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1. Introduction

Instantaneous invariants have been introduced by Bottema [4]. They are
geometric invariants under the group of similitudes. The concepts of instan-
taneous invariants and canonical systems are extended to spatial kinematics by
Veldkamp [11]. In this work, Veldkamp developed instantaneous invariants with
the aid of point coordinates being useful for characterization of a space curve,
which is the path trajectory of a point in a rigid body in spatial motion, thus
making an important contribution to the kinematic geometry. He also developed
instantaneous invariants via the line coordinates to characterize a ruled surface,
which is the path trajectory of a line embedded in a rigid body in spatial motion.
So, the instantaneous invariants developed have been employed for a kinematic
curvature theory for ruled surfaces [10]. Screw notations make possible the devel-
opment of a systematic procedure to determine the dual number instantaneous
invariants for a given rigid body in spatial motion [8].
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2. Settings

If u and u◦ are real numbers, the combination û = u + εu◦ with ε2 = 0 is
called a dual number, where ε is the dual unit [12]. The set of dual numbers is
denoted by D. Then the set

D
3 = {x̂ = x+ εx◦ | x, x◦ ∈ R

3}

is a module over the ring D, which is called a D-module as a dual space. The
elements of D

3 are called dual vectors [5].
Let D

3
1 be a dual Lorentzian space with the inner product

〈x̂, ŷ〉 = 〈x, y〉 + ε(〈x, y◦〉 + 〈x◦, y〉),

where the inner product of the vectors x and y is

〈x, y〉 = x
1
y

1
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2
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3
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3

and the vector product

x̂× ŷ = x× y + ε(x× y◦ + x◦ × y),
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A dual vector x̂ of D
3
1 is said to be spacelike if 〈x, x〉 > 0 or x = 0, timelike if

〈x, x〉 < 0 and lightlike or null if 〈x, x〉 = 0 and x 6= 0 [1, 2, 3]. The norm of
a dual vector x̂ in D

3
1 is defined to be ‖x̂‖ =

√
|〈x̂, x̂〉|. A 3×3 matrix Â is called

the orthogonal matrix in sense of Lorentzian if it is ÂT = ŜÂ−1Ŝ, where the
matrix Ŝ is a signature matrix and will be denoted by, [9],




1 0 0
0 1 0
0 0 −1



 .

Now, consider a rigid body moving in free space. Assume any inertial refer-
ence frame {F} fixed in the space and a frame {M} fixed to the body. At each
instance, the position and the orientation of the rigid body is uniquely described
by a rigid body displacement from frame {F} to frame {M} [7].

A unit vector bounded on a line is called the unit screw and denoted by R̂.
Let R̂F indicate the unit screw R̂ in the frame {F}. The three dual number
components of R̂F can be written as a column matrix (R̂)F . Since the dual
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number components of R̂F consist of six real numbers, the well-known Plücker
coordinates of the line in {F}, the terms: unit screw and line, are synonymous
in this study.

The instantaneous state of motion of a rigid body can be described by a dual
screw velocity Ω̂. The dual screw velocity of a rigid body specified in a system
{M} is denoted by Ω̂

M
. Also this dual screw velocity may be written as a column

matrix (Ω̂)M with dual number elements. The real part of this dual screw velocity
physically represents the angular velocity of the rigid body, while the dual part
represents the linear velocity of the origin of the system {M}.

3. Instantaneous motion

The motion of a rigid body at each instance can be uniquely described by
a dual screw velocity

(3.1) Ω̂ = ŵŝ = (w + εw◦)ŝ = w

(
1 + ε

w◦

w

)
ŝ = w(1 + εp)ŝ.

Equation (3.1) represents an instantaneous screw motion. This representation
consists of a rotation with the angular velocity w about, and a translation with
velocity w◦ – along the instantaneous screw axis (ISA) specified by the unit
screw ŝ. Commonly, the direction of ISA is defined in the positive sense of angular
velocity. p, which is defined by p = w◦/w , is the instantaneous screw pitch of the
motion. In this study, we are going to present the way of determination of ISA
for a given rigid body motion and to introduce the geometric concept of moving
and fixed axodes.

