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1. Introduction

Viscous sliding at internal interfaces and stress-directed diffusion are
two important fundamental processes in high-temperature deformation of ma-
terials. Diffusional creep of polycrystals is a typical example that is caused by
the two fundamental processes. We can formulate the processes with an appli-
cation of micromechanics based on linear elasticity [1]. The formulation method
has been shown in our previous papers [2, 3]. In the analyses, combination of
both fundamental processes has been considered since occurrence of sliding and
diffusion changes both of their driving forces. Some recent studies have also
considered the combination of sliding and diffusion to discuss the deformation
behavior of composites or nanocrystalline materials [4–6].

In the present paper, using the method of analysis shown in our previous
studies [2, 3], we consider a diffusional creeping polycrystal with bimodal grain-
size distribution. Uniform grain-size has been often assumed for diffusional creep
of polycrystals. However, rates of sliding and diffusion depend on the size of
grains, and the grain-size distribution affects deformation behavior of polycrys-
tals. Actually, the effects of the grain-size distribution on the kinetics of creep
of materials have been pointed out in recent studies [7, 8]. In the present study,
two effects of the grain-size distribution, which have not been reported in ana-
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lytical forms as far as we know, will be discussed. One is the appearance of an
initial transient stage in a creep curve of the polycrystal, and the other is the
stress concentration of deviatoric components generated at the center of larger
grains.

2. Grain-boundary sliding and stress-directed diffusion

in materials

Here we explain the outline of the present method of analysis. Details of the
following discussion were given in previous publications [2, 3].

Considering the generation of Somigliana’s dislocations with the Burgers vec-
tors b on boundaries of the grains, we can describe the occurrence of grain-
boundary sliding and diffusion. The tangential and normal components bT and
bN of b with respect to the grain boundaries, describe the occurrence of grain-
boundary sliding and diffusion, respectively. Since grain-boundary sliding occurs
by tangential tractions TT acting on the grain boundaries, the rate of bT, dbT/dt
is written as a function of TT. On the other hand, diffusion occurs by gradients
of normal tractions TN along the grain boundaries. The rate of bN, dbN/dt is
written as a function of TN. Knowing the stresses in the grains σS

ij due to bT
(sliding) and σD

ij due to bN (diffusion), TT and TN can be written as functions
of both bT and bN. To include effects of interactions between grains, we use the
average field method [9]. Then we have simultaneous differential equations in
the rates dbT/dt and dbN/dt. The generation of bT and bN can be transformed
into the generation of plastic strains in the grains [2, 3]. Considering the plastic
strains εSij by sliding due to bT and εDij by diffusion due to bN, we finally obtain
simultaneous differential equations in the rates of εSij and εDij [2, 3].

3. Creep behavior and stress states of polycrystal

with grain-size distribution

3.1. Polycrystal under a uniaxial stress

Consider a sufficiently large polycrystal consisting of many equiaxed grains.
As an example of a polycrystal with grain-size distribution, we consider a poly-
crystal with bimodal grain-size distribution. Approximating the shape of the
equiaxed grains as spherical, we treat the polycrystal as consisting of grains of
type 1 with radius a1 and volume fraction f1 and of type 2, with radius a2,
with volume fraction f2, where f1 + f2 = 1. On the x1 − x2 − x3 orthogonal
coordinate system, we assume that an external stress σA

33 = σA is applied to the
polycrystal. Although the effects of grain-boundary junctions where the sliding
is suppressed are not included explicitly, the spherical approximation enables us
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to treat the present problem in an analytical form. As shown in the previous
studies [2, 3], effects of grain-boundary sliding and diffusion on overall deforma-
tion behavior of polycrystals have been successfully discussed with the spherical
approximation.

For simplicity, we assume that grain-boundary diffusion is the only diffusion
mechanism. That is to say, we consider the Coble creep of the polycrystal in the
present study. We also assume that grain boundaries in the polycrystal slide in
a Newtonian viscous fashion with viscosity η.

3.2. Creep behavior

The macroscopic plastic strain εP33 = εP of the polycrystal with bimodal
grain-size distribution is given by

(3.1) εP = f1{εS(1) + εD(1)} + f2{εS(2) + εD(2)},

where εS(i) and εD(i) are the 33 components of the averaged strains in the grains
of type i (i = 1 or 2) caused by grain-boundary sliding and diffusion, respec-
tively. Using the method of analysis outlined in Section 2, we have simultaneous
differential equations in εS(i) and εD(i). The explicit forms of the equations are
shown in the Appendix.

