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Calculation of the force on solid body in the unsteady flow
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M. POĆWIERZ, A. STYCZEK

Faculty of Power and Aeronautical Engineering
Warsaw University of Technology
Pl. Politechniki 1
00-661 Warszawa, Poland
e-mail: mpocwie@meil.pw.edu.pl

In the paper, a special method to compute the aerodynamic force is presented.
This method is especially addressed to the calculation while both the velocity and
vorticity fields are found as a result of the vortex method application.

In the case of vortex method, the vorticity field is shown as a sum of contributions
given by a large number of the vorticity carriers. These carriers of vorticity move and
change, but the vorticity distribution given by each of them is known. It means that
both the vorticity and induced velocity field connected with them are easy to deter-
mine. The velocity field may also contain any potential component. This component
assures the fulfillment of the asymptotic condition, and cancels the normal component
of the velocity on the rigid body surface [15].

As it is known, the aerodynamic force may be calculated by using the basic defi-
nition, but in this case the boundary values of pressure and vorticity or derivatives of
velocity field have to be found beforehand. These values are difficult to determine and
their properties can be inconvenient. Quartapelle and Napolitano [12] introduced
a special method of aerodynamic force calculation. This method does not require any
surface integrals. Instead, the areas integrations are held. The integrands consist of
vorticity and velocity fields only. The pressure field is excluded by special harmonic
projection. The numerical experiment shows that the method of Quartapelle and
Napolitano requires improvement in case of complicated, rapidly changing velocity
and vorticity fields and the approximation of these fields in the neighborhood of the
body not being perfect. However, if the concept of Quartapelle and Napolitano is ap-
plied to the area located outside the big sphere surrounding the body and containing
the sources of vorticity, where velocity and vorticity fields have suitable properties
(which permits to perform analytical calculations), we will get a simple formula for
the aerodynamic force. This formula is not limited by additional properties of the
pressure and velocity and vorticity fields. The numerical results are in relatively good
agreement with the experimental data.
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1. Introduction

The aerodynamic force acting on the finite solid body immersed in an
incompressible fluid may be calculated using the basic definition, where vκ are
the Cartesian components of the velocity and p is the pressure field, one writes
as follows:

(1.1) Aj = −
∮

Γ

[
nj p + µnk

(
∂vk

∂xj
+
∂vj

∂xk

)]
dS.

The incompressibility restriction ensures the vanishing of the integral contain-

ing the integrand nk
∂vk

∂xj
. Using this property we obtain the following expression:

(1.2) A = −
∮

Γ

(np+ µn × ω) dS

where n denotes a unit vector normal to the body surface Γ and ω is the vorticity
vector of the following form:

(1.3) ω = ∇× v.

The direct usage of the formula (1.2) needs both boundary values p and ω.
These values have to be defined before integration. The weak assumptions of
the viscous liquid flow theory [4, 17] lead to the considerations of the velocity

field of vector space W
(1)
2 and the pressure field of W (1)

2 space. The integrabil-
ity of the squares of the first derivatives of any function does not ensure the
existence of integrable boundary values of derivatives of that function [6]. The
additional assumptions for a smooth approximation in the numerical realization
allow to get the integrable boundary values of p and ω. Some problems may
occur when the vortex method is applied. In this method, a numerous set of
fictional vortex particles is considered. Each particle carries a definite charge of
vorticity. The decrease of the particle’s size is required to improve approxima-
tion, which results in difficulties in the evaluation of integral (1.2). Moreover, the
pressure does not appear in the vorticity formulation. The fundamental equation
of the vortex method, i.e. Helmholtz’s equation, contains the velocity and vor-
ticity fields only. These two fields – ex post – define the pressure. The gradient of
pressure is included in the equation of motion. Quartapelle and Napolitano

[11, 12] have introduced a skilful method of the pressure term of integral (1.2)
calculation. This method does not require the boundary value of pressure and
the derivatives of vorticity. This idea is based on “harmonic projection” formed
by using a harmonic function with special, Neuman-type boundary condition.
When we multiply the gradient of pressure by the gradient of projector, integrate
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over the area of motion and make some further transformations, we obtain the
pressure part of force expressed by the integrals over the area. The numerical
experience [10] shows that in the case of complicated velocity/vorticity fields,
the obtained results are not satisfactory, at least in our calculations.

