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Modeling of articular cartilage replacement materials
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The development of replacement material for human articular cartilage exhibiting
similar mechanical properties as the native tissue is a problem of high actuality in
biomedicine. In the present work a new condensed collagen material is investigated.
The study aims at developing a mechanical model especially adapted to this particular
collagen material. For this purpose, a viscoelastic-diffusion (VED) model is proposed,
accounting for two different diffusion evolutions assumed. Moreover, the need for
a gradient material description is discussed in order to cover fabrication influences
leading to a variable Young’s modulus for the material. On this background, a phe-
nomenological law is presented to predict deformation-dependent diffusion behavior
and internal reaction forces. Furthermore, the present approach allows a practible
identification of diffusion parameters. The theoretical model is implemented into a fi-
nite element code and parameters are identified by tension tests. The simulation
results are validated experimentally.
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1. Introduction

Collagen is a basic material of human articular cartilage and the re-
placement material, used in the present study, is produced on the basis of water-
saturated collagen gel. This material is very soft and has to be condensed in
order to obtain the requested properties. Due to the condensation process, the
mechanical properties of the soft material are strongly graded.

The aim of this study is to develop an appropriate model for assessing the
applicability of this particular material by means of numerical simulations and
a procedure how to determine experimentally the according material parame-
ters. Special attention is placed on the damping and relaxation effects which
are important for the use as a cartilage replacement tissue. In contrast to other
models available in literature, a viscoelastic-diffusion (VED) model is proposed
on a phenomenological basis allowing to predict internal forces and deforma-
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tions of the used collagen material under close-to-service loading conditions. The
leading idea for the presented model is to introduce only the material parameters
to be identified by means of simple tension tests and finite element simulations.
This way, deformation-dependent diffusion properties can be determined easily.

The present investigation focuses on three goals: The first one is the de-
velopment of a strain rate-dependent tensor formulation for viscoelasticity and
diffusion, which is necessary for the VED model in a phenomenological man-
ner. The deformation-dependent diffusion is described by two different evolu-
tion equations with varying diffusion parameters. This accounts for the volume
change due to the loss of water. In contrast to many other studies in litera-
ture, the present investigation accounts for the change of the Young’s modulus
in the material due to fabrication influences. The second goal is to derive an
incremental formulation of the material law followed by an implementation into
a finite element code. The third goal is to develop an experimental set-up for
identifying material parameters and for validating the simulated results. Here,
clamping devices for tension tests are constructed in order to identify material
parameters and unconfined compression experiments are carried out to validate
the proposed model.

Soft tissues like articular cartilage and replacement tissues can be interpreted
as water-saturated bi-phasic materials. Many studies have been carried out to
apply biphasic models to this type of soft material by separating solid and liquid
from each other. Such an approach was proposed by Ehlers and Markert [1]
based on the theory of porous media. DiSilvestro et al. [2] applied the theory
of biphasic poroviscoelastic models (BPVE) to predict reaction forces in com-
pression of articular cartilage. A nonlinear biphasic viscohyperelastic model was
proposed by Garćıa and Cortés [3] and continued by implementing the ef-
fect of fibres in [4]. Moreover, the swelling of cartilage was taken into account by
a fibril-reinforced poroviscoelastic swelling model (FPVES) by Wilson et al. [5].
A refined numerical method for the BPVE model was developed by Haider and
Schugart [6] using a discrete spectrum approximation in finite element sim-
ulations. Guilak and Mow [7] implemented the mechanical behavior of con-
drocytes as spheroidal inclusions in the framework of a biphasic finite element
model. Also torsion moments were subjected to biphasic materials by Meng

et al. [8].
The relaxation of the material as a very important property due to the damp-

ing function in human joints, is covered by the permeability of the propagating
water through the pores. However, the identification of the material param-
eters, e.g. permeability coefficient or solid viscosity, is difficult and different
methods have been reported to determine these parameters from experiments
(Mow et al. [9], Johnson and Deen [10], Gu et al. [11]). Material coefficients
for a fibril-reinforced poroelastic model were determined by Lei and Szeri [12].
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A material parameter identification method based on the BPVE theory was
developed for agarose hydrogel by Olberding and Suh [13].

