
Arch. Mech., 62, 4, pp. 283–303, Warszawa 2010

Mixed convection boundary layer flow about a solid sphere with

Newtonian heating

M. Z. SALLEH1), R. NAZAR2), I. POP3)

1)Faculty of Industrial Science and Technology

Universiti Malaysia Pahang,

Lebuhraya Tun Abd Razak

26300 UMP Kuantan, Pahang, Malaysia

2)School of Mathematical Sciences

Faculty of Science and Technology

Universiti Kebangsaan Malaysia

43600 UKM Bangi, Selangor, Malaysia

E-mail: rmn72my@yahoo.com

3)Faculty of Mathematics

University of Cluj

R-3400 Cluj, CP 253, Romania

In this paper, the steady mixed convection boundary layer flow about a solid sphere,
generated by Newtonian heating in which the heat transfer from the surface is pro-
portional to the local surface temperature, is considered. The governing boundary
layer equations are first transformed into a system of non-dimensional equations via
the non-dimensional variables, and then into non-similar equations before they are
solved numerically, using an implicit finite-difference scheme known as the Keller-box
method. Numerical solutions are obtained for the skin friction coefficient and the wall
temperature, as well as the velocity and temperature profiles with several parameters
considered, namely the mixed convection parameter λ, the Prandtl number Pr and
the conjugate parameter γ.
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Notations

a radius of the sphere,
hs coefficient of proportionality for the surface heat flux,
Cf skin friction coefficient,
f dimensionless stream function,
g acceleration due to gravity,

Gr Grashof number,
k thermal conductivity,

Pr Prandtl number,
qw surface heat flux,
Re Reynolds number,
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T fluid temperature,
Tw surface temperature,
T∞ ambient temperature,
Uw velocity of the surface,
U∞ free stream velocity,
u, v velocity components along the x and y directions, respectively,

ue(x) velocity of the external flow,
uw(x) velocity of the surface,
x, y Cartesian coordinates along the surface and normal to it, respectively.

Greek letters

α thermal diffusivity,
β thermal expansion coefficient,
γ conjugate parameter for Newtonian heating,
θ dimensionless temperature,
ν kinematic viscosity,
λ mixed convection parameter,
µ dynamic viscosity,
ρ fluid density,
ψ stream function.

1. Introduction

The analysis of heat transfer through a laminar boundary layer in the free,
forced and mixed convection flow over a body of arbitrary shape and arbitrarily
specified surface temperature or surface heat flux, constitutes a very important
problem in the field of heat transfer and has received extensive attention. The
prediction of heat transfer under such conditions encompasses a wide range of
technological applications, such as the cooling problems in turbine blades or
electronic systems, the calculation of heat transfer from bodies moving through
the atmosphere, manufacturing processes, process industries, etc. (see Yaho

[1]). To the best of our knowledge, the only such studies which have been re-
ported are the pioneering experimental work of Yuge [2] and the analytical
work of Hieber and Gebhart [3]. These studies, both experimental and an-
alytical, were conducted under the action of very small Reynolds and Grashof
numbers. Chen and Mucoglu [4, 5] have later studied mixed convection over
a sphere with uniform surface temperature and uniform surface heat flux for
very large Reynolds Re and Grashof numbers Gr, using the boundary layer
approximations. The solution depends on the non-dimensional mixed convec-
tion parameter λ = Gr/Re2. The Prandtl number considered is 0.7. Later, the
mixed convection boundary layer flow about a solid sphere has been consid-
ered by many investigators in various ways. Wong et al. [6] solved the full
Navier–Stokes and energy equation of an isothermal sphere in combined convec-
tion by a finite element method. Minkowycz et al. [7] considered the mixed
convection about a non-isothermal cylinder and sphere in a porous medium and
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later, Kumari and Nath [8] studied the unsteady mixed convection with dou-
ble diffusion over a horizontal cylinder and sphere within a porous medium.
In 2002, Antar and El-Shaarawi [9] studied the mixed convection around a
liquid sphere in an air stream, in which they considered both aiding and op-
posing natural convection and the effect of the controlling parameters on en-
gineering quantities such as the shear stress and the Nusselt number. Nazar

et al. [10, 11, 12] studied the mixed convection boundary layer flow about a
solid sphere with constant surface temperature and constant heat flux in vis-
cous and micropolar fluids, respectively. They carried out a very similar study
as Chen and Mucoglu [4] for two values of the Prandtl number Pr = 0.7
and 7. Quite recently, Yacob and Nazar [13] considered the mixed convection
boundary layer on a solid sphere with constant surface heat flux, and followed
by Kotouč et al. [14] who studied the loss of axisymmetry in the mixed convec-
tion (assisting flow) past a heated sphere. We mention also the relatively recent
papers on this problem by Jenny and Dušek [15], Jenny et al. [16], Mograbi