Another approach is based on the equations of motion. The integration of
these equations in the area between the body and large sphere, containing the
body and the centroids of vorticity carriers, admits expression of the aerody-
namic force via the surface integrals taken on the far surface and the surface of
the body. The integrals taken on the large sphere are relatively simple and can be
determined easily. This evaluation is possible, when we simplify the equation of
motion in the exterior of the sphere. Nocca [7, 8] and Ploumhans [9] applied
a similar idea, however they assumed fast asymptotic decay of the pressure vari-
ations and vorticity at infinity. Also, they used two special integral identities1).
The application of these identities is possible only in the case of sufficiently rapid
diminishing of the fields mentioned above. Note that the products of v and gra-
dient of p or velocity field must be, at least, integrated on the surface Γ∞. This
requirement is not obvious.

The detailed analysis of the vorticity field and the motion equations allows
to find important asymptotic properties of both the considered fields. These
properties do not need to fulfill assumptions provided the usage of inequalities
mentioned above. Fortunately, the problem can be solved another way. As it
will be shown, the concept given by Quartapelle–Napolitano applies to the area
located outside the large sphere and brings us a simple formula for the aerody-
namic force. This formula is not restricted by additional properties for fields of
the vorticity/velocity and the pressure, which cannot be assured a priori.

2. The velocity and vorticity fields

The rigid body is located so that one point of it does not move and marks
the origin of the inertial coordinates system. The body surface is denoted by Γ
and the exterior region of the space by Ω.

1)Let the surface Γ∞ be a boundary of the area denoted by Ω0. There are two identities:
I

Γ∞

np dS =

I

Γ∞

[n(r · ∇p) − (n · r)∇p] dS,

Z

Ω0

v dΩ =
1

2

Z

Ω0

r × ω dΩ −
1

2

I

Γ∞

r × (n × v) dS

where ω = ∇ × v. The first identity follows (∇ p ·∇) r = ∇ p and ∇ p = ∇(r ·∇ p)−(r ·∇)∇ p.
The second one results from v = (v · ∇)r and 2(G · ∇)F = ∇ × (F × G) + ∇(F · G) +
G(∇ · F) − F(∇ · G) − F × (∇ × G) − G × (∇ × F) for F = r and G = v. Previously, an
expression for ∇(F · G) where F = r and G = ∇p was employed.
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The viscous liquid moves with the homogeneous velocity U∞ at infinity. Also
the pressure field at infinity is uniform. Both these quantities may depend on
time. The non-slip condition on the body surface is assumed. It means that

(2.1) v|Γ = vΓ .

The velocity of the body surface is, at least, the result of rotation which gives us

(2.2) v|Γ = γ ×R,

where R is the radius – vector describing the surface and γ denotes the angular
velocity of the body. The velocity field of the liquid is a sum of homogeneous
field U∞, vorticity-free term ∇ϕ and non-divergent term vω:

(2.3) v = U∞ + ∇ϕ+ vω.

When we apply the boundary condition (2.1), we obtain the following:

(2.4)
∂ϕ

∂n
|Γ = (n · ∇ϕ)|Γ = n · (vΓ − U∞ − vω).

It can be observed that the potential term fulfills the continuity equation and
ϕ is a harmonic function. It vanishes at infinity. Also, the right-hand term of
Eq. (2.4) guarantees that

(2.5)
∮

Γ

∂ϕ

∂n
dS = 0.

This fact is an indispensable condition for existence of the solution of Neuman
problem (2.4) for the harmonic function ϕ. This harmonic function is to be
expressed as a sum of two potentials formed by the Green’s formula

(2.6) ϕ =
1

4π

∮

Γ

[
ϕ(ξ)

∂

∂nξ

1

|r − ξ| −
1

|r − ξ|
∂ϕ(ξ)

∂nξ

]
dSξ.

The unit normal is directed to the flow area Ω being outside of the surface Γ .
If the distance between the surface and the arbitrary point, where the function

ϕ is calculated, is large, then the integral (2.6) can be expanded into a series
of 1/r. The restriction (2.5) eliminates the first term of this series and so the
following estimation can be made:

(2.7) ϕ| r →∞ = 0(1/r2).
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It entails a fast vanishing at infinity of the potential term constituent of velocity,
i.e.

(2.8) |∇ϕ| r →∞ = 0 (1/r3).