In the study of the instantaneous kinematics of a rigid body, let us choose
two frames of reference: frame {M} attached to a moving rigid body, and frame
{F} fixed in a dual Lorentzian 3-space. Let (R̂)M be an arbitrary line, embedded
in the body and let (R̂)F , specified in the fixed frame {F}, be the line which is
coincident with (R̂)M at this instant. Hence the motion of the rigid body may
be described as

(3.2) (R̂)F = [Â](R̂)M ,

where

(3.3) [Â] =



â1 b̂1 ĉ1
â2 b̂2 ĉ2
â3 b̂3 ĉ3




is referred to as a screw matrix with dual number elements, which is an or-
thogonal matrix in Lorentzian sense. Therefore, since [Â]T = [Ŝ][Â]−1[Ŝ] and
[Â]−1 = [Ŝ][Â]T [Ŝ],
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(3.4) [Â][Â]−1 = [Â][Ŝ][Â]T [Ŝ] = [Â]−1[Â] = [Ŝ][Â]T [Ŝ][Â] = Î .

From Eq. (3.4) we can write the inverse transformation of Eq. (3.2) as

(3.5) (R̂)M = [Ŝ][Â]T [Ŝ](R̂)F .

Here the elements of a screw matrix determined by the instantaneous position
of {M} relative to {F} are functions of a real parameter t. We will assume that
these functions have derivatives of any order. Hence the time derivatives of any

order of the screw matrix are denoted by

(n)

[Â], n = 1, 2, 3, . . .
Taking the derivative of Eq. (3.2) with respect to t, we get

(3.6)
˙

(R̂)F = [
˙̂
A](R̂)M .

Hence we can write

˙
(R̂)F = [Ω̂]F (R̂)F ,(3.7)

˙
(R̂)M = [Ω̂]M (R̂)M ,(3.8)

where
˙

(R̂)F and
˙

(R̂)M denote the absolute time derivatives of the unit screw R̂

expressed in {F} and {M}, respectively. By definition, we obtain [Ω̂]F and [Ω̂]M
as below:

(3.9)

[Ω̂]F =




0 ŵF3

−ŵF2

−ŵF3
0 ŵF1

−ŵF2
ŵF1

0



,

[Ω̂]M =




0 ŵM3

−ŵM2

−ŵM3
0 ŵM1

−ŵM2
ŵM1

0



,

where [Ω̂]F and [Ω̂]M are two skew-symmetric matrices in Lorentzian sense [6].
Also here ŵF1

, ŵF2
and ŵF3

are elements of (Ω̂)F while ŵM1
, ŵM2

and ŵM3

are elements of (Ω̂)M . The column matrices (Ω̂)F and (Ω̂)M are the dual screw
velocity Ω̂ of the rigid body specified in {F} and {M}, respectively.

Taking into consideration equations (3.6), (3.7) and with the aid of Eq. (3.2)
we can write

[Ω̂]F [Â](R̂)M = [
˙̂
A](R̂)M .

From Eq. (3.4) we can obtain

(3.10) [Ω̂]F = [
˙̂
A][Ŝ][Â]T [Ŝ].
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On the other hand, since (
˙̂
R)F = [Â](

˙̂
R)M , we have

[Â][Ω̂]M (R̂)M = [
˙̂
A](R̂)M

from Eqs. (3.6) and (3.8). Therefore we get

(3.11) [Ω̂]M = [Ŝ][Â]T [Ŝ][
˙̂
A].

If we do the matrix multiplication of the right-hand sides of Eqs. (3.10) and

(3.11), the matrices (Ω̂)F and (Ω̂)M are found in terms of [Â] and [
˙̂
A] as below:

(Ω̂)F =



ŵF1

ŵF2

ŵF3


 =




˙̂a3â2 +
˙̂
b3b̂2 − ˙̂c3ĉ2

− ˙̂a3â1 − ˙̂
b3b̂1 + ˙̂c3ĉ1

˙̂a1â2 +
˙̂
b1b̂2 − ˙̂c1ĉ2


 ,(3.12)

(Ω̂)M =




ŵM1

ŵM2

ŵM3



 =




˙̂c1b̂1 + ˙̂c2b̂2 − ˙̂c3b̂3
− ˙̂c1â1−̇ĉ2â2 + ˙̂c3â3
˙̂
b1â1 +

˙̂
b2â2 − ˙̂

b3â3


 .(3.13)

The dual modulus ŵ given in Eq. (3.1) can be expressed as

(3.14) ŵ =
√
|(ŵF1

)2 + (ŵF2
)2 − (ŵF3

)2| =
√

|(ŵM1
)2 + (ŵM2

)2 − (ŵM3
)2|.