and Bar-Ziv [17, 18] and Mebarek et al. [19]. A detailed list of references on
convective heat transfer problems can also be found in the recent book by Pop

and Ingham [20].
In general, there are three common heating processes representing the con-

stant wall temperature (CWT), constant heat flux (CHF), and conjugate con-
ditions, where the heat transfer through a bounding surface of finite thickness
and finite heat capacity is specified. The interface temperature is not known
a priori but depends on the intrinsic properties of the system, namely, the ther-
mal conductivities of the fluid and solid. In Newtonian heating (NH), the rate
of heat transfer from the bounding surface with a finite heat capacity is pro-
portional to the local surface temperature, and it is usually termed the conju-
gate convective flow. The Newtonian heating conditions have been used only
recently by Merkin [21], Lesnic et al. [22, 23, 24] and Pop et al. [25], to
study the free convection boundary layer over vertical and horizontal surfaces as
well as over a small inclined flat plate from the horizontal surface embedded in
a porous medium. The asymptotic solution near the leading edge and the full
numerical solution along the whole plate domain have been obtained numeri-
cally, whilst the asymptotic solution far downstream along the plate has been
obtained analytically. Chaudhary and Jain [26, 27] studied the unsteady free
convection boundary layer flow past an impulsively started, vertical infinite flat
plate with Newtonian heating. Recently, Salleh et al. [28, 29, 30] employed an
implicit finite-difference scheme, namely the Keller-box method to obtain nu-
merical solutions for the free convection boundary layer flow over a horizontal
circular cylinder and sphere with Newtonian heating and the forced convec-
tion boundary layer flow at a forward stagnation point with Newtonian heating,
respectively.
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Therefore, the aim of the present paper is to study the mixed convection
boundary layer flow about a solid sphere with Newtonian heating. The governing
boundary layer equations are first transformed into a system of non-dimensional
equations via the non-dimensional variables, and then into non-similar equations
before they are solved numerically by the Keller-box method, as described in the
books by Na [31] and Cebeci and Bradshaw [32]. To the best of our knowledge,
this problem has not been considered before for the case of Newtonian heating,
so that the reported results are new.

2. Mathematical formulation

Here we consider the problem of steady mixed convection boundary layer flow
about a solid sphere for the case of Newtonian heating, where the heat transfer
rate from the bounding surface with a finite heat capacity is proportional to the
local surface temperature and which is usually termed conjugate convective flow,
as it was first proposed by Merkin [21],

(2.1)

(

∂T

∂ȳ

)

ȳ=0

= −hsTw,

where Tw is the unknown local surface temperature and hs is a coefficient of
proportionality for the surface heat flux. This configuration can arise in many
important engineering devices which are termed conjugate flows, whereby heat
is supplied to the convecting fluid through a bounding surface with a finite heat
capacity, see [33, 34] for example. Alternatively, this set-up can model the heat
transfer when there is a weak exothermic catalytic reaction taking place on the
surface, generating heat at a rate proportional to the surface temperature. This
is a reasonable assumption when the difference between the surface temperatures
arising from the reaction and the ambient temperature are small, the situation
envisaged in this paper. Other situations can occur in heat exchanger systems,
where the conduction in solid tube wall is greatly influenced by the convection
in the fluid flowing over it; in conjugate heat transfer around fins where the
conduction within the fin and the convection in the fluid surrounding it, must
be simultaneously analyzed in order to obtain vital design information; and in
convective flows set-up when the bounding surfaces absorbs heat by solar radi-
ation (Lesnic et al. [24]). The convective forced flow is assumed to be moving
upwards, while the gravity vector g acts downwards in the opposite direction
as shown in Figure 1, where the coordinates x̄ and ȳ are chosen such that x̄
measures the distance along the surface of the sphere from the lower stagnation
point and ȳ measures the distance normal to the surface of the sphere. Under
the Boussinesq and boundary layer approximations, the basic equations are
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Fig. 1. Physical model and coordinate system.

