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A numerical study has been carried out to study fluid flow within a rotor-stator
system with an inward throughflow and pre-rotation. Furthermore, the effect of flow
parameters on the flow structure has been investigated. The entrainment coeffi-
cient, β, of the rotating fluid and the rotating disc moment coefficient have been
calculated. A correlation has been found for predicting the place of stagnation point.
The results show the Batchelor type of flow with two separated boundary layers
on the rotating and stationary discs. The numerical results are compared with the
available measured data and generally, a good agreement has been encountered.
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Notations

Cm moment coefficient,
Cw = ṁ/µR2 non-dimensional mass flow rate,

D, E, F terms appearing in the turbulent modelling,
G = h/R2 aspect ratio,

fµ wall damping function, appearing in the turbulence modelling,
ṁ throughout mass flow rate,
P rate of production of turbulent kinetic energy,

Reϕ = ΩR2
2/ν rotational Reynolds number,

Reh = Ωh2/ν axial distance Reynolds number,
Rt = ρκ2/µε local turbulence Reynolds number,

R1 outer radius of the rotor,
R2 outer radius of the system,
R3 inner radius of the rotor,
R4 inner radius of the stator,
S source terms,
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r, φ, z radial, circumferential and axial coordinate system,
Vr, Vφ, Vz radial, circumferential, axial velocity component,

v∗r (= Vr/Ωr) non-dimensional radial velocity,
x = r/R2 non-dimensional radial coordinate,

x∗ stagnation point,
y distance normal to the wall,

y+ non-dimensional wall distance,
ymin the minimum distance between the wall and the mesh point,
z∗ non-dimensional axial coordinate,
Φ generalized dependent variable in transport equation,
ρ density,
ν kinematic viscosity,

µ, µt, µeff dynamic, turbulent and effective viscosity,
β = Vφ/Ωr entrainment coefficient,

Ω angular velocity of rotor,
λT = Cw/Re0.8

ϕ turbulent flow parameter,
Γr, Γφ, Γz effective diffusivities for the radial, circumferential and axial directions,

κ turbulent kinetic energy,
ε rate of dissipation of turbulent kinetic energy,

Cµ, Cε1, Cε2 terms appearing in the turbulent modelling,
f1, fµ, σk, σe terms appearing in the turbulent modelling,

τw average wall shear stress.

Subscripts
∞ far from the discs (here in the middle of the axial distance between

the rotor and the stator),
Φ represents the generalised variable,

1. Introduction

The fluid flow within a rotor-stator system has been widely studied and was
found to have many applications, especially in turbo-machinery. Moreover, it
is a classical example of rotating flow in which exact solution of Navier-Stokes
equation can be found.

Figure 1 shows a schematic diagram of a rotor-stator system. The system
comprises two discs: one disc (the rotor) rotates with angular velocity Ω, and
the other one (the stator) is stationary. There is an axial distance, h, between
the two discs.

Batchelor [1] has assumed that there is a boundary layer on each disc and
that a rotating core is established between them, with the magnitude of the core
rotation being between 0 and Ω. The flow on the rotor is analogous to a rotating
disc in a quiescent fluid, with a radial outflow of fluid entrained from the core;
the flow on the stator is analogous to a rotating fluid near a stationary disc,
with radial inflow of fluid and an efflux from the boundary layer to the core.
Stewartson [19] proposed another model, suggesting that there is a boundary
layer on the rotor (analogous to the von Kármán flow on the free disc), in which
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Fig. 1. A schematic diagram of the rotor-stator system.

the tangential component of velocity reduces from Ωr on the disc to zero far
from it. In this model there is no boundary layer on the stator. Grohne [7]
solved the von Kármán equations for Reynolds numbers up to Reh = Ωh2/ν
= 100 and found that when Reh = 10, no core rotation was apparent, but when
Reh = 100, there was evidence of separate boundary layers and a rotating core.
Picha and Eckert [17], who made the velocity measurements, found that when
the discs were open to the atmosphere, no significant core rotation occurred.
However, when the discs were surrounded by a stationary casing (or shroud),
a core rotation did exist.

