β)lim = 2/π arcsin(0.01).

The saturation value of the dissipative modulus G′′(ωn) is estimated as 0.1G∞.
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4.2. Height-width diagrams

Diagrams relating the loss factor height tan δm and the bandwidth W are
presented in Figs. 4 to 6. The log-log plot of the height-width diagrams allow
the qualitative interpretation of the second derivative order effect.

Fig. 4. Effect of the parameter β on the height-width diagram – small difference case.

The family of curves drawn in Fig. 4 for variable dispersion modulus c shows
similar shape for α taken between 0.4 to 0.8 and differences (α−β) varying from
0.01 to 0.1. The bandwidth broadening corresponds to a loss factor stabilized in
a plateau at high-frequency regime. The increase in α induces a higher tan δm

and a lower bandwidth W .
For fixed small derivative parameter β, the log-log curves (ωnmax , tan δm)

drawn in Fig. 5 are parallel to the reference curve describing the classical four-

Fig. 5. Effect of the parameter β on the height-width diagram for α = 0.5.
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parameter fractional derivative model for β close to 0. The bandwidth broaden-
ing is more regular since the loss factor asymmetry is observed on the almost
complete descending branch, as in the Havriliak–Negami model.

The log-log (ωnmax , tan δm) curves plotted in Fig. 6 for constant dispersion
modulus c appear as parallel straight lines graduated with a multiplying factor
of 100.3.

Fig. 6. Effect of the dispersion modulus c on the height-width diagram.

Since the precise fitting of experimental curves tan δ(ωn) by the parameter
set (α, β, c) given by (3.8) is not the only numerical way to achieve the con-
stitutive behaviour, the height-width diagram (tan δm,W ) is aimed at verifying
qualitatively the relations predicted by the theoretical model and allows a quick
comparison between the experimental data on elastomers. As a consequence,
these diagrams are essentially used to make a rough estimate of the set (α, β, c)
from the measurements performed on elastomers during the Dynamic Mechanical
Thermal Analysis (DMTA).

4.3. Parameters identification

The dispersion modulus c can be read off from the ratio between the min-
imum G0 and maximum G∞ values of the conservative modulus G′. The first
fractional derivative order α can be measured as the slope of the ascending branch
of the loss factor versus the normalized frequency curve in logarithmic scale. For
smooth asymmetry of the loss peak, the second-derivative order is extracted from
the slope of the descending branch corresponding to (β − α) (see also the expan-
sion (3.10)). For marked asymmetry of the loss factor continued by a plateau,
a great difference (β − α) has to be found. In that latter case, the bandwidth
estimate is unattainable; the loss factor is considered to be quasi-constant at
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high frequency regime and may be approached by

(4.2) tan δ∞ ≈ sin((α− β)π/2).

The first estimate of the parameters set (α, β, c) is introduced as the set of initial
values in a generalized non-linear regression Maple procedure [21], programmed
to identify the loss factor expression (3.8).

A material exhibiting a marked asymmetry of the loss factor is chosen in
view to compare the present model with the classical approaches by Pritz and
Havriliak–Negami. The damping polymer EAR C-1002 has been chosen, its dy-
namic shear properties are taken from the data base established by Nashif and
Lewis [22]. Table 1 summarizes the identified parameters of the three models and
Fig. 7 illustrates the obtained fitting of experimental data of the loss factor.

Table 1. Parameter values for the EAR C-1002.

α β c τ(s)

Present model 0.615158 0.58082 856.8 2.0467 · 10−6

Pritz model 0.612924 0.59241 426.4 6.3027 · 10−5

Havriliak–Negami model 0.616342 0.5204 554.2 1.2034 · 10−5

Fig. 7. Parameters identification with the present model, experimental data for the EAR
C-1002.

The first factional derivative order α is quite the same for the three models:
the low-frequency branches of loss factor predicted by these models are practi-
cally superimposed. The asymmetry parameter β is slightly different as it does
not play the same role in the constitutive equations: the Havriliak–Negami model
considers the parameter β as a mathematical weighting factor, see (2.11). In the
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present model, the parameter β appears as a secondary differentiation order of
the stress and strain.

The main improvement of the present model as compared to the Havriliak–
Negami one is the best description of the plateau (Fig. 7). This figure shows also
that this new approach is as effective as Pritz’s five-parameter fractional deriva-
tive constitutive law [13] in describing the marked asymmetry of the loss factor.

However, as illustrated by Fig. 1, the present model allows also to describe
the quasi-symmetrical loss factor which may be difficult to obtain using the
Pritz expression. The improved five-parameter model appears as a more efficient
description of both the symmetric and asymmetric evolutions of the loss factor.

5. Conclusion

In this paper, the description of the asymmetrical loss peak in logarithmic
frequency domain has been attempted through an improved five-parameter frac-
tional derivative model. A meaningful constitutive equation relating the stress
and strain histories has been found; the two different orders of derivation are
characterised via the loss factor curve. The main derivative order α governs the
low-frequency regime of the dissipative and conservative moduli and the loss fac-
tor. The deviation of β from α governs the asymmetry of the loss peak and the
high frequency behaviour of the dynamic properties. The classical relaxed and
unrelaxed moduli, other relevant characteristics of the material behaviour, are
retrieved as the dynamic modulus limits. The generalized relaxation time which
is the only temperature-dependent parameter, is raised alternatively to the two
different exponents describing, in some sense, two coupling modes of vibration
in the entanglements of the polymeric chains.

The improved five-parameter model allows a slight or marked frequency
asymmetry in logarithmic scale, when the difference between the orders of time
derivative is respectively great or small. When the loss factor shows a plateau
at a high-frequency regime, the difference between the orders of time derivatives
may be estimated as a function of the plateau value. The dissipative modulus
remains bounded, even for high frequencies. Quantitative trends in the damp-
ing behaviour of elastomers may be retrieved and explained in the theoretical
height-width diagrams.
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