A crucial point is the identification of deformation-dependent diffusion prop-
erties. Several attempts were made, e.g. by Holmes and Mow [14], Ehlers and
Markert [1], Gu et al. [11], to determine diffusion coefficients connected with
volume fraction of fluid and solid. In the present study, an alternative approach
is proposed by applying a diffusion parameter depending on the volume strain.
This model contains two diffusion coefficients to be identified from a tension test
and by means of a finite element simulation.

Phenomenological models accounting for material properties such as aniso-
tropy or viscoelastic damping were proposed in literature. In order to develop
artificial tissues exhibiting anisotropic material behaviors, scaffolds were de-
signed by Courtney et al. [15] and a phenomenological structural model was
proposed. Similarly, fiber orientations in collagens were taken into account by
means of scaffold microstructures in works of Engelmayr Jr. et al. [16]. A lin-
ear solid viscoelastic model for determining the fracture load of soft tissues
was proposed by Koop and Lewis [17]. A finite strain damage model for fi-
brous soft tissues was developed by Rodŕıguez et al. [18], based on a strain
energy function. Damage of matrix and fibres are modeled separately also dur-
ing softening. Other models using strain energy functions have been proposed
also for different kinds of soft tissues, e.g. Fung [19], Holzapfel et al. [20].
Ehret and Itskov [21] derived a hyperelastic model for fiber-reinforced soft
tissues using a polyconvex strain energy function. A finite element formula-
tion based on an experimentally obtained strain energy function is derived by
Weinberg and Kaazempur-Mofrad [22] and applied for mitral valve leaflet
tissues. The anisotropy due to fiber distribution has also been analyzed by
Bischoff [23]. A variational constitutive finite strain model for soft tissues
was presented by Sayed et al. [24] accounting for elasticity, plasticity, vis-
cosity as well as for rate effects. The model is applied to experiments with
brain tissues, allowing to identify model parameters. Zhang et al. [25] pro-
posed a generalized Maxwell model to predict hysteresis behavior of soft tis-
sues and free model parameters were determined by experiments. A layered
model with application for failure of arteries was presented by Volokh [26].
The fluid transport through the matrix is essential for the damping proper-
ties of the tissue. A model correlating microstructural anisotropy of the matrix
with fluid transport, yielding a diffusion anisotropy, was derived by Zhang and
Szeri [27].

For material parameter identification procedures, tension tests with brain
tissues were presented by Miller and Chinzei [28]. In order to avoid common
problems of gripping soft tissues in tension tests, Lepetit et al. [29] developed
a cryogenic holder. By this method the ends of the samples are frozen by liquid
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nitrogen. The effect of friction in unconfined compression tests for parameter
identification was investigated by Wu et al. [30]. Jaquemoud et al. [31] used
tensile skin specimens to determine failure loads at different strain rates. Simple-
shear experiments were conducted by Guo et al. [32]. Klein et al. [33] investi-
gated depth-dependent mechanical properties of articular cartilage by compres-
sive tests. Dynamic tests with soft human tissues using the Kolsky bar technique
were carried out by Saraf et al. [34] who considered compression and shear
loadings. In order to use a force spectrum in material parameter identification
tests which represent the magnitude of physiological forces, it is important, espe-
cially if articular cartilage is regarded, to determine reaction forces in the human
knee as Koehle and Hull [35] described. The problem of slipping during com-
pression tests was described by Miller [36] who used surgical glue leading to
semi-confined experiments to avoid this effect.

