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Notations

ui (i = 1, 2) components of displacement vectors,

T0 uniform absolute temperature,

T temperature above the reference temperature,

ρ0 mass density,

Ce specific heat at constant strain,

τ0 thermal relaxation time,

K thermal conductivity,

α coefficient of linear thermal expansion,

p initial pressure,

λ, µ counterparts of Lamé parameters,

ϕ,ψ potential functions,

k wave number,

c wave speed,
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ω = kc frequency,

Θ = T − T0 change in temperature,

qi heat flux vector,

KT = (3λ+ 2µ)−1

All quantities with primes correspond to medium M ′.

1. Introduction

The classical theory of thermoelasticity, the foundations of which were laid
in the nineteenth century by Duhamel, Neumann and Lord Kelvin, is based
on Fourier’s law of heat conduction [1]. When combined with other laws of
mechanics and thermodynamics, such as the geometrical relations, equations
of motion, conservation of energy law, dissipation inequality and constitutive
relations, Fourier’s law gives rise to the displacement-temperature field equa-
tions of hyperbolic-parabolic type that imply an infinite speed of propagation
of thermoelastic waves. To correct this unrealistic feature, various modifications
of the classical theory of thermoelasticity have been proposed. For example,
Lord and Shulman [2] developed the theory of generalized thermoelasticity
with one relaxation time for the special case of an isotropic body. Green and
Lindsay [3] developed the theory of thermoelasticity after taking two relaxation
times. The above two theories allow a finite speed of propagation of waves. Chan-

drasekharaiah [4] referred to this wavelike thermal disturbance as a “second
sound”. The representative theories in the range of generalized thermoelasticity
were reviewed by Hetnarski and Ignaczak [5].

The wave propagation in thermoelastic media is applicable in various fields
such as earthquake engineering, soil dynamics, nuclear reactors, high energy
particle accelerators, etc. Many authors have studied the wave propagation in
isotropic thermoelasticity. For example, Deresiewicz [6] studied the effects of
boundaries on the waves in a thermoelastic solid and reflection of plane waves
from a plane boundary. Sinha and Sinha [7] and Sinha and Elsibai [8] dis-
cussed the reflection of thermoelastic waves at a solid half-space in context of the
Lord and Shulman [2] and Green and Lindsay [3] theories. Abd-Alla [9]
studied the relaxation effects on reflection of generalized magneto-thermoelastic
waves. Singh [10] discussed the reflection of a plane sound wave from a mi-
cropolar generalized thermoelastic solid half-space. Sharma et al. [11] studied
the problem of Sinha and Sinha [7] for various linear theories of thermoelas-
ticity. Sinha and Elsibai [12] studied the reflection of thermoelastic waves at
the interface of two semi-infinite media being in welded contact. Singh [13]
and Abd-Alla et al. [14] discussed some problems concerning reflection of the
generalized magneto-thermo-viscoelastic plane waves from a stress-free surface.
Singh [15] discussed the reflection of SV waves from the free surface of an elas-
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tic solid with generalized thermoelastic diffusion. Song et. al. [16] studied the
wave propagation at interface between two half-spaces of micropolar viscoelas-
tic media. Singh [17] studied the reflection of waves from free surface of the
generalized thermoelastic solid with voids. Kumar and Singh [18] discussed
the reflection and transmission at an imperfectly bounded interface between
two orthotropic, generalized thermoelastic half-spaces. Othman and Song [19]
discussed the reflection of magneto-thermoelastic waves with two relaxation
times and temperature-dependent elastic moduli. The study of wave propaga-
tion in an isotropic generalized thermoelastic solid with additional parameters
provide information about the existence of new or modified waves. Such informa-
tion may be useful for experimental seismologists in correcting the earthquake
estimation.

The development of initial stresses in the medium is due to many reasons,
for example resulting from the difference of temperature, process of quench-
ing, shot peening and cold working, slow process of creep, differential external
forces, gravity variations etc. The Earth is assumed to be under high initial
stresses. It is therefore of much interest to study the influence of these stresses
on the propagation of stress waves. Biot [20] showed the acoustic propaga-
tion under initial stresses which was fundamentally different from that under
stress-free state. He has obtained the velocities of longitudinal and transver-
sal waves along the co-ordinate axis only. The study of reflection and refrac-
tion phenomena of plane waves in unbounded medium under initial stresses is
due to Chattopadhyay et al. [21], Sidhu and Singh [22], Dey et al. [23] and
Selim [24].