Many researchers have performed theoretical and experimental work for the
rotor-stator problem. Some of them, such as Lance and Rogers [10], found
the Batchelor-type flow, with a rotating core of fluid, and others, such as Pear-

son [16], verified the Stewartson-type flow, with no rotating core. It is now
known that both flow structures exist and that conditions at the edges of finite
discs can affect the type of flow which occurs.

For a Batchelor-type flow, the flow structure consists of two boundary layers
and a rotating core. The rotating core is defined by a tangential velocity far
from the discs (mostly in the middle of axial distance), equal to β∞Ωr = Vθ,
and a quasi-zero radial velocity: the core. The first boundary layer developed
on the fixed disc; it is called the Bodewadt layer. In this layer, the tangential
velocity varies between β∞Ωr in the core to zero on the stationary disc. The
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second boundary layer developed on the rotor: it is the von Kármán or Ekman
layer. In this layer, the tangential velocity varies from Ωr on the rotating disc to
that of the core, β∞Ωr. For a sealed rotor-stator system, however, a Batchelor-
type flow usually occurs providing the value of Reh to be sufficiently high to
ensure separate boundary layers.

Many computational and experimental studies have been carried out to in-
vestigate the characteristics of turbulent flow and heat transfer in rotor-stator
systems. Wilson et al. [20] summarised the work which showed that the flow
and heat transfer in systems with a superposed radial outflow can be computed
with reasonable accuracy using κ− ε turbulence models.

Karabay et al. [8] has studied flow structure inside a cover plate-rotor sta-
tor system and found that the most important parameters affecting the flow
structure were the inlet pre-swirl ratio, the ratio of the tangential component of
velocity of the pre-swirl air to the speed of the rotating disc at the same radius,
and the turbulent flow parameter λT = Cw/Re0.8

ϕ , where Cw = ṁ/µR2 is the
non-dimensional flow rate of the pre-swirl air and Reϕ = ΩR2

2/ν is the rotational
Reynolds number for the disc.

Farzaneh [3] carried out measurements and three-dimensional computa-
tions for the flow structure in an idealised pre-swirl rotor-stator system and
Farzaneh [4] made an axisymmetric computation. The results obtained show
that the flow in the pre-swirl system has some similarities to that found in clas-
sical rotor-stator systems. The measurements and computations showed that
significant losses in total pressure occurred between the inlet nozzles and the
mid-axial plane between the rotor and stator (where pitot-tube measurements
were made). These mixing losses, which were caused by a momentum exchange
between the primary pre-swirl flow and the recirculation secondary flow, in-
creased as the inlet pre-swirl ratio increased. Lewis et al. [11] investigated the
effect of the radial location of the inlet nozzles on the performance of the same
system. A commercial code is used to solve the Reynolds-averaged Navier–Stokes
equations using a high Reynolds number κ−ε/κ−ω turbulence model with wall
functions. They suggested that for an optimum pre-swirl configuration, an engine
designer should place the pre-swirl nozzles at a high radius.

Farzaneh [5] investigated heat transfer over a rotating disc of the idealised
pre-swirl rotor-stator system using a 3D steady, incompressible turbulent flow
solver in a rotating frame of reference. The computed as well as the measured lo-
cal heat transfer coefficients (by Lock et al. [13]) show axisymmetric distribution
on the rotor, except near the receiver cooling holes in which a small region of high
heat transfer is observable. Lewis et al. [11] compared the heat transfer mea-
surements from a pre-swirl rotor–stator experiment with three-dimensional (3D)
steady-state results from a commercial computational fluid dynamics (CFD)
code. They have obtained the same results as Farzaneh [5].
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Poncet et al. [18] have studied the behaviour of the entrainment coefficient
of the turbulent flow in a rotor–stator system with throughflow, as a function of
the rotational Reynolds number, of the throughflow (non-dimensional flow) rate
and of the aspect ratio, G = h/R2, of the system. In particular, they determined
an analytical law, which enables to calculate the entrainment coefficient versus
the local flow rate coefficient. This law has been determined analytically and has
been validated by extensive pressure and velocity measurements, for different
values of the axial gap and in a large range of Reynolds numbers and flow
rates. They have also determined the structure of the rotating-disc flow when an
inward flux was added. They concluded that, for a weak throughflow, the flow at
the periphery has the same properties as in the case without flux. The Ekman
boundary is centrifugal and the Bodewadt boundary layer is centripetal. These
layers are separated by a central rotating core. But, for a strong throughflow,
the flow in the Ekman boundary layer becomes centripetal and the core rotates
faster than the rotating disc.