In the present study, the material is modeled as an intitially homogenous
material exhibiting induced anisotropies due to strain-rate-dependent elasticity
and diffusion. A fundamental principle, as decribed in Sec. 2, of the present
investigation is that only these phenomena are implemented in the theoretical
model which can be proved in the experiments. Otherwise the assumptions made
in the mechanical model could not be validated. Due to the experimental obser-
vation of pure linear elasticity in tension tests, a linear elasticity model is used,
see Sec. 2. However, the authors are aware of the fact that artificial tissues can
exhibit material non-linearities. Nevertheless, in the present study, non-linear
deformation histories, e.g. in compression tests, can be caused by superposition
of the used linear elasticity with non-linear strain rate-dependence as well as
with non-linear diffusion evolution. Geometrical non-linearities are covered by
the applied finite strain model.

2. Methods and limitations of the study

The originally liquid material, composed of collagen and water, has to be
condensed in order to obtain solid material properties. In the present study,
the condensed material exhibits the twentieth of the volume in uncondensed
form. During this process, liquid is pressed out of the water-collagen mixture
and a water-saturated material remains.

The condensed material is fabricated in thin bands with plate geometry.
The specimens are then cut out of the bands by means of stamping tools. How-
ever, due to the fabrication, the material composition of the specimens is not
homogenous. They have a weaker core with a higher liquid concentration in con-
trast to a stiffer and dryer outer zone. Therefore, the specimens are treated as
a gradient material with a Young’s modulus varying from inside to outside of
the specimen, see Fig. 1. Damage evolution or plasticity is not included in the
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Fig. 1. Distribution of the Young’s Modulus through the thickness of the specimen.

viscoelastic-diffusion model. However, the applied theory is also valid for finite
strains as shown in Sec. 3.

For the numerical simulations, the finite element program Abaqus together
with a user-defined subroutine is used. The theoretical model, described in Sec. 3,
is implemented by means of the subroutine Vumat for explicit dynamic analyses.

Fig. 2. Tension and compression experiments.

Tests are carried out on a MTS material testing machine. In Fig. 2 typical
tension and compression experiments are shown. The compressive specimens
have cylindrical forms with 2–3 mm thickness and 10 mm diameter. The tension
specimens have the same thickness as the compression samples. Their active
length between the clamping devices is 16 mm with 10 mm width. The tension
specimens are additionally glued inside the clamping area and the clamping
device is carefully screwed to avoid damage of the specimens, see Fig. 3. The
tension and compression experiments were performed with displacement veloc-
ities of 0.005 mm/s, 0.05 mm/s and 0.5 mm/s. In order to cover scattering, all
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Fig. 3. Preparation of tensile specimens with glue and clamping device.

experiments were carried out three times with new samples. In numerical simu-
lations with compression specimens, strains up to 0.3 occured locally in the core
and in the midsurface with maximum strain rates of 0.3/s. In the other regions
strains smaller than 0.1 were distributed.
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Fig. 4. Tension tests at different strain rates.

In order to identify the material parameters, tension tests are carried out
with different strain rates, see Fig. 4, in the same interval of strains and strain
rates as they occur in the simulations. The diffusion coefficient D0 is also ob-
tained by tension tests, while the parameter D1 is identified by finite element
simulations. The type of the Young’s modulus distribution in the specimen, lin-
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ear or quadratic, through the thickness and its internal value Ei are obtained by
adapting the peak force in the measurement to the calculated one. Due to fabri-
cation influences, the distribution of the Young’s modulus through the specimen
thickness has to be determined for each specimen.