In the following discussion, we assume that grain-boundary sliding occurs
much more rapidly than diffusion, i.e. η → 0. Then, using the initial conditions
εD(i) = 0 when t = 0, the simultaneous differential equations (A.1) in the Ap-
pendix are solved and εP of (3.1) is given as a function of time t after loading by

(3.2) εP =
35(1−ν)σA

8(7+5ν)µ
+

25(1−ν)(21+ν)σA

8(7+5ν)(7−5ν)µ

f1f2(a
3
1−a3

2)
2

{f1a3
1+f2a3

2}2

{

1−exp

(−t
τ

)}

+
20cDΩσA

kT{f1a3
1+f2a3

2}
t,

where µ is the shear modulus, ν the Poisson ratio, 2c the grain-boundary thick-
ness, D the grain-boundary diffusion coefficient, Ω the atomic volume, and k
and T have their usual meaning. The relaxation time τ in the second term of
the right-hand side of (3.2) is given by

(3.3) τ =
5(21 + ν)(1 − ν)kT

32(49 − 25ν2)µcDΩ

a3
1a

3
2

{

f1a3
1 + f2a3

2

} .

When a1 = a2, (3.2) reproduces the result for the polycrystal with uniform grain
size [3].

Because of the assumption of the fast grain-boundary sliding (η → 0), η ap-
pears in neither (3.2) nor (3.3). The first term of the right-hand side of (3.2) shows
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the instantaneous strain caused by fast grain-boundary sliding with η → 0. This
term does not have the grain-size dependence. The second term shows transient
deformation behavior with relaxation time τ . This term becomes zero when
a1 = a2. During initial deformation after loading, deformation by diffusion in
smaller grains occurs faster than in larger grains. The larger grains retard the
fast deformation in the smaller grains. As deformation of the polycrystal pro-
ceeds, the averaged plastic-strain rates in the smaller and larger grains become
the same. This is the reason for the occurrence of the transient behavior caused
by the grain-size distribution. The third term of (3.2) gives the rate of steady-
state deformation of the polycrystal.

3.3. Stress states in the bimodal grains

The external stress applied to the polycrystal is σA
33 = σA. In this case,

the stresses (σ33 −σ11) and (σ33 −σ22) are important components to discuss the
deviatoric components. The stress (σ33−σ22) in the spherical grains is essentially
the same as (σ33−σ11). We hence consider the variations of the stress (σ33−σ11)
in this paper.

By using the average field method [9], the stresses in grains can be written
as functions of the averaged strains [10]. The stress σ33(i) − σ11(i) for the grain
of type i (i = 1 or 2) is written as a function of time t in the form

(3.4) σ33(i) − σ11(i) = σA

[

1 +
(21 − 5R2/a2

i )

2(7 + 5ν)
+

5{(7 + 2ν) −R2/a2
i }

2(7 + 5ν)

× (1 − fi)(2a
3
i − a3

1 − a3
2)

{f1a3
1 + f2a3

2}

{

1 − exp

(−t
τ

)}]

,

where

(3.5) R2 = {(7 − 4ν)x2 + 4ν(x2
1 + 2x2

3)}

and x2 = xixi = x2
1 + x2

2 + x2
3 is a function of the position (x1, x2, x3) in the

spherical grain having its center at the origin.
From (3.4) and (3.5), the averaged stress 〈σ33(i)−σ11(i)〉 in the grain of type

i is written as

(3.6) 〈σ33(i) − σ11(i)〉 = σA

[

1 +
(1 − fi)(2a

3
i − a3

1 − a3
2)

{f1a3
1 + f2a3

2}

{

1 − exp

(−t
τ

)}]

.

Here we have

(3.7)
2

∑

i=1

fi〈σ33(i) − σ11(i)〉 = σA,
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which means that the sum of the averaged stresses in the grains of types 1 and
2 is equal to the applied uniaxial-stress σA as it should be. In the steady state
when t/τ ≫ 1, the averaged stress in the grain of type i becomes

(3.8) 〈σ33(i) − σ11(i)〉(t≫ τ) = σA a3
i

{f1a3
1 + f2a3

2}
.

4. Transient stage of diffusional creep

We have formulated the deformation behavior of diffusional creeping poly-
crystal with bimodal grain-size distribution. Using (3.2) and (3.3), we can show
the time t dependence of the macroscopic strain εP of the polycrystal. The curve
in Fig. 1 shows the time-dependence of εP for the bimodal grain-size distribution
with a1 = 5 µm and f1 = 0.8, and a2 = 14.5 µm and f2 = 0.2. These values were
adopted in a previous study to model the grain-size distribution in an Al alloy
[11]. To show the curve in Fig. 1, we have assumed σA = 1 MPa, T = 790 K
and the following parameters appropriate for Al were chosen: µ = 1.7× 1010 Pa,
ν = 0.34, 2cD = 3 × 10−19 m3s−1, Ω = 1.6 × 1029 m3 [11, 12].

Fig. 1. Theoretically-evaluated creep curves for the polycrystals with bimodal grain-size
distribution and three kinds of uniform grain sizes.