The real part w obtained by expansion in Eq. (3.14) is the magnitude of the
angular velocity of the body, while the dual part w◦ is the velocity of the body
translating along the timelike ISA. Hence using Eq. (3.1), we can express the
timelike ISA ŝ in {F} and {M} as:

(ŝ)F =
(Ω̂)F

ŵ
,(3.15)

(ŝ)M =
(Ω̂)M

ŵ
.(3.16)

We may observe from Eqs. (3.15) and (3.16) that (ŝ)F and (ŝ)M represent two
ruled surfaces. The ruled surface (ŝ)M embedded in the body is called the mov-
ing axode and the ruled surface (ŝ)F fixed in space is called the fixed axode.
Thus we conclude that a rigid body in general motion may be uniquely de-
scribed by a moving axode rolling and sliding simultaneously on a fixed axode.
At any instant, there is one and only one coincident generator of the moving
and fixed axodes. The coincident generator is the instantaneous screw axis of
the motion.
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4. ISA trihedron {g} and screw matrix [L̂]

Let us denote the derivative of ISA as:

˙̂s =
dŝ

dt
=

dŝ

dQ̂

dQ̂

dt
,

where dQ̂ is the dual arc element of the fixed axode and dŝ/dQ̂ is a unit screw
intersecting the ISA ŝ orthogonally. Now we may define the trihedron {g} asso-
ciated with the fixed axode by a set of base screws, which are three orthogonally
intersecting unit screws:

(4.1)

ĝ3 = ŝ,

ĝ1 =
dŝ

dQ̂
=

˙̂s

dQ̂/dt
=

˙̂s

‖ ˙̂s‖
,

ĝ2 = ĝ3 × ĝ1,

where ĝ3 is the timelike generator, ĝ1 is the spacelike central normal and ĝ2 is
the spacelike central tangent of the fixed axode. The origin of {g} is located at
the center point of the timelike generator. Likewise, the basic unique screws of
the generator trihedron {h} of the moving axode can be defined as:

ĥ3 = ŝ,

ĥ1 =
˙̂s

‖ ˙̂s‖
,

ĥ2 = ĥ3 × ĥ1,

with ĥ3 as the timelike generator, ĥ1 as the spacelike central normal and ĥ2 as
the spacelike central tangent of the moving axode.

Using the operator rule, (see [7]), on ŝ in both {F} and {M}, we have

dŝ

dt
= ˙̂s|M + (Ω̂)M × ŝ = ˙̂s|M + (ŝŵ) × ŝ = ˙̂s|M ,

dŝ

dt
= ˙̂s|F + (Ω̂)F × ŝ = ˙̂s|F + (ŝŵ) × ŝ = ˙̂s|F

so that
˙̂s|M = ˙̂s|F

or
ĝ1 = ĥ1.
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This means that the trihedron {h} always coincides with the trihedron {g}.
Therefore we will use one notation {g} and refer to it as the ISA trihedron. Let
us assume that the screw matrix [L̂] defines the transformation between the ISA
trihedron {g} and the fixed system {F}. Then we can write

(4.2) (R̂)F = [L̂](R̂)g.

Taking into consideration Eqs. (3.2), (3.4) and (4.2), we can express the trans-
formation between the ISA trihedron and the system {M} as

(4.3) (R̂)M = [Ŝ][Â]T [Ŝ][L̂](R̂)g.

The elements of [L̂] determined by the position of {g} relative to {F} are given
by the dual components of ĝ1, ĝ2 and ĝ3, expressed in {F} denoted, respectively,
by ĝ1F , ĝ2F and ĝ3F .

Now we will determine the elements of [L̂]. Because ĝ3F is coincident with
the timelike ISA, from Eq. (3.15) we have

(4.4) ĝ3F = ŝF =
1

ŵ
(Ω̂)F .