3. Theoretical model

3.1. Basic principles

In the present study, the Eulerian description of strains and stresses is
adopted. The deformation gradient is expressed as

(3.1) Fij =
dxi

dXj
,

with xi, Xj denoting the position of a particle in the current and reference con-
figuration, respectively. Consequently, the total strain tensor for finite strains,
accounting for geometrical non-linearities, can be written as

(3.2) εij =
1

2

(
δij − F−1

ki F−1
kj

)
,

with δij standing for Kronecker’s delta.
The velocity of a particle in Eulerian description is expressed as

(3.3) vi =
∂xi

∂t
,

with xi denoting the position of a particle in the current configuration differenti-
ated with respect to the time t. In order to determine the strain rate, a velocity
gradient can be defined as

(3.4) Lij =
∂vi

∂xj
,

and by means of Eq. (3.3) the velocity gradient can be expressed in terms of the
deformation gradient as

(3.5) Lij = Ḟij · F−1
ij ,

with (̇) denoting the time derivation. Following a decomposition of the Lij into
a deformation rate tensor and a spin tensor, the strain rate is obtained as

(3.6) ε̇ij =
1

2

(
Lij + LT

ij

)
=

1

2

([
∂vi

∂xj

]
+

[
∂vj

∂xi

]T )



76 M. Stoffel, D. Weichert, R. Müller–Rath

and the antisymmetric spin tensor as

(3.7) Wij =
1

2

(
Lij − LT

ij

)
=

1

2

([
∂vi

∂xj

]
−

[
∂vj

∂xi

]T )
.

Corresponding to the true strains in the current configuration, the Cauchy stress
tensor σij with true stresses is introduced for the equilibrium condition in the
form

(3.8)

∫
S

niσijdS +

∫
V

fjdV = 0,

with ni and fj as the unit outward normal vector to the surface S and the body
force per unit of current volume V .

For the constitutive equations we need to define an objective stress rate. For
this reason, we decompose the deformation gradient in a rigid body rotation,
described by Rkj and the left stretch tensor Vik, in the form

(3.9) Fij = VikRkj .

A rotation of a convective base vector system in a material point can now be
expressed by

(3.10) Ωij = ṘikR
T
kj

leading to the Green–Nagdhi rate of the Cauchy stress tensor:

(3.11) σG
ij = σ̇ij − Ωikσkj + σikΩkj .

In the experiments with soft tissues, carried out in the present study, three mate-
rial properties are observed: elasticity, superposed strain-rate depen-
dence of material stiffness and relaxation. These effects are described by
Eqs. (3.12)–(3.28). It is assumed, that the total stress rate tensor can be ex-
pressed by

(3.12) σ̇ij = σ̇e
ij + σ̇ve

ij + σ̇d
ij ,

where the upper indices e, ve, and d denote the elastic, viscoelastic and diffusion
parts, respectively. The elastic behaviour is covered by Hooke’s law

(3.13) σ̇e
ij = Cijklε̇kl

with Cijkl as a matrix of elastic coefficients and εkl as a strain tensor. The
viscoelastic material behavior is described by a rational function of the strain
rate tensor

(3.14) σ̇ve
ij = C̃ijkl (ε̇) ε̇kl.
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In the special one-dimensional case we assume

(3.15) σve
11 = aε̇v

11ε11,

where the values a and v are viscous material parameters.

3.2. Diffusion model VED1

In a relaxation process, the kind of a decreasing stress can be expressed by
an exponential function for the one-dimensional case by

(3.16) σ11 = Ae−Dt,

with A and D denoting free coefficients and t standing for the time, with t = 0
at the instant when relaxation starts. In order to transform this expression into
an evolution equation, the exponential function is differentiated with respect to
the time t

(3.17) σ̇11 = −DAe−Dt

and inserted back in Eq. (3.16), leading to

(3.18) σ̇11 = −Dσ11.

Equation (3.18) is the necessary evolution equation which is used in tensor form

(3.19) σ̇ij = −Dσij

for the diffusion process. It can be implemented as shown in Sec. 4 in a finite
element code.

3.3. Diffusion model VED2

Another exponential function was proposed by Betten [37] for the one-
dimensional case in order to improve the prediction of a relaxation process.
This function is called the ‘

√
t-law’ and is expressed by

(3.20) σ11 = Ae−D
√

t.