A rotor-stator system, as shown in Fig. 1, provides a simplified model of
the flow which has been studied in this paper. It consists of a cylindrical cavity
enclosed by a stationary disc (the stator) and a smooth rotating disc (the rotor).
A fixed shroud surrounds the cavity.

This paper describes the effects of flow parameters such as the Reynolds
number, non-dimensional flow rate and aspect ratio of the flow structure in-
side the system, using a computational method. The available measured data
of Poncet et al. [18] are also compared with computed values for validating
purposes.

2. Governing equations

The three-dimensional, steady-state, incompressible Reynolds-averaged flow
equations in a cylindrical polar coordinate system r, φ, z with velocity compo-
nents Vr, Vφ, Vz can be written in a common form:
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where Φ represents the generalised momentum variable and the net source SΦ

is different for each component of momentum. Γr, Γφ and Γz are the effective
diffusivities for the radial, circumferential and axial directions, comprising both
the laminar and turbulent components.
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In this paper, turbulent flow computations have been made using the low-
Reynolds number κ− ε turbulence models proposed by Launder–Sharma [9].

The κ−ε turbulence model equations can be represented in the same common
form of Eq. (2.1). The relevant expressions are given in Table 1, in which µeff =
µ+ µt is the effective viscosity.

Table 1. Terms appearing in the turbulence model.

Term Launder and Sharma–Morse model
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In the κ− ε equations, P denotes the rate of production of turbulent kinetic
energy and is given as follows:
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Other terms appearing in the κ − ε equations are given in Table 2. fµ is a
wall damping function associated with low Reynolds number models. Rt is a local
turbulence Reynolds number and y+ is the non-dimensional distance from the
solid surface:

(2.3) Rt =
ρκ2

µε

and

(2.4) y+ = ymin

√
τw/ρ

ν
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Table 2. Components of the transport equations.
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In Eq. (2.4), ymin is taken as the minimum distance between the wall and the
mesh point, and τw is the average wall shear stress.

3. Numerical method

Computational procedure

The governing equations were discretized using the finite-volume method with
hybrid-differentiation of the convection term. The SIMPLE pressure-correction
scheme is adopted within a staggered grid arrangement. The discrtized equa-
tions were solved using the tri-diagonal matrix algorithm, TDMA. For improv-
ing convergence performance, a Gosman damping factor [6] was used. Yap em-
pirical correction [14] is added to the source term of ε equation, intending to
reduce unrealistically large levels of near-wall turbulence that are returned by
the Launder–Sharma model in regions of flow separations.

Boundary conditions

No-slip boundary condition was used for the velocity components on the
solid surfaces. The uniform axial velocity was used of the specified mass flow
rate and the tangential velocity component was set up to have a pre-rotation
flow at the inlet. At the outlet, the uniform axial velocity was used to en-



202 M. Farzaneh-Gord, A. Vazifedoost, A. B. Khoshnevis

Table 3. The boundary condition used in the computation.

Region ε k Vz Vφ Vr
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sure continuity, and tangential velocities were computed from a zero normal
derivative condition. The radial velocity component was set to zero at the in-
let and outlet. Table 3 shows the detailed boundary conditions. It is interest-
ing to note that the curious boundary condition has been applied for κ, ε on
the rotor surface. As the rotor is assumed to be porous and is the only inlet
boundary, it is treated as the inlet boundary for κ, ε equations. Assumption
of zero boundary condition for κ, ε equations on the rotor causes the lam-
inar flow computations with zero values of κ, ε in the whole computational
region.

Geometry and grid distribution

A schematic diagram of the geometry modelled is shown in Fig. 1. It is
based on the experimental rotor-stator system used in measurement by Poncet

et al. [18]. The system consists of a rotating disc (rotor) and a stationary disc
(stator). A fixed shroud surrounds the system.