Taking into consideration the second equation of Eq. (4.1) in {F}, we get

(4.5) ĝ1F =
˙̂sF

‖ ˙̂sF ‖
,

where

(4.6) ˙̂sF =
1

ŵ
(
˙̂
Ω)F −

˙̂w

ŵ2
(Ω̂)F ,

which is obtained by differentiation of Eq. (4.4) with respect to the real para-
meter t. Finally, we get ĝ2F as below

(4.7) ĝ2F = ĝ3F × ĝ1F .

(Ω̂)F given in Eq. (3.12) and ŵ given in Eq. (3.14) are analytical functions of
the time parameter t. So their time derivatives exist. Therefore the set of base
screws ĝ1F , ĝ2F and ĝ3F can be expressed as column matrices:

(4.8) ĝ1F =



l̂1

l̂2

l̂3


, ĝ2F =



k̂1

k̂2

k̂3


, ĝ3F =



n̂1

n̂2

n̂3


.

Hence we can construct the screw matrix

(4.9) [L̂] =



l̂1 k̂1 n̂1

l̂2 k̂2 n̂2

l̂3 k̂3 n̂3


,

where all the elements are the functions of parameter t.
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5. Canonical systems and screw matrix [B̂]

In the study of instantaneous kinematics, we are interested only in the motion
of a rigid body at a particular instant (t = t0). The position of the rigid body
at t = 0 is referred to as the zero position. When a moving reference frame is
at the zero position, its symbol carries a subscript 0, for example {g}0. A screw
matrix with a subscript 0 indicates that it is evaluated at t = 0, for example:
[Â]0 = [Â]t=0.

Now let us define two new systems. One of the system {X} is attached to
the body and the other system {Y } is fixed in space so that both {X}0 and
{Y }0 at zero position are coincident with the ISA trihedron {g}0. We know from
Veldkamp [11], that the two systems {X} and {Y } are canonical systems.

The systems {F} and {Y } are fixed in the dual Lorentzian space. Hence we
can write the relationship between the systems {F} and {Y } as below:

(5.1) (R̂)F = [L̂]0(R̂)Y .

Taking into consideration Eqs. (3.2) and (3.4) we can express the transformation
between the systems {M} and {X} attached to the same rigid body as follows:

(5.2) (R̂)M = [Ŝ][Â]T0 [Ŝ][L̂]0(R̂)X .

Here we note that the systems {X} and {Y } at a general instant t do not
coincide. The transformation between them can be defined by the screw matrix.
Therefore we can write

(5.3) (R̂)Y = [B̂](R̂)X

for an arbitrary line R̂ in the body. If we use orthogonal properties of screw
matrices [L̂]0 and [Â]0, we can get the screw matrix [B̂] with the aid of Eq. (3.2)

(5.4) [B̂] = [Ŝ][L̂]T0 [Ŝ][Â][Ŝ][Â]T0 [Ŝ][L̂]0.

If we take the nth-order derivative of [B̂], we obtain

(5.5) [

(n)

B̂ ] = [Ŝ][L̂]T0 [Ŝ][

(n)

Â ][Ŝ][Â]T0 [Ŝ][L̂]0.

Let us denote [Â]n =

(n)

[Â]t=0. Then we obtain the general expression for deriva-

tives of [B̂] at the zero position

(5.6) [B̂]n = [Ŝ][L̂]T0 [Ŝ][Â]n[Ŝ][Â]T0 [Ŝ][L̂]0
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with n = 1, 2, 3, . . . ; while for n = 0 we get

(5.7) [B̂]0 = [Î ].

This means that the canonical systems {X}0 and {Y }0 are actually coincident.
We shall drop the subscript X in subsequent derivations if the screw and

column matrices are expressed in the fixed canonical system {X}, for exam-

ple: ŝ = ŝX ,
˙̂
R =

˙̂
RX , (Ω̂) = (Ω̂)X . In addition, we shall introduce notations

suggested by Veldkamp: the values of functions and their time derivatives, eval-
uated at t = 0, are to be denoted by the last subscript of the function symbol.
For example, R̂0 = R̂(0), ŝ1 = ˙̂s(0), ŵ30 = ŵ3(0), α̂21 = ˙̂α2(0), . . .