Montanaro [25] investigated the isotropic linear thermoelasticity with hy-
drostatic initial stress. Singh et al. [26], Singh [27] and Othman and Song [28]
used the theory given by Montanaro [25] and studied the reflection of ther-
moelastic waves from a free surface under hydrostatic initial stress, in context
of different theories of the generalized thermoelasticity. The problems concern-
ing reflection and refraction of elastic waves at a plane separating two media
have wide applications in seismic-reflection surveys. In the present paper, the
Montanaro [25] theory of thermoelasticity with hydrostatic initial stresses is
employed to study an interface model between two thermoelastic media under
hydrostatic initial stresses. The boundary conditions at the interface are for-
mulated and are satisfied by appropriate potentials to obtain the expression of
reflection and refraction coefficients, both theoretically as well as numerically.
The reflection and refraction coefficients are computed for a particular model
and the numerical results are shown graphically to show the effect of initial
stresses on the reflection and refraction coefficients of various reflected and re-
fracted waves.
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2. Governing equations and solution

The field equations in the x-y plane for homogeneous, isotropic thermoelastic
solid with hydrostatic initial stress and in absence of incremental body forces and
heat sources, are [2, 25]:
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where

(2.4) V T =
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and the symbols have their usual meanings.
Using the displacement components u1 and u2 in terms of potential functions

ϕ and ψ as
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the Eqs. (2.1)–(2.3) are transformed to
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Equations (2.6) and (2.8) are coupled in ϕ and Θ, whereas Eq. (2.7) is uncoupled.
Solutions of Eqs. (2.6) and (2.8) are now sought in the form of a harmonic

travelling wave

(2.9) (ϕ,Θ) = (A,B)eik(x sin θ+y cos θ−ct),

where (sin θ, cos θ) denotes the projection of the wave normal onto the x-y plane
and A, B are arbitrary constants.
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Using (2.9) in Eqs. (2.6) and (2.8), the following quadratic equation in c2 is
obtained:

(2.10) L(c2)2 −Mc2 +N = 0,

where

(2.11)
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The roots
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of Eq. (2.10) correspond to the complex speeds of quasi-P (qP) wave and quasi-
thermal (qT) wave, respectively. If we write c−1

j = v−1
j − iω−1q∗j (j = 1, 2), then

v1 and v2 are the speeds of propagation of a quasi-P wave and quasi-thermal
wave, respectively. q∗1 and q∗2 are attenuations of qP and qT waves, respectively.
Also, the solution of Eq. (2.7) gives the wave speed of a shear wave as v3 = vs.

3. Reflection and refraction

Two semi-infinite half-spaces of thermoelastic media under hydrostatic initial
stresses are assumed to be in welded contact with interface along the x-axis and
the direction of positive y-axis is directed into the lower medium M . For the
incidence of qT wave passing through medium M , at interface y = 0, the qP,
qT and SV waves will be reflected in lower medium M and qP, qT and SV
waves will be refracted in upper medium M ′. The complete geometry showing
the angle of incidence, angles of reflection and angles of refraction are shown in
Fig. 1. The required boundary conditions at the interface y = 0 are the continuity
of normal stress, tangential stress, heat flux, temperature, tangential and normal
components of displacement vector, i.e.
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Fig. 1. Schematic diagram for the problem.
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The appropriate potentials satisfying the boundary conditions (3.1) are as
follows:

For medium M :

ϕ = A0 exp[ik2(x sin θ0 + y cos θ0) − iωt](3.2)

+A1 exp[ik1(x sin θ1 − y cos θ1) − iωt]

+A2 exp[ik2(x sin θ2 − y cos θ2) − iωt],

Θ = ε2A0 exp[ik2(x sin θ0 + y cos θ0) − iωt](3.3)

+ ε1A1 exp[ik1(x sin θ1 − y cos θ1) − iωt]

+ ε2A2 exp[ik2(x sin θ2 − y cos θ2) − iωt],

Ψ = B1 exp[ik3(x sin θ3 − y cos θ3) − iωt],(3.4)
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where
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and A0, A1, A2 and B1 are amplitudes of incident qT wave, reflected qP wave,
reflected qT wave and reflected SV wave, respectively.

For medium M ′:
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1 are amplitudes of the refracted qP wave, refracted qT wave
and refracted SV wave, respectively.