For comparison, variations of εP for uniform grain-sizes are also indicated in
Fig. 1. The three lines are the results for the uniform grain-sizes with 1) a =
5.1 µm (the average grain-size of the bimodal distribution), 2) a = 5.4 µm
(the grain-size giving the average grain-volume, V = (total volume)/(number of
grains)) and 3) a = 14.5 µm (the same grain-size with that of a2). Since the ratio
of the numbers of grains of types 1 and 2 for the bimodal grain-size distribution is
(0.8/53)/(0.2/14.53) ≈ 100, the average values, 5.1 and 5.4 µm, become close to
a1 = 5 µm. As shown in Fig. 1, the creep curves obtained by assuming averaged
uniform grain-sizes overestimate the deformation rate of the polycrystal with
bimodal grain-size distribution. Moreover, an initial transient stage of the creep
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curve appears clearly for the bimodal grain-size distribution. The creep curve for
the bimodal grain-size distribution is clearly different from those for the uniform
grain-sizes shown in Fig. 1. In previous experimental studies on diffusional creep,
such transient stages have sometimes been found [13].

As described in Sec. 3.2, the second term of the right-hand side of (3.2) shows
the strain εtran(t) of the transient stage, which is written as

(4.1) εtran(t) =
25(1 − ν)(21 + ν)σA

8(7 + 5ν)(7 − 5ν)µ

f1f2(a
3
1 − a3

2)
2

{f1a3
1 + f2a3

2}2

{

1 − exp

(−t
τ

)}

.

The bimodal-structure dependence of the magnitude of εtran(t) can be evaluated
by considering the dimensionless parameter m(εtran):

(4.2) m(εtran) =
{εtran(t→ ∞) − εtran(t = 0)}

{

25(1 − ν)(21 + ν)σA

8(7 + 5ν)(7 − 5ν)µ

} =
f1f2(a

3
1 − a3

2)
2

{f1a3
1 + f2a3

2}2
.

The maximum of m(εtran) is given from (4.2) as

(4.3) m(εtran)max =
(a3

1 − a3
2)

2

4a3
1a

3
2

when f1 =
a3

2

a3
1 + a3

2

and f2 =
a3

1

a3
1 + a3

2

.

From these equations, we know that the transient stage appears most signifi-
cantly when the bimodal grain-size distribution satisfies the following relation:

(4.4) f1a
3
1 = f2a

3
2.

Figure 2 shows the volume-fraction f1 dependence of m(εtran) when a1 =
5 µm and a2 = 14.5 µm. We have m(εtran)max ≈ 5.6 when f1 ≈ 0.96 and
f2 = 1− f1 ≈ 0.04 as given by (4.3) for a1 = 5 µm and a2 = 14.5 µm. As shown

Fig. 2. The volume-fraction f1 dependence of m(εtran) when a1 = 5 µm and a2 = 14.5 µm.
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in Fig. 2, we find that a peak of m(εtran) is located at the large value of f1.
Figure 3 shows the volume-fraction dependence of the creep curve for a1 = 5 µm
and a2 = 14.5 µm. Three solid curves are those for f1 = 0.6, 0.8 and 0.96. Broken
lines are drawn in Fig. 3 to show the rates of steady state deformation of the
creep curves. Deviation of the creep curve from the broken line at t = 0 shows
the magnitude of εtran(t). Although the introduction of the small amount of
larger grains does not change the rate of steady-state deformation significantly,
it causes a clear transient stage of the creep curve as shown in Fig. 3.

Fig. 3. The volume-fraction dependence of the creep curve when a1 = 5 µm and a2 = 14.5 µm.

5. Stress concentration in large grains in polycrystals

Using (3.3) and (3.6) and the material parameters shown in Section 4, we
show the transitions of the stress states in the polycrystal with the bimodal grain-
size distribution a1 = 5 µm and f1 = 0.8, and a2 = 14.5 µm and f2 = 0.2. The
curves in Fig. 4 show the variations with time t after loading of the normalized

Fig. 4. Relationships between 〈σ33(i) − σ11(i)〉/σ
A and t for the grains of types 1 and 2 of

the polycrystal, with bimodal grain-size distribution a1 = 5 µm and f1 = 0.8, and
a2 = 14.5 µm and f2 = 0.2. σA is the applied uniaxial stress.
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averages of the stresses 〈σ33(i) − σ11(i)〉/σA in the grains of types 1 and 2.
Since the rate of diffusional creep is faster for smaller grains, the stresses become
lower in the smaller grains of type 1. On the other hand, the higher stresses
are generated in the larger grains of type 2. The generation of higher stresses in
the larger grains is not surprising, since the sum of the averaged stresses in the
smaller and larger grains should be equal to the applied stress as shown by (3.7).