The base screws x̂10, x̂20 and x̂30 of {Y }0 are defined by Eq. (4.1) since the
canonical systems at zero position coincide with the ISA trihedron {g}0. With
the ISA ŝ0 and x̂30 coinciding, we have

(5.8) (ŝ)0 = [0 0 1]T ,

and ŝ1 is coincident with x̂10

(5.9) (ŝ)1 = ŝ11[1 0 0]T ,

in which s11 is always positive by convention.
If the velocity screw Ω̂ of the rigid body specified in system {Y } is

(5.10) (Ω̂) = [ŵ1 ŵ2 ŵ3]
T

we have, in view of Eq. (5.8) at the zero position,

(5.11) (Ω̂)0 = [0 0 ŵ30]
T ,

which represents a screw motion about the ISA ŝ0. Note that the real part of
ŵ30 is always positive by convention.

Differentiating Eq. (3.1) with respect to t, we express the resultant at the
zero position as

(5.12) (Ω̂)1 = ŵ31(ŝ)0 + ŵ30(ŝ)1.

Substituting Eqs. (5.8) and (5.9) into Eq. (5.12), we obtain the column matrix

(5.13) (Ω̂)1 = [ŵ11 0 ŵ31]
T ,

where ŵ11 = ŵ30ŝ11.
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6. Instantaneous invariants

Let (R̂)X be a line in the rigid body. From Eq. (5.3), we get the nth-order
time derivative of R̂ in the system {Y } as follows:

(n)

(R̂) =

(n)

[B̂](R̂)X =

(n)

[B̂][Ŝ][B̂]T [Ŝ](R̂).

Since [B̂]T0 = Î, we get the expression for derivatives of (R̂) at the zero position

(6.1) (R̂)n = [B̂]n(R̂)0.

Similarly, we can express the derivative of (R̂) in the system {Y } as

(6.2) (
˙̂
R) = [Ω̂](R̂).

Hence Eq. (6.2) at the zero position can be written as

(6.3) (R̂)1 = [Ω̂]0(R̂)0.

If we take the derivative of (R̂)1 at zero position, we find

(R̂)2 = [Ω̂]1(R̂)0 + [Ω̂]0(R̂)1.

Here, taking into consideration Eq. (6.3), (R̂)2 can be written as

(6.4) (R̂)2 = {[Ω̂]1 + [Ω̂]0[Ω̂]0}(R̂)0.

In the Lorentzian sense, the skew-symmetric matrices [Ω̂]0 and [Ω̂]1 in Eqs. (6.3)
and (6.4) are

(6.5) [Ω̂]0 =




0 ŵ30 0

−ŵ30 0 0
0 0 0



, [Ω̂]1 =




0 ŵ31 0

−ŵ31 0 ŵ11

0 ŵ11 0



.

If we equate Eq. (6.1) with Eqs. (6.3) and (6.4) for n = 1, 2, respectively, we
have

(6.6) [B̂]1 = [Ω̂]0 =




0 ŵ30 0

−ŵ30 0 0
0 0 0



,

(6.7) [B̂]2 =




−ŵ2

30 ŵ31 0
−ŵ31 −ŵ2

30 ŵ11

0 ŵ11 0



.



On instantaneous invariants in dual Lorentzian space kinematics 233

Since the geometric properties of the motion of a rigid body are independent of
the rate at which the motion is performed, any given motion can be modified in
such a manner that the magnitude of its angular velocity about the ISA will be
kept continuously equal to unity. It follows that

ŵ30 = 1 + εŵ◦

31
= 1 + εp0,(6.8)

ŵ31 = εŵ◦
31

= εp1,(6.9)

where p0 is the pitch and p1 is the rate of change of the pitch at zero position.
Now let us assume that the screw matrix [B̂] is

(6.10) [B̂] =



α̂1 β̂1 γ̂1

α̂2 β̂2 γ̂2

α̂3 β̂3 γ̂3


.