The last term of the sum in the Eq. (2.3) is the vortex term. It may be
expressed by the Biot–Savart integral

(2.9) vω =
1

4π

∫

supp ω

ω(ξ) × (r − ξ)

|r − ξ|3 d3ξ = − 1

4π
∇×

∫

supp ω

ω(ξ)

|r − ξ| d3ξ.

This formula defines the temporary velocity field dependent on the temporary
vorticity. If vorticity is given as a sum of many separated subsets2), the integral
(2.9) will be equal to a sum of many “subintegrals”. The “subintegral” may be
expanded into a series of 1/r. But first, a location of any subset has to be
introduced. This location describes, for example, a central point of subset. The
radius vector of it is rk. In this subset ξ = rk +η in local coordinates. The radius
vector in these local coordinates is denoted by η. Thus, for any subset we have:

(2.10)
∫

ω(ξ)

|r − ξ| d3ξ =
1

r
Ω +

(r · rk)

r3
Ω +

1

4π

∫
ω (η)(r · η) d3η

r3

where Ω denotes a value proportional to the vorticity charge in the subset.
Assuming that the diameter of the subset is small enough, for instance of the
order ǫ, we get

(2.11)

∣∣∣∣
∫

ω (r · η) d3 η

∣∣∣∣ ≤ |Ω| · |r|diam(subset) = |Ω| · |r| ǫ,

which guarantees that the last term is smaller than the second one, so that ǫ
is less than the diameter of the body surface Γ (because min rk ≥ diamΓ and
diamΓ ≫ ǫ).

Omitting the last term3), we obtain the expansion for the vortex term of the
velocity:

(2.12) vω =
(
∑

Ωk) × r

r3
−

∑
Ωk × rk

r3
+ 3

∑
Ωk × r (r · rk)

r5
+ . . .

The total charge of vorticity

(2.13) Ω =
∑

Ωk

2)Each of them may be interpreted as a small vortex particle.
3)Considering the vortex particle, we put charge of vorticity in the central point of the subset

and assume the symmetry. Thus
R

ωkηid3 η is a zero tensor.
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is described by the ordinary differential equation which depends on the properties
of motion on the surface Γ . Taking into account the Helmholtz’s equation, we
obtain:

(2.14)
∫

supp ω

dω

dt
d3r = −ν

∮
n × rot ω dS +

∮
(n · ω)v dS.

Having the equation of motion in the close vicinity of the surface Γ , we
take the vector product of the normal n and this equation, and then integrate,
transform and finally obtain the following relation:

(2.15)
∮

n × ∂v

∂t
dS +

∮
n ×∇

(
v2

2
+ p

)
dS

= −ν
∮

n × rot ω dS +

∮
n × (v × ω) dS.

The second integral on the left-hand part of the above equation is equal to zero
as a result of Green’s theorem application. Thus, one subtracts (2.14) and (2.15)
and obtains an important result4):

(2.16)
d

dt

∫

supp ω

ω d3 r =

∮
n × ∂v

∂t
dS +

∮
(n · v) ω dS.

If the angular velocity of the body is not considered, then total vorticity charge
equals zero due to the fact that it is zero at initial time when v = 0. Gathering
the estimations of the velocity terms, we conclude that for a large value of r, the
following asymptotic expression is to be used:

(2.17) v = U∞ + ∇ϕ−
∑

(Ωk × rk)

r3
+ 3

∑
(Ωk × r(r · rk))

r5
+O(1/r4),

where the elementary charges of vorticity Ωk are restricted by
∑

Ωk = 0.(2.18)

The expression (2.12) may be applied for r > R∞ where R∞ is the radius of
a large sphere surrounding the body and the centroids of all vortex particles.

3. The aerodynamic force

Let us assume that the rigid body is encircled by the large sphere mentioned
above. This sphere Γ∞ has a large radius R∞ and, together with the body
surface Γ , defines the region Ω0 between them.

4)The formula d
dt

R

supp F

F dΩ = d
dt

R

supp F

( dF
dt

+ F div v) dΩ has been used.
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Fig. 1. The area Ω0 covered between the surface of rigid body Γ and the big sphere of
radius R∞.

Integrating the equation of motion in the region Ω0 one gets:

(3.1) −A =

∫

Ω0

∂v

∂t
dΩ +

∮

Γ∞

(n · v)v dS +

∮

Γ∞

n p dS − 2µ

∮

Γ∞

Ḋn dS,

where A denotes the aerodynamic force acting on the body, i.e.