In the present study this law is tranformed into an evolution equation for a three-
dimensional analysis. Differentiating Eq. (3.20) and substituting in Eq. (3.20)
leads to

(3.21) σ̇11 = − D

2
√

t
σ11,
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still including the time t. But by transforming Eq. (3.20) to

(3.22)
√

t = − 1

D
ln

[σ11

A

]

and inserting in Eq. (3.21) the time derivative reads

(3.23) σ̇11 =
1

2
D2 σ11

ln

[
σ11

A

] ,

exhibiting the form of an evolution equation. However, in Eq. (3.23) the pa-
rameter A is still undefined. In a one-dimensional deformation, A represents the
maximum stress during the relaxation process. The question arises, which value
the parameter A has to take in the three-dimensional case. Following the physi-
cal interpretation of a peak stress at time t = 0 in Eq. (3.20), as a counterpart in
a three-dimensional case, the second invariant of the stress tensor σij is chosen:

(3.24) A = J2 (σij) =
√

σijσij .

This leads still to A = σ11 since the one-dimensional case is regarded. However,
in the one-dimensional loading A remains constant and represents the maximum
stress. In analogy for the 3-D case, it is proposed that in Eq. (3.23) also the
maximum of A is used, i.e. A can only increase during calculation. This leads
to the evolution equation in tensorial form

(3.25) σ̇ij =
1

2
D2 σij

ln

[
σij

sup(
√

σijσij)

] .

3.4. Deformation dependence of diffusion

In the present investigation it is also taken into account that water is pressed
out of the specimens during a compressive test, leading to a change in diffusion.
For this reason, the diffusion parameter D is treated as a function of the volume
strain εv:

(3.26) D (εv) = D0 − D1|εv|.
With this expression, a relation between loss of water and decrease of diffusion
is introduced which makes physically sense. Therefore, Eq. (3.26) is used only
for negative volume strains. For positive values of εv the parameter D is kept
constant.

The described derivation leads finally to the following two alternatives of
evolution equations for the deformation dependent diffusion process:

(3.27) σ̇d1
ij = −D (εv) σij
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and

(3.28) σ̇d2
ij =

1

2
D2(εv)

σij

ln

[
σij

sup(
√

σijσij)

] ,

which we call VED1 model and VED2 model, respectively.

3.5. Elastic stiffness distribution

The varying Young’s modulus of the specimens has a minimum value Ei

and maximum Young’s modulus Em as depicted in Fig. 1. For convenience, the
Young’s modulus is assumed to be a linear, respectively a quadratic function
over the thickness of the specimen. The value Ea stands for the average value
of the entire specimen, if it is subjected to pure tension in x-direction. Thus,
Ea must be obtained from the quasi-static tension test and is related to Ei and
Em in the form

(3.29) Ea =

∫ h
0 E(y)dy

h
,

with

(3.30) Ea =
Ei + Em

2
and Ea =

2

3
Ei +

1

3
Em

for the linear and quadratic relationship, respectively.

4. Numerical model

The graded property of the material is taken into account by several layers
through the thickness of the specimen. By means of Eqs. (3.29) and (3.30), the
Young’s modulus E(y), according to Fig. 1, can be determined by the functions

(4.1) E(y) = Ei +
Em − Ei

h
y and E(y) = Ei +

Em − Ei

h2
y2

for the linear and quadratic case, respectively.
The stress tensor can now be expressed in incremental form for the VED1

model according to Eqs. (3.12)–(3.14), (3.27) by

(4.2) ∆σij = Cijkl∆εij + C̃ijkl (ε̇) ∆εij − (D0 − D1|εv|) σij∆t,

with the time increment ∆t. In the case of the VED2 model the stress increment
is written as

(4.3) ∆σij = Cijkl∆εij + C̃ijkl (ε̇) ∆εij

+
1

2
(D0 − D1|εv|)2 σij

ln

[
σij

sup(
√

σijσij)

]∆t.
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Due to the rotational symmetry of the cylindrical compression specimens, the
numerical model is treated as a two-dimensional problem with plane four-node
elements.