The derivatives of any order of [B̂] at zero position are

(6.11) [B̂]n =



α̂1n β̂1n γ̂1n

α̂2n β̂2n γ̂2n

α̂3n β̂3n γ̂3n




with n = 1, 2, 3, . . . . Since the screw matrix [B̂] is orthogonal in the Lorentzian
sense, we can write

(6.12) [B̂][Ŝ][B̂]T [Ŝ] = Î.

If we take the derivative of this equation in succession with respect to t, and
substitute t = 0 into the resultant expressions, we get the following result

[B̂]1 + [Ŝ]0[B̂]T1 [Ŝ]0 = 0,(6.13)

[B̂]2 + [Ŝ]0[B̂]T2 [Ŝ]0 = −2[B̂]1[Ŝ]0[B̂]T1 [Ŝ]0,(6.14)

[B̂]3 + [Ŝ]0[B̂]T3 [Ŝ]0 = −3[B̂]2[Ŝ]0[B̂]T1 [Ŝ]0 − 3[B̂]1[Ŝ]0[B̂]T2 [Ŝ]0.(6.15)

Taking into consideration Eqs. (6.6), (6.7) and using Eqs. (6.13), (6.14) and
(6.15), we find that [B̂]1, [B̂]2 and [B̂]3 are

[B̂]1 =




0 −α̂21 0
α̂21 0 0
0 0 0



,(6.16)

[B̂]2 =




−(α̂12 + 2α̂2

21) −α̂22 0

α̂22 −(β̂22 + 2α̂2
21) β̂32

0 β̂32 0



,(6.17)
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[B̂]3 =




−6α̂21α̂22−α̂13 −3α̂21(β̂22−α̂12)−α̂23 −3α̂21β̂32+α̂33

−3α̂21(β̂22−α̂12)−β̂13 −6α̂21α̂22 − β̂23 β̂33

3α̂21β̂32 − γ̂13 γ̂23 −γ̂33


.(6.18)

If we go on like this, the elements for [B̂]n can be derived. Taking into consider-
ation Eqs. (6.6), (6.8) and (6.16), the dual element in [B̂]1 is found as

(6.19) α̂21 = −ŵ30 = −(1 + εŵ31) = −(1 − εα◦
22),

which indicates that a single scalar parameter α̂◦
21 characterizes completely, to

the first order, the geometric properties of the motion of a rigid body at any
given instant.

To determine the elements of [B̂]2, two additional dual elements α̂22 and β̂32

are found. So, from Eqs. (6.7) and (6.9) we have

(6.20) α̂22 = −ŵ31 = −εŵ31 = εα◦
22.

Thus, to characterize the geometric properties of the motion of a rigid body up
to the second order, a total of four scalar parameters are required, which we must
know, in addition to α̂◦

21, α̂
◦
22 and another dual scalar parameter β̂32. We may

deduce from Eq. (6.18) that the geometric properties of the motion of a rigid
body referred to any given instant up to the nth order (n ≥ 3), characterized
by a total of [6(n − 3) + 4] scalar parameters, are referred to as the nth order
instantaneous invariants.

Example. The dual hyperbolic angle between the two gear axes F̂3 and M̂3

is δ̂ = δ + εδ◦. The ISA forms a dual hyperbolic angle ξ̂ = ξ + εξ◦ with F̂3 and
a dual hyperbolic angle η̂ = η + εη◦ with M̂3. So it follows that δ̂ = ξ̂ + η̂, as
shown in Fig. 1. The reference frame {F̂} with base screws F̂1, F̂2, F̂3 is attached
to the fixed gear. Therefore ISA ŝ may be expressed as

(6.21) (ŝ)F =



− sinφ sinh ξ̂

cosφ sinh ξ̂

cosh ξ̂


.

The motion of the gear 2 is given by

(6.22) (Ω̂)F = ŵ(ŝ)F = ŵ



− sinφ sinh ξ̂

cosφ sinh ξ̂

cosh ξ̂


.

Frame {M̂} with base screws M̂1, M̂2, M̂3 and origin M is attached to the
planet gear. We can write the transformation matrix between the frame {M}
and the fixed frame {F} as
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ISA

ξ
η

δ

M1

2

1
F2

F1

M2

3

A

B

F3

M3
s

φ

θ

C

Fig. 1. Epicyclic hypoid gear train.