These potentials will satisfy the boundary conditions (3.1) at y = 0, if kj , k
′
j ,

θj , θ
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Using the potential given by Eqs. (3.2) to (3.7) in Eq. (3.1), a system of six
non-homogeneous equations is obtained as
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χ =
K ′

K

1 − iωτ0
1 − iωτ ′0

,

a41 =

(
v2
v1

)2(v2
1 − v2

T

β

)
, a42 =

v2
2 − v2

T

β
,

a43 = 0, a44 = −
(
v2
v′1

)2(v′21 − v′2T
β′

)
,

a45 = −
(
v2
v′2

)2(v′22 − v′2T
β′

)
, a46 = 0,

a51 = sin θ0, a52 = sin θ0,

a53 =
v2
v3

√

1 −
(
v3
v2

)2

sin2 θ0, a54 = − sin θ0,

a55 = − sin θ0, a56 =
v2
v′3

√

1 −
(
v′3
v2

)2

sin2 θ0,

a61 =
v2
v1

√

1 −
(
v1
v2

)2

sin2 θ0, a62 = cos θ0,

a63 = − sin θ0, a64 =
v2
v′1

√

1 −
(
v′1
v2

)2

sin2 θ0,

a65 =
v2
v′2

√

1 −
(
v′2
v2

)2

sin2 θ0, a66 = sin θ0.

Constants bi and Zj are as follows:

b1 = −a12, b2 = a22, b3 = a32, b4 = −a42, b5 = −a52, b6 = a62,

Z1 =
A1

A0
, Z2 =

A2
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A0
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1

A0
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A′
2
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1
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.

Here, Z1, Z2, Z3 are real-valued reflection coefficients (or amplitude ratios) of
reflected qP, qT and SV waves respectively and Z4, Z5, Z6 are real-valued re-
fraction coefficients (or amplitude ratios) of refracted qP , qT and SV waves,
respectively.

In absence of the upper medium, the system of Eqs. (3.10) reduced to those
obtained by Singh et al. [26].

4. Numerical results and discussion

For the purpose of numerical computations, the following physical constants
are considered for medium M :
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E = 6.9 × 1011 dyne/cm2, σ = 0.33, ρ0 = 2.7 g m/cm3,

Ce = 0.236 cal/g m ◦C, K = 0.492 cal/cm s ◦C, τ0 = 0.04 s,

α = 0.01 ◦C−1, KT = 0.5 dyne−1cm2, ω = 2 s−1, T0 = 20 ◦C.

The relevant parameters taken for medium M ′ are

E′ = 6.7 × 1011 dyne/cm2, σ′ = 0.31, ρ′0 = 2.3 gm/cm3,

C ′
e = 0.214 cal/g m ◦C, K ′ = 0.483 cal/cm s ◦C, τ ′0 = 0.04 s,

α′ = 0.008 ◦C−1, K ′
T = 0.45 dyne−1cm2.

The relation E/µ = 2(1 + σ)for isotropic elastic solids does not hold good for
earthy materials, viz. sand, soil, etc. Weiskopf [29] investigated that due to
slipping of granules on each other, the resistance of shear is much less than that
in an elastic solid and the resultant shearing deflection is much greater. For
these materials E/µ > 2(1 + σ). Hence, here we define the generalized Lamé’s
constants λ and µ as

λ =
Eσ

η(1 + σ)(1 − 2σ)
, µ =

E

2η(1 + σ)
,

where E is Young’s modulus, σ is Poisson’s ratio and η (≥ 1) is defined as sandi-
ness or initial stress parameter. η = 1 corresponds to isotropic elastic medium
with no initial stress. Similar relations hold also in medium M ′.

Using the above parameters for two different half-spaces in welded contact,
the system of Eqs. (3.10) is solved with the help of FORTRAN PROGRAM
of the Gauss elimination method. The absolute values of real-valued amplitude
ratios (or reflection and refraction coefficients) of reflected and refracted qP,
qT and SV waves, are computed numerically for the range 0◦ < θ0 ≤ 78◦ of
angle of incidence of the qT wave. The variations of these amplitude ratios are
shown graphically in Figs. 2 to 7. The solid and dotted curves in these figures
correspond to amplitude ratios in presence of initial stresses (η = 2.5, p = 1)
and in absence of initial stresses (η = 1, p = 0), respectively.

In presence of initial stresses, the amplitude ratio of reflected qP wave attains
its maximum value near normal incidence of an incident qT wave. It decreases
sharply to its minima near θ0 = 75◦; thereafter, it increases sharply. The varia-
tion is shown graphically in Fig. 2 by a solid curve. In absence of initial stresses,
the solid curve reduces to a dotted curve, as shown in Fig. 2. The compari-
son of these two curves shows the effect of initial stresses on the reflected qP
wave.
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Fig. 2. Variations of amplitude ratios of reflected P waves with the angle of incidence in
presence (solid curve) and in absence (dotted curve) of initial stresses.