−A =

∮

Γ

n · T dS =

∮

Γ

[−n p + 2µn · Ḋ dS].(3.2)

In these formulas

[Ḋ]ik =
1

2

(
∂vk

∂xi
+
∂vi

∂xk

)

and µ is the viscosity. Taking into account the expression (2.17) and the estima-
tion (2.8), we write

∣∣∣∣∣∣

∮

Γ∞

Ḋn dS

∣∣∣∣∣∣
≤ const′

∮

Γ∞

1

R4∞
dS(R∞) = 4πconst′

1

R2∞
.

It means that the last term in the Eq. (3.1) is not significant and can be neglected.
Also, the momentum flux term is not important. In the written form, we obtain
an estimation:
∣∣∣∣∣∣

∮

Γ∞

(n·v)v dS

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
U∞

∮

Γ∞

n·U∞ dS

∣∣∣∣∣∣
+|U∞|

∮

Γ∞

O

(
1

R3∞

)
dS(R∞) = 4π const

1

R∞

which shows that the term can be omitted, too.
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The remaining part of the formula for the force is

(3.3) −A =

∮

Γ∞

n p dS +

∫

Ω0

∂v

∂t
dΩ.

Noca [7] for the simple case of 2-D motion and Ploumhans [9] for the 3-D,
used two identities written previously. To apply those formulas for evaluation of
integrals in (3.3), the equation of motion must be simplified first. The reduced
form of this equation used by these authors is

(3.4)
∂v

∂t
= −∇p.

In our opinion, the following procedure is not sufficiently accurate. First, the
velocity is formed also by a vortex component which cannot be performed as a
gradient. Second, the velocity field is going to the uniform field like O(1/r3). It
means that the pressure (in non-stationary motion) is going to a constant value
like O(1/r2). This is an improper asymptotic behavior for the application of the
integral identities mentioned above. The conclusion is following: both integrals
forming the formula (3.3) must be considered with special attention. It will be
done using the Quartapelle–Napolitano idea based on the harmonic projection.
To do so we will use the equation of motion in the following form:

(3.5) ∇P = ∇
(
p+

∂ϕ̃

∂t

)
= B = −∂vω

∂t
− ∂

∂xi
(vi v) + µ∆v.

In this equation ϕ̃ is the full potential

ϕ̃ = U∞ · r + ϕ.

In the vortex methods, the velocity and vorticity fields are to be found indepen-
dently of the pressure field. It means that the right part of Eq. (3.5), denoted
as B, is known. Multiplying the gradient of P by gradient of harmonic func-
tion H :

H =
R3

∞
2

ex · r
r3

=
R3

∞
2

x

r3
(3.6)

and integrating in the outside of Γ∞ we get, after some elementary transforma-
tions, another formula

(3.7)
∮

Γ∞

nx P dS = −
∮

Γ∞

(n · ∇P )H dS −
∫

r>R∞

H∆P dΩ.

Laplacian of P is given by the divergence of gradient P which is

(3.8) ∆P = − ∂vi

∂xk

∂vk

∂xi
.



Calculation of the force on solid body . . . 111

For r > R∞ this value vanishes very fast. The following estimation holds

(3.9)

∣∣∣∣∣∣

∫

r>R∞

H ∆P dΩ

∣∣∣∣∣∣
≤ 4πR3

∞

∞∫

R∞

const

r8
dr,

which guarantees that the last expression vanishes for R∞ → ∞. Generalization
of the Eqs. (3.6) and (3.7) gives

(3.10)
∮

Γ∞

n p dS = −
∮

Γ∞

n · ∂ϕ̃
∂t

− 1

2

∮

Γ∞

(n · ∇P ) r dS.

The last integral can be evaluated as

(3.11) −
∮

Γ∞

(n · ∇P ) r dS

=

∮

Γ∞

(
n · ∂vω

∂t

)
r dS +

∮

Γ∞

(
n · ∂

∂xi
(viv)

)
r dS − µ

∮

Γ∞

(n · ∆v) r dS.

It can be shown (as a result of a simple estimation) that the last integral is of
1/R2

∞ order. The momentum flux integral also vanishes like 1/R∞, which means
that only one term is to be considered. Thus, the force can be given by the
formula

(3.12) −A =
1

2

∮

Γ∞

(
n · ∂vω

∂t

)
r dS −

∮

Γ∞

(
n · ∂ϕ̃

∂t

)
dS +

∫

Ω0

∂v

∂t
dΩ.