The outer and inner radii of the rotor are R3 = 250 mm and R1 = 38 mm,
respectively. The outer radius of the system is R2 = 253 mm. There is a 3 mm
radial gap between the rotating disc and the shroud. The inner radius of the
stator is R4 = 55 mm. This makes a radial distance of 17 mm between the inner
radius of the rotor and stator. This radial distance is used as an outlet port.
There is an axial gap of h between the rotor and stator. In this study, 6 and
12 mm have been assigned to h as in the experimental setup.

In order to satisfy the low-Reynolds κ − ε model requirements (y+ ≤ 0.5),
a large number of grid points was packed near the wall and to model the inlet and
outlet, fine grid used in these area and tried to keep the expansion/contraction
parameter lower than 1.2. The grid distribution tests showed that a 70 × 140
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x

z∗

Fig. 2. 70 × 140 (axial × radial) computation grid with expansion factor 1.1.

(axial×radial) was required. The mesh is illustrated in Fig. 2. In this figure, z∗ =
z/h and x = r/R2 are non-dimensional axial and radial coordinates, respectively.

Range of flow parameters

According to Owen and Rogers [15], the most effective dimensionless pa-
rameters that control the flow inside a rotor-stator system are the non-dimen-
sional mass flow rate, Cw, and the rotational Reynolds number, Reϕ. The com-
puted cases have been arranged in groups for which Cw varies while Reϕ and G
remains constant and vice versa.

4. Results and discussion

Computed flow structure

Figures 3a and 3b show the computed streamline in the system for Cw = 5159,
G = 0.036 and different values of Reϕ. Referring to these figures, it can be seen
that flow structure mainly consist of three recirculation zones and a rotating
core. The upper and lower recirculation zone are formed near the upper and
lower shrouds. A rotating core fills most of the system. A stagnation point can be
also distinguished. Here the stagnation point assumes the place where the radial
velocity near the rotor changes its direction. The flow structure also consists of
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a)

x

b)

x

z∗ z∗

Fig. 3. Stream lines for Cw = 5159, G = 0.036 and a) Reϕ = 1.038 × 106,
b) Reϕ = 2.076 × 106.

two boundary layers on the rotor and the stator. It can be realized that the
throughout inlet flow separated in two parts near the stagnation point. One
part flows downwards through rotating boundary layer (Ekman layer) and then
passes near the inner shroud and finally appears at the outlet. The most of other
part flows upwards through the rotating boundary layer and then passes near
the outer shroud and finally flows downwards through the stationary boundary
and exits through the outlet.

Axial variation of dimensionless tangential velocity (Vφ/Ωr)

Figures 4 and 5 illustrate axial profiles of the dimensionless tangential velocity
β = Vφ/Ωr and comparison with experimental data for = 0.44, 0.68 respectively.
The effects of Reϕ and the radial position on the profiles could also be examined.
Here the aspect ratio and non-dimensional flow rate (Cw = 10317, G = 0.036)
are kept constant. In each case, the existence of the three characteristic zones:
the two boundary layers and the rotating core, is exhibited. For x = 0.44, β is
greater than one in the core for the case where Reϕ = 1.038e6. This means that
the fluid rotates faster than the disc in the core and consequently, as mentioned
by Owen and Rogers [15], the direction of the flow in the boundary layer (here
the Ekman layer) is radially inward. For the other cases β∞ < 1, the direction
of the flow in the boundary is radially outward. The direction of the flow in the
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Fig. 4. Effects of the rotational Reynolds number on the axial profiles of the dimensionless
tangential velocity for G = 0.048, Cw = 5159 and x = 0.44 (experimental values provided by

of Poncet et al. [18]).

Fig. 5. Effects of the rotational Reynolds number on the axial profiles of the dimensionless
tangential velocity for G = 0.048, Cw = 5159 and x = 0.68 (experimental values provided by

of Poncet et al. [18]).

boundary layers could be examined in Figs. 7 and 8. As discussed in more details
by Owen and Rogers [15] for a sealed system (with no inlet or outlet flow),
the structure of the flow is divided into three zones: a centrifugal boundary layer
on the rotating disc, and a centripetal boundary layer on the stationary disc,
divided by a rotating core where the tangential velocity doesn’t vary and the
radial component is nearly zero. By superimposing a centripetal throughflow,
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the tangential velocity in the core increases. For a stronger centripetal flow, the
two boundary layers are both centripetal what causes that the core rotates faster
than the rotor. Referring to the Figs. 4 and 5, it can be seen that there is a good
agreement between the computed and measured values.