5. Material parameter identification

In order to determine the Young’s modulus Ea, the curve with the lowest
strain rate is assumed to be the quasi-static test. The stress-strain relation of
the other curves can be described, according to Eqs. (3.13), (3.14), by

(5.1) σ11 = (Ea + aε̇v
11) ε11,

with Ea denoting the average Young’s modulus (Fig. 1). Here, it is taken into
account that the nominal stresses and strains in Fig. 4, measured in the ex-
periments, have to be transformed into true stresses and strains used in the
simulations. The nominal strain ε0

11 and nominal stress σ0
11 are calculated by

means of the measured elongation ∆�, and the force F with respect to the un-
deformed specimen length �0 and the undeformed cross-section area A0:

(5.2) ε0
11 =

∆�

�0
; σ0

11 =
F

A0
.

These quantities can be transformed to true stress and and strain by applying

(5.3) ε11 = ln
(
1 + ε0

11

)
; σ11 = σ0

11

(
1 + ε0

11

)
.

A Poisson’s ratio ν = 0.3 is assumed in order to allow a volume change during
deformation. Figure 5 illustrates the reason why to choose a gradient material
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description: several tension tests at different strain rates are shown with speci-
mens of different thicknesses. One sees that samples with different thicknesses are
carrying nearly the same load. This is explained by outer layers of the specimens
exhibiting a much higher stiffness than the internal core. The non-linear parts
between force and elongation in Fig. 5 have pure experimental reasons. At the
beginning of the tests, a force must develop first in the weak material, and at the
end a rupture occurs. By means of the tension tests in Fig. 6 the diffusion param-
eters from Eq. (3.26) can be determined. The tension specimen is first elongated
up to 2.5 mm, followed by a rest position in which a decrease of the measured
force is visible. If the relaxation behaviour in tension and compression were
equal, then the tension test could be used to determine both diffusion parame-
ters D0 and D1. However, in these tension tests it was not observed that liquid
was pressed out of the specimens. Consequently, it is assumed that the tension
specimen keeps the liquid inside during the test. For this reason, the slope of the
force vs. time curve in Fig. 6 is treated as an initial value for the relaxation prop-
erty. The relaxation curve can be fitted by an exponential function of the form

(5.4) F d1(t) = c1e
−D0t + c2,

with D0 = 0.4/s belonging to the first kind of viscoelastic diffusion (VED1) from
Eq. (3.27). In the case of the second viscoelastic diffusion model (VED2) from
Eq. (3.28) the force evolution is expressed as

(5.5) F d2(t) = c3e
−D0

√
t + c4,

leading to D0 = 0.62/
√

s after curve-fitting.
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6. Simulations and experiments

In Fig. 7 the measured force acting on the compression specimen is shown
as well as the measured displacement which is equal to the compression of the
sample. The simulated reaction force, acting on the specimen, is the sum of all
nodal forces at the lower support of the specimen. Both VED models are used for
predicting the internal force in Fig. 7. It can be observed that during the loading
path the increase of the reaction force is in good agreement with the measured
one. In order to obtain a realistic relaxation curve, the so far unknown parameter
D1 was identified to be equal to 1.1/s for the VED1 model and 1.36/

√
s for the

VED2 model.
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Fig. 7. Compressive test for identifying parameter D1.