In the larger grains, the stress (σ33(i) − σ11(i)) becomes the largest at the
center of the grains. This is understood by substituting x2 = xixi = x2

1 +x2
2 +x2

3

= 0 into (3.4) and (3.5). The maximum of (σ33(2) − σ11(2)) in the grains of
type 2 for t/τ ≫ 1 is written as

(5.1) (σ33(2) − σ11(2))max(t≫ τ) =
5(7 + 2ν)σA

2(7 + 5ν)

a3
2

{f1a3
1 + f2a3

2}
.

We have (σ33(2) − σ11(2))max(t ≫ τ) ≈ 9.5σA when ν = 0.34 for the bimodal
grain-size distribution with a1 = 5 µm and f1 = 0.8, and a2 = 14.5 µm and
f2 = 0.2. From (3.4) and (3.5), the contour lines of (σ33(2) − σ11(2))(t ≫ τ)
on the x1 − x3 cross-section of the larger grain are obtained as shown in Fig. 5.
Figure 5 shows that the stress concentration is generated extensively in the larger
grain. The grain boundaries in polycrystals cause the stress relaxation and the
locations at the center of the larger grains are those farthest from the grain
boundaries. These are the reasons why the stress concentration occurs at the
center of the larger grains, in the diffusional creeping polycrystal with a bimodal
grain-size distribution.

Fig. 5. Contour lines of (σ33(i) − σ11(i))(t≫ τ) on the x1 − x3 cross-section of the larger
spherical grain of type of 2 in the polycrystal with bimodal grain-size distribution a1 = 5 µm

and f1 = 0.8, and a2 = 14.5 µm and f2 = 0.2. σA is the applied uniaxial stress.
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6. Application to nano-structured materials

We have shown the effects of the grain-size distribution on the creep rates
and stress states in the creeping polycrystals. The calculations to evaluate the
effects have been made by using grain sizes reported in a previous study for a
usual Al alloy [11]. This is to show that the effects cannot be neglected even
in conventional materials. However, since both the rates of diffusion and sliding
increase with decreasing the grain size, the effects may appear more significantly
in deformation of fine- or nano-grained materials [6, 14]. Coexistence of high
strength and high ductility has been reported for nano-structured metals with
bimodal grain-size distributions [15]. Large stress-relaxation or high strain-rate
dependence of flow stress is a characteristic of the fine- or nano-grained materials
[16]. Analysis of such deformation behavior is a possible application of the results
shown in the present paper.

7. Conclusions

We have discussed deformation behavior and stress states of a diffusional
creeping polycrystal with a bimodal grain-size distribution. Using the spherical-
grain approximation, the creep rates and stress states of the polycrystal have
been formulated when grain-boundary sliding is much faster than diffusion. The
results obtained in the present study are summarized as follows.

1. The rates of diffusional creep given from averaged grain-sizes overestimate
the creep rate of a polycrystal with bimodal grain-size distribution.

2. An initial transient stage appears in the creep curve of a polycrystal with
a distribution of grain-sizes.

3. Larger deviatoric stresses generate in larger grains and the stresses become
largest at the centers of the grains.

Appendix

Using a method of analysis shown in our previous papers [2, 3], the simulta-
neous differential equations in the rates of εS and εD for the bimodal grain-size
distribution are written as

(A.1)

dεS(1)/dt = (A/a1)[β−P1(f1)ε
S(1)+P2(f1)ε

D(1)+Q(f2){εS(2)+εD(2)}],

dεD(1)/dt = (B/a3
1)[β+P2(f1)ε

S(1)−P3(f1)ε
D(1)+Q(f2){εS(2)+εD(2)}],

dεS(2)/dt = (A/a2)[β−P1(f2)ε
S(2)+P2(f2)ε

D(2)+Q(f1){εS(1)+εD(1)}],

dεD(2)/dt = (B/a3
2)[β+P2(f2)ε

S(2)−P3(f2)ε
D(2)+Q(f1){εS(1)+εD(1)}],
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where

(A.2)

A =
4cµ

175(1 − ν)η
, B =

16cDΩµ

175(1 − ν)kT
, β =

35(1 − ν)σA

µ
,

P1(f) = {5(21 + ν) − 7(7 − 5ν)f} ,

P2(f) = {5(7 + 19ν) + 7(7 − 5ν)f} ,

P3(f) = {5(35 + 11ν) − 7(7 − 5ν)f} ,

Q(f) = 7(7 − 5ν)f.

The variables shown in (A.1) and (A.2) are explained in the main text. For
diffusional creep of polycrystal with uniform grain-size distribution, simultaneous
differential equations similar to the above equations have been derived [3]. When
a1 = a2, (A.1) and (A.2) become identical to the results in the paper by Onaka

et al. [3].
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