[Â] =




cosφ − sinφ 0
sinφ cosφ 0

0 0 1








1 0 0

0 cosh δ̂ sinh δ̂

0 sinh δ̂ cosh δ̂








cos θ − sin θ 0
sin θ cos θ 0

0 0 1



,

which, after expansion, yields

(6.23) [Â] =




â1 b̂1 − sinφ sinh δ̂

â2 b̂2 cosφ sinh δ̂

sinφ sinh δ̂ cosφ sinh δ̂ cosh δ̂


,

where

(6.24)

â1 = cosφ cos θ − sinφ sin θ cosh δ̂,

â2 = sinφ cos θ + cosφ sin θ cosh δ̂,

b̂1 = − cosφ sin θ − sinφ cos θ cosh δ̂,

b̂2 = − sinφ sin θ + cosφ cos θ cosh δ̂.
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Differentiating Eq. (6.23) with respect to time we have

(6.25)
˙

[Â] =




−φ̇â2 + θ̇b̂1 −φ̇b̂2 − θ̇â1 θ̇ cos θ sinh δ̂

φ̇â1 + θ̇b̂2 φ̇b̂1 − θ̇â2 −θ̇ sin θ sinh δ̂

θ̇ cos θ sinh δ̂ −θ̇ sin θ sinh δ̂ 0


,

where φ̇ is the angular velocity of carrier 3 and θ̇ is the angular velocity of the
planet gear 2 relative to carrier 3.

Substituting the elements in Eqs. (6.23) and (6.25) into Eq. (3.12) we may
write the velocity screw of the planet gear specified in {F} as

(6.26) (Ω̂)F =



θ̇ sinφ sinh δ̂

−θ̇ cosφ sinh δ̂

−φ̇− θ̇ cosh δ̂


.

Equating Eqs. (6.22) and (6.26) we obtain

N12 =
θ̇

φ̇
=

sinh ξ

sinh η
,(6.27)

p = ξ◦ coth ξ − δ◦ coth δ,(6.28)

where N12 is the gear ratio and p is the screw pitch.
Using Eq. (6.21) for ĝ3F , and with the aid of Eqs. (4.5) and (4.7), we may

construct the matrix [L̂] as

(6.29) [L̂] =




− cosφ sinφ cosh ξ̂ − sinφ sinh ξ̂

− sinφ − cosφ cosh ξ̂ cosφ sinh ξ̂

0 − sinh ξ̂ cosh ξ̂


.

Taking the zero position at the instant when φ = θ = 0, we obtain from Eqs.
(5.4), (6.23) and (6.29)

[B̂] = [Ŝ][L̂]T0 [Ŝ][Â][Ŝ][Â]T0 [Ŝ][L̂]0,

α̂2 = a2 cosh ξ̂ − sinh ξ̂ sinh δ̂ sin θ,

β̂3 = sinh η̂(cosh ξ̂ cosh δ̂ − cosφ sinh ξ̂ sinh δ̂)

+ cosh η̂(b2 sinh ξ̂ − cos θ cosh ξ̂ sinh δ̂),

γ̂1 = b1 sinh η̂ + sinφ sinh δ̂ cosh η̂.

Differentiating these equations in succession and setting φ = θ = 0, we
obtain the instantaneous invariants to characterize the geometric properties of
the motion of the planet gear 2 up to the third order.
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7. Conclusion

The concepts of canonical systems and instantaneous invariants in dual Lo-
rentzian space are presented. This gives a systematic approximation about de-
termining the instantaneous invariants. The instantaneous invariants are derived
on bases of line coordinates, which is important for the characterization of higher
order intrinsic properties of a ruled surface.

As mentioned in Introduction, the use of instantaneous invariants to describe
a rigid body in constrained spatial motion was introduced by Veldkamp. How-
ever, he did not provide a systematic procedure for computing the instantaneous
invariants for a given rigid body motion. So, our work aims to close this gap by
introducing the definition of instantaneous invariants in dual form in the sense
of Lorentzian.

We hope that our work may contribute to the application of dual Lorentzian
spherical motions, four-bar mechanisms, theory of mechanism synthesis for
higher order approximations, gear theory and spatial mechanisms in engineering
design.
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