A realistic peak force in the simulation was achieved by assuming a linear
distribution of E(y) with Ei = 0.1Ea for the VED1 model and Ei = 0.4Ea

for the VED2 model. As it can be observed in Fig. 7, both approaches of the
VED models lead to a good prediction of the measured force. However, results
obtained with the VED2 model are significantly closer to the experimental data
than those with VED1. Especially, the curvature is predicted better by using
the VED2 version. In Figs. 8 and 9 the distributions of the diffusion parameter
D(εv) are shown at two different stages of time for VED2. In both pictures,
assuming symmetry, only half of the finite element mesh of the collagen specimen
is depicted. In Fig. 8 the specimen has reached the maximum compression of
0.6 mm after 1 s, see Fig. 7. From the legend it can be seen that in the outer
zones of the specimen, the initial value of D0 = 0.62/

√
s is nearly still valid.
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Fig. 8. Deformed finite element mesh with distribution of the diffusion parameter at time
t = 1 s (start of relaxation).

(Avg: 75%)
SDV8

+5.828e−02
+9.187e−02
+1.255e−01
+1.591e−01
+1.927e−01
+2.263e−01
+2.598e−01
+2.934e−01
+3.270e−01
+3.606e−01
+3.942e−01
+4.278e−01
+4.614e−01

Step: Step−1
Increment   2330160: Step Time =    11.00
Primary Var: SDV8
Deformed Var: U   Deformation Scale Factor: +1.000e+00

ODB: neu15.odb    ABAQUS/EXPLICIT Version 6.6−1    Wed May 21 10:05:49 CEST 2008

1

2

3

Fig. 9. Deformed finite element mesh with distribution of the diffusion parameter at time
t = 11 s (end of compression).

In Fig. 9 the deformed mesh is shown at time t = 11 s, i.e. at the end of the
simulation in Fig. 7, and D has decreased to approximately 0.4/

√
s in the outer

zones. This effect covers the propagation of liquid due to volume change and has
an important influence on the evolution of stresses and, hence, on the relaxation
process.
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7. Discussion

After all diffusion parameters have been identified, another comparison be-
tween simulation and experiment with both types of VED and a new sam-
ple of the same condensation level is presented in Fig. 10. For this specimen
a quadratic function of E(y) with Ei = 0.25Ea for VED1 and Ei = 0.35Ea

for VED2 is assumed. In Fig. 10 three calculated forces are shown. Two force
evolutions with VED1 and VED2 were obtained by using the same values for
D1 as in Fig. 7. Here, the predicted force by using VED1 is in better corre-
lation with the measurement than the simulation by applying VED2. In the
case of VED2 a modification of the diffusion coefficient to D1 = 1.51/

√
s is

necessary to obtain a good agreement with the measured force in which also
the curvature of the curve is predicted again precisely. Consequently, it can
be summarized that the simulation with the VED1 model and the determined
parameter D1 = 1.1/s from Fig. 7 still predicts the measurement well. How-
ever, the calulated force by means of the VED2 model is quite sensitive to
a variation of the Young’s modulus distribution and, hence, leads to a diver-
gence from the experiment. This can be due to the non-linear stress terms in
the diffusion part in Eq. (4.3) causing a higher sensitivity with respect to pa-
rameter variations as in Eq. (4.2). A variation in the diffusion property of the
material could not be the reason for the change of the parameter D1 in the
VED2 model, because in this case the value of D1 for the VED1 law would
vary, too.

Concerning the material parameter identification process it can be concluded
that all viscous parameters and the average Young’s modulus Ea can be obtained

Fig. 10. Validation of identified diffusion parameters D1.
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by tension tests. However, the remaining values, which have to be determined by
finite element simulations are the internal Young’s modulus Ei and the diffusion
coefficient D1.

8. Conclusions

The investigated condensed collagen material showed clear strength and
damping properties which are important for a cartilage replacement material.
Due to the good correlation between measurements and simulations, the pro-
posed model is supposed to be applicable to collagen gel materials. The VED2
model which includes the

√
t-law leads to the best predictions of simulated in-

ternal forces compared to measurements. However, the VED1 model exhibits a
lower sensitivity to material parameter variations. By means of separate tension
tests it was possible to identify all material parameters, with exception of inter-
nal Young’s modulus and a diffusion parameter which had to be determined by
numerical parameter identification.
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