The last term contains the integrand of the following contribution
∂

∂t
∇ϕ̃ =

∇∂ϕ̃

∂t
. Applying Green’s formula we obtain:

(3.13) −A =
1

2

∮

Γ∞

(
n · ∂vω

∂t

)
r dS −

∮

Γ∞

(
n · ∂ϕ̃

∂t

)
dS

+
d

dt

∮

Γ

[nϕ̃+ n× Ψ] dS +
d

dt

∮

Γ∞

[nϕ̃+ n ×Ψ] dS.

Obviously, the vortex part of the velocity is a curl of vector potential Ψ. We can
simplify the above equation to:

(3.14) −A =
d

dt

∮

Γ

[n ϕ̃+ n ×Ψ] dS +
d

dt

∮

Γ∞

n ×Ψ dS +
1

2

∮

Γ∞

(
n · ∂vω

∂t

)
r dS.
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It is interesting that both surface integrals taken on the sphere Γ∞ may
be evaluated easily. The expansion (2.12) is recalled. The appropriate vector
potential Ψ for r ≥ R∞ is

(3.15) Ψ =

∑
Ωk(r · rk)

r3
+O(1/r3).

The scalar product n · vω cuts off the second term of expansion (3.15) and so

(3.16)
1

2

∮

Γ∞

(
n · ∂vω

∂t

)
r dS = −1

2

d

dt

∮

Γ∞

r · M
R4∞

r dS = −1

2

d

dt

∮

S(1)

(ξ · M) ξ dS,

where M is the moment of the vorticity

(3.17) M =
∑

Ωk × rk.

The unit vector ξ = r/R∞ is involved here. After this transformation, the inte-
gral is calculated on a unit sphere S(1). Due to spherical symmetry we obtain

∮

S(1)

ξαξβ dS =





0 if α 6= β,
1

3

∮

S(1)

ξ · ξ dS =
4π

3
otherwise.

Thus we get

(3.18)
1

2

∮

Γ∞

(
n · ∂vω

∂t

)
r dS = −2π

3

dM

dt
.

Similarly, the integral containing the vector potential n × Ψ is evaluated in the
same way. We write

(3.19)
∮

Γ∞

n× Ψ = eαǫα β γ(Ωk)γ (xk)i

∮

Γ∞

xβxi

R4∞
dS = −4π

3
M.

Gathering all the terms, i.e. (3.19), (3.18) and (3.14), we form the final formula
for the force:

(3.20) −A = 2π
d

dt
M +

d

dt

∮

Γ

[n ϕ̃+ n× Ψ] dS.

It is possible that only one surface integral forms this value. Knowing the set
of vortex particles (and their properties), the moment M can be calculated in
the algebraic way. Note, that both potentials ϕ̃ and Ψ are much more regular
functions on the surface Γ than the vorticity ω and preassure p at Γ involved
in the basic formula (1.2).
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4. Numerical implementation

The method described above was applied to the calculation of the aerody-
namic force acting on a sphere immersed in the unsteady flow of the incompress-
ible fluid. The flow past the sphere had been calculated earlier by the vortex
method [15, 16].

The following data are necessary to calculate the force:
• the elementary charge of vorticity Ωk for each particle,
• the position of the vortex particles centres, which are described by the

vectors rk(t),
• the potential ϕ̃ = U∞ · r + ϕ,
• the vector potential Ψ.

The charges of the particles Ωk change when the fluid is moving. Their values
are obtained from the system of differential equations, which is solved in each
step of time. The procedure is described in [16].

The positions of the vortex particles rk(t) are the stochastic processes. Each
of them results from Ito equations

(4.1) drk = v(t, r)|rk
dt+

√
2 ν dW, drk|0 = drk 0,

where dW is an increment of the vector Wiener process and ν is the kinematic
viscosity.

The potential ϕ is a harmonic function. In order to get this function, the
Neumann problem should be resolved outside the sphere. To do so, the standard
code of the harmonic analysis on the sphere was used [1].

The vector potential Ψ is expressed by the formula

(4.2) Ψ =
∑

Ωkφ(|r − rk|),

where

(4.3) φ(x) =

x∫

0

F (ξ)

ξ2
dξ

and the function F , which defines the structure of a particle, is given by

(4.4) F (ρ) =

ρ∫

0

ξ2f(ξ) dξ.