Fig. 3. Variations of amplitude ratios of reflected thermal waves with the angle of incidence
in presence (solid curve) and in absence (dotted curve) of initial stresses.

The variations of amplitude ratios for reflected qT waves with the angle of
incidence of qT wave, are shown graphically in Fig. 3 by solid and dotted curves
in presence and absence of initial stresses, respectively. The amplitude ratios in
presence as well as in absence of initial stresses, first decrease slowly to their
respective minima, and then increase sharply to their respective maxima.
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Fig. 4. Variations of amplitude ratios of reflected SV waves with the angle of incidence in
presence (solid curve) and in absence (dotted curve) of initial stresses.

The variations of amplitude ratios of reflected SV waves with the angle of
incidence of qT waves are shown graphically in Fig. 4 with and without initial
stresses. The amplitude ratios of reflected SV wave reach their minima near nor-
mal incidence and they increase with the increase in the angle of incidence. The
comparison between solid and dotted curves in Fig. 4 shows the effects of initial
stresses on the reflected SV wave. The effect also becomes more considerable
when the angle of incidence varies from normal to grazing incidence.

The variations of amplitude ratio of refracted qP, qT and SV waves are
shown graphically in Figs. 5 to 7 with the angle of incidence of qT wave. These
variations are similar to those for reflected qP, qT and SV waves respectively,
though different in magnitudes. In these figures, the comparison of solid and
dotted curves reveal the effect of initial stresses on the refracted waves. The
maximum effect of initial stresses on the reflected qP wave is observed near nor-
mal incidence, whereas the effect reaches maximum beyond θ0 = 70◦ for refracted
thermal and SV waves.

The critical angle for reflected and refracted waves is observed near θ0 = 78◦

in presence of initial stresses. The critical angle for these waves shifts to θ0 = 75◦,
in absence of initial stresses.

The amplitude ratios of reflected and refracted waves are shown graphically
in Figs. 8 and 9, respectively, for a range 1 ≤ η ≤ 3.5 of initial stress parameter,
when the initial stress pressure p = 1. The solid curves, dotted curves and
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Fig. 5. Variations of amplitude ratios of refracted P waves with the angle of incidence in
presence (solid curve) and in absence (dotted curve) of initial stresses.

Fig. 6. Variations of amplitude ratios of refracted thermal waves with the angle of incidence
in presence (solid curve) and in absence (dotted curve) of initial stresses.

dotted curves with circles in Fig. 8 correspond to reflected qP, reflected qT and
reflected SV waves, respectively. Similarly, these curves in Fig. 9 correspond to
refracted qP, refracted qT and refracted SV waves, respectively. The amplitude
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Fig. 7. Variations of amplitude ratios of refracted SV waves with the angle of incidence in
presence (solid curve) and in absence (dotted curve) of initial stresses.

Fig. 8. Variations of amplitude ratios of reflected P wave (solid curve), reflected thermal
(dotted curve) and reflected SV wave (dotted curve with circles) with the initial stress

parameter η.

ratio of reflected qP wave increase slowly with increase of η. The amplitude
ratios of the reflected qT wave oscillate in the range 1 ≤ η ≤ 3.5, whereas the
amplitude ratios of the reflected SV wave decrease slowly in this range.

The amplitude ratios of refracted P and refracted qT wave increase very
slowly in the range 1 ≤ η ≤ 3.5 of the initial stress parameter, whereas the
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Fig. 9. Variations of amplitude ratios of refracted P wave (solid curve), refracted thermal
(dotted curve) and refracted SV wave (dotted curve with circles) with the initial stress

parameter η.

amplitude ratios for refracted SV waves decrease slowly for this angle. The dotted
curve with circles (refracted SV waves) is shown in Fig. 9 after multiplying its
original values by 10.

5. Concluding remarks

The boundary conditions at an interface between two different thermoelastic
solid half-spaces with hydrostatic initial stresses in welded contact, are satisfied
by relevant potentials for incidence of qT wave to obtain the amplitude ratios
of various reflected and refracted waves. These amplitude ratios are computed
numerically for a certain range of angle of incidence and initial stress parame-
ter. The amplitude ratios are affected significantly due to the presence of initial
stresses. The model discussed in the present paper may provide useful informa-
tion for experimental seismologists working in the area of wave propagation in
solids.
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