Radial variation of dimensionless tangential velocity (Vφ/Ωr)

Figure 6 shows radial variation of the dimensionless tangential velocity β =
Vφ/Ωr for z∗ = 0.44 which represents the core rotation. The effects of Reϕ

and the axial position could also be examined. Here the aspect ratio and non-
dimensional flow rate (Cw = 10317, G = 0.036) are kept constant. It can be seen
that the entrainment coefficient β is nearly constant for x > 0.4 and is greater
than 1 for lower values of Reϕ. The entrainment coefficient is greater than 1 for
lower value of x, which is due to the effects of rotating inner shroud and the
outlet. The value of the entrainment coefficient is the lowest at x ≈ 0.5 when
the effects of inner and outer shrouds as well as of the outlet are the smallest.

Fig. 6. Effects of the rotational Reynolds number on the radial variation of the
dimensionless tangential velocity for G = 0.048, Cw = 5159, z∗ = 0.44.

Axial variation of dimensionless radial velocity (v∗r = Vr/Ωr)

Effects of rotational Reynolds number on axial variation of radial velocity has
been shown in Figs. 7 and 8 for x = 0.44 and x = 0.68 respectively. It is obvious
that two boundary layers are formed near the rotor and stator. The boundary
layer which is formed near the rotor is commonly referred to as Ekman-type and
the one near the stator is called the Bödewadt layer. The radial velocity is zero
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Fig. 7. Effects of the rotational Reynolds number on the axial profiles of the dimensionless
radial velocity for G = 0.048, Cw = 5159 and x = 0.44.

Fig. 8. Effects of the rotational Reynolds number on the axial profiles of the dimensionless
radial velocity for G = 0.048, Cw = 5159, x = 0.68.

outside the boundary layers. This zone is commonly called the core. For a flow
in rotating cavities in which rotational effects dominate, it is shown by Owen

and Rogers [15] that Vr < 0 in the boundary layer when β∞ > 1 and Vr > 0
when β∞ < 1. Referring to these figures, the same behaviour is encountered. As
it can be seen when the Reynolds number increases, the radial velocity decreases
and for the case x = 0.68, the direction of radial velocity on the rotor has been
changed for the lowest Reynolds number. The position where the direction of
radial velocity changes, is commonly called the stagnation point.
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Effect of flow parameters on the entrainment coefficient β

The effects of the rotational Reynolds number and the dimensionless flow
rate, Cw, on the entrainment coefficient and comparison with the measured
values are presented in Fig. 9 for G = 0.036. For Cw = 5159 and a given radius
x = 0.68, the dimensionless tangential velocity in the core, β, decreases for in-
creasing values of Reϕ. This is due to the influence of stationary disc on the core
which increases for higher value of Reϕ. On the other hand, in Fig. 10 where
Reϕ = 1.038 × 106, at x = 0.56, β increases as Cw increases. As Cw increases,

Fig. 9. Variation of β with Reϕ, for G = 0.036, Cw = 5159, z∗ = 0.5 and x = 0.68
(experimental values provided by Poncet et al. [18]).

Fig. 10. Variation of β with Cw, for G = 0.036, Reϕ = 1.038 × 106, z∗ = 0.5 and x = 0.56
(experimental values provided by Poncet et al. [18]).
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the amount of flow with β = 1 which entered through the rotating disc also in-
creases. This higher rotating flow raises the core rotation. The results have a fair
agreement with experimental data. The effect of variation of the aspect ratio,
G, on the entrainment coefficient β has been compared in Fig. 11 when G varies
between 0.024, 0.036 and 0.048 and for Reϕ = 4.151 × 106 and Cw = 5159. It
is clear that β is not sensitive to the variations of G, as the flows remain in the
same regime (turbulent with separated boundary layers).

Fig. 11. Effects of aspect ratio, G, on the entrainment coefficient β for Reϕ = 4.151 × 106,
z∗ = 0.5 and Cw = 5159.

Effect of rotational Reynolds number on moment coefficient Cm

The moment coefficient, Cm, for inner side of the rotating disc is defined as:

(4.1) Cm = −2π

b∫

0

r2τφ,wdr
/1

2
ρΩ2R5

2,

where τφ,w is the shear stress on the rotating disc. As y+ < 1, the first grid point
is always inside the viscous sublayer, hence:

(4.2) τφ,w = µ
∂Vφ

∂z

∣∣∣∣
z=0

.