The function f specifies a distribution of the vorticity which is brought by the
particle. It can be chosen freely, however it should fulfill some conditions:
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• f(ρ ≥ δ) = 0 (where δ is the conventional radius of the particle),
• f is limited for ρ > 0.
The details of calculations and general investigations have been given in [16].

When the potential ϕ̃ and the potential vector Ψ are known, it is easy to calculate
the integral

∮
Γ

n ϕ̃+n×Ψ dS using for instance the generalized trapezoid formula

for two dimensions.
When Ωk and rk are known, the moment M can be calculated from (3.17).

But to get the force, the function

(4.5) G(t) = 2πM +

∮

Γ

[n ϕ̃+ n × Ψ] dS

has to be differentiated with respect to time. The differentiation includes vec-
tor rk – the random quantity, which is not differentiable. Fortunately, the deriva-
tive of

∑
Ωk × rk has to be calculated so we can expect the average of random

quantities. Furthermore, the function G(t) is approximated by the smooth func-
tion (local polynomials in this case), so the difference

(4.6) |G(t) − W(t)|

is minimized. Then the function W(t) can be differentiated. The instance of the
local approximation is shown in the Fig 1.

Fig. 2. Local approximation of function G(t) by the function fv = c0 + c1t.

The aerodynamic coefficients Cx, Cy, Cz as functions of time for flows of
Reynolds numbers Re = 100, 200, 400 are presented in Fig. 5. These coefficients
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are calculated basing on temporary forces values, for which the following defini-
tions are used:

Cx =
Ax

̺U2
∞

2
· π d

2

4

,

Cy =
Ay

̺U2
∞

2
· π d

2

4

,(4.7)

Cz =
Az

̺U2
∞

2
· π d

2

4

,

where Ax, Ay, Az – the components of aerodynamic force, |U∞| = 1 – the velocity
at infinity, ρ = 1 – density, and d = 2 – diameter of the sphere.

The flow past the sphere has been frequently explored numerically and ex-
perimentally [2, 5, 18, 19]. The results which were obtained with the current
method can be compared with experimental data. In this instance, the values of
coefficients were taken from the book by H. Schlichting and K. Gersten [13].
The standard, mean value of the drag coefficient Cx in function of the Reynolds
number is presented in the Fig. 3.

a)

b) Re Cx exper. Cx average

100 1.1 1.007

200 0.8 0.77

400 0.6 0.7

Fig. 3. a) Drag coefficient for the sphere (data from the book by Schlichting and Gersten);
b) experimental data and average values obtained from calculations.

It is seen that numerical results for the Re = 100 and Re = 200 fluctuate
near the experimental data. The coefficient Cx fluctuates near the value 1 for
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the Re = 100 and near the value 0.8 for the Re = 200. The coefficients Cy and
Cz fluctuate near zero what agrees with expectation.

The coefficient Cx for the Re = 400 is a little greater than the experimen-
tally measured value and stronger fluctuations of the Cy and Cz are observed.
A possible reason is that the flow in the range of Reynolds number higher than
400 is unsteady and loses the periodicity and symmetry.

a)

b)

Fig. 4. Velocity fields in two orthogonal planes. The breaking of symmetry is observed.
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Fig. 5. Distributions of aerodynamic coefficients Cx, Cy, Cz in time for various Reynolds
numbers: a) Re = 100, b) Re = 200, c) Re = 400.

5. Conclusion

The method of a field type was proposed to calculate the aerodynamic force.
The well-known formula of Quartapelle–Napolitano was applied to the exterior
of the large sphere, where initial velocity and vorticity fields have properties
which permit to perform analytical calculations. This method does not have
any drawbacks which are present in the procedure described in [7, 9]. However,
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the necessity of differentiation of a function of one variable can be regarded as
a weak point. If the stochastic simulation of diffusion is used, the estimation of
the undifferentiable stochastic process by the differentiable function is required.
If the deterministic method is used, such estimation is not necessary.

As it is known, the wake of axisymmetric body may lose its symmetry [3]. This
fact brings up waving of the drag coefficient and essentially stronger oscilations
of the two remaining coefficients. Excluding these oscilations, we observe that
the calculated results are relatively close to the empirical ones. It is known
[3, 5, 14, 19] that the phenomenona such that appear while the Reynolds number
are bigger than 212. The oscilations of wake break effectively the symmetry of
flow and introduce non-stationary behaviours of aerodynamic force.
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