The influence of rotational Reynolds number and the dimensionless flow rate
Cw on the moment coefficients which have been computed for the rotating disc
using Eq. (4.1), are shown in Figs. 12 and 13 respectively. It is obvious that
moment coefficient, Cm, decreases for increasing values of Reϕ. This is due to
thickening of the boundary layer thickness on the rotor which could be seen in
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Fig. 12. The effect of Reϕ on moment coefficient Cm for G = 0.036.

Fig. 13. The effect of Cw on moment coefficient Cm for G = 0.036.

Figs. 7 and 8. On the other hand, Cm increases as Cw increases. Considering
Fig. 15, it can be realized that for constant Cw, there is a critical value of Reϕ

in which Cm = 0.
By combining the effects of Reϕ and Cw and the definition of turbulent flow

parameters (λT = Cw/Re0.8
ϕ ), a formula for estimating Cm in the system is

presented below:

(4.3) Cm = 0.0006Ln(λT ) + 0.002.

Figure 14 shows numerical values of Cm against the turbulent flow parame-
ters, along with the correlated values of Eq. (4.2). Note from the figure that λT

increases when Cm increases. At λT
∼= 0.03, Cm approaches zero which indicates
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Fig. 14. The variation of moment coefficient with λT for G = 0.036.

a critical point. The critical point (where Cm approaches zero) is a significant
result for the designer since the amount of the external work is minimum at this
point It is interesting to note that Karabay et al. [8] and Farzaneh [3] have
also found a critical value for another flow parameter (inlet swirl ratio) in which
Cm approaches zero for other configuration.

Estimation of the stagnation point

The stagnation point, x∗, on the rotor is the point where the direction of
radial velocity in the Ekman layer is changed. Basing on the numerical compu-
tation, the stagnation points for various cases have been calculated. Figure 15
shows variation of x∗ against Reϕ. A fitted curve is also presented in the figure.

Fig. 15. The variation of stagnation point against Reϕ.
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Fig. 16. The variation of stagnation point against Cw.

It is obvious that x∗ decreases as Reϕ increases. Figure 16 shows variation of x∗

against Cw. It can be seen that x∗ increases when Cw increases.
By combining effects of Reϕ and Cw and the definition of turbulent flow

parameters as λT = Cw/Re0.8
ϕ , a formula for estimating the position of stagnation

point in the system is presented below:

(4.4) x∗ = 0.2131Ln(λT ) + 1.2876.

Figure 17 shows numerical values of the stagnation point against the turbu-
lent flow parameters, along with the correlated formula values of Eq. (4.2). Note

Fig. 17. The variation of stagnation point against λT
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from the figure, that as λT increases, the stagnation point moves towards the
outer shroud.

5. Conclusions

A computational study has been carried out to investigate the turbulent
flow inside a rotor–stator system and to examine the effects of flow parameters
(rotational Reynolds number, non-dimensional flow rate and aspect ratio) on the
flow structure. The available measured values have been also compared with the
numerical values.

The contours of streamlines and axial variation of velocity profile show that
there are two separated boundary layers on each disc with a rotational core
in the middle, which is commonly found in a classical rotor-stator system. For
lower value of non-dimensional flow rate, the flow structure is similar to a sealed
system. In the case of a higher centripetal throughflow, the flow is then divided
into three areas in which the central core rotates faster than the rotating disc
and both boundary layers are centripetal.

The results show that there is a stagnation point on the boundary layer formed
near the rotating disc (commonly known as the Ekman layer). The stagnation
point moves towards the shroud when rotational Reynolds number decreases or
non-dimensional flow rate increases. A correlation has been given to estimate the
position of the stagnation point. The computed values of the momentum coefficient
decrease for increasing values of rotational Reynolds number or for decreasing non-
dimensional flow rate. The computed results show that there is a critical value for
flow parameters, in which the momentum coefficient approaches zero.

The computed values are in good agreement with the measured values what
has proved that the computation method can be used as a reasonable tool to
investigate the flow inside the rotor-stator system.
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