∂

∂x̄
(r̄ ū) +

∂

∂ȳ
(r̄ v̄) = 0,(2.2)

ū
∂ū

∂x̄
+ v̄

∂ū

∂ȳ
= ūe

dūe

dx̄
+ ν

∂2ū

∂ȳ2
+ gβ(T − T∞) sin

(

x̄

a

)

,(2.3)

ū
∂T

∂x̄
+ v̄

∂T

∂ȳ
= α

∂2T

∂ȳ2
,(2.4)

subject to the boundary conditions

(2.5)
ū = v̄ = 0,

∂T

∂ȳ
= −hsT (NH) at ȳ = 0,

ū→ 0, T → T∞ as ȳ → ∞,

where ū and v̄ are the velocity components along the x̄ and ȳ directions, respec-
tively, T is the local temperature, T∞ is the temperature of the ambient fluid,
g is the gravity acceleration, α = ν/Pr is the thermal diffusivity, β is the ther-
mal expansion coefficient, ν = µ/ρ is the kinematic viscosity, µ is the dynamic
viscosity, ρ is the density and Pr is the Prandtl number. Let r̄(x̄) be the radial
distance from the symmetrical axis to the surface of the sphere and ūe(x̄) be the
local free stream velocity, which are given by

(2.6) r̄(x̄) = a sin

(

x̄

a

)

, ūe(x̄) =
3

2
U∞ sin

(

x̄

a

)

.

However, for the sake of comparison, we shall also consider the classical cases
of constant wall temperature (CWT), T = Tw and constant surface heat flux
(CHF), ∂T/∂y = −qw/k at y = 0, where Tw is the constant wall temperature,
qw is the constant heat flux from the wall and k is the thermal conductivity.
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We introduce now the following non-dimensional variables:

(2.7)

x =
x̄

a
, y = Re1/2

(

ȳ

a

)

, r(x) =
r̄(x̄)

a
, u =

ū

U∞

,

ue(x) =
ūe(x̄)

U∞

, v = Re1/2

(

v̄

U∞

)

, θ =
T − T∞
T∞

(NH),

where Re = U∞a/ν is the Reynolds number and we use θ = (T − T∞)/T∞ (for
CWT) and θ = (k/(aqw))Re1/2(T −T∞) (for CHF). Substituting variables (2.7)
into Eqs. (2.2)–(2.4), they become

∂

∂x
(ru) +

∂

∂y
(rv) = 0,(2.8)

u
∂u

∂x
+ v

∂u

∂y
= ue

due

dx
+
∂2u

∂y2
+ λθ sin x,(2.9)

u
∂θ

∂x
+ v

∂θ

∂y
=

1

Pr

∂2θ

∂y2
,(2.10)

and the boundary conditions (2.5) become (see [35]):

(2.11)
u = v = 0,

∂θ

∂y
= −γ(1 + θ) (NH) at y = 0,

ue(x) →
3

2
sinx, θ → 0 as y → ∞,

where γ = ahsRe
−1/2 represents the conjugate parameter for Newtonian heating.

We have noticed that (2.11) gives θ = 0 when γ = 0, corresponding to having
hs = 0 and hence no heating from the sphere exists. On the other hand, λ is the
mixed convection parameter which is given by

(2.12) λ =
Gr

Re2 (NH, CWT) or λ =
Gr

Re5/2
(CHF),

and Gr is the Grashof number which is given by

(2.13)

Gr = gβT∞
a3

ν2
(NH), or Gr = gβ(Tw − T∞)

a3

ν2
(CWT), or

Gr = gβ

(

aqw
k

)

a3

ν2
(CHF).

It is worth mentioning that in both cases of CWT and CHF, λ > 0 is for the
aiding or assisting flow (heated sphere) and λ < 0 is for the opposing flow (cooled
sphere), while for the present case of NH, the value of λ considered is only for
λ > 0. For very small |λ|, forced convection effects dominate, while for large |λ|
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it is the natural or free convection which is important. To solve Eqs. (2.8)–(2.10),
subjected to the boundary conditions (2.11), we assume the following variables:

(2.14) ψ = xr(x)f(x, y), θ = θ(x, y),

where ψ is the stream function defined as

(2.15) u =
1

r

∂ψ

∂y
and v = −1

r

∂ψ

∂x
,

so that Eqs. (2.9) and (2.10) then become

∂3f

∂y3
+ (1 +

x

sinx
cosx)f

∂2f

∂y2
−

(

∂f

∂y

)2

+ λ
sin x

x
θ +

9

4

sinx cosx

x
(2.16)

= x

(

∂f

∂y

∂2f

∂x∂y
− ∂f

∂x

∂2f

∂y2

)

,

1

Pr

∂2θ

∂y2
+

(

1 +
x

sinx
cosx

)

f
∂θ

∂y
= x

(

∂f

∂y

∂θ

∂x
− ∂f

∂x

∂θ

∂y

)

,(2.17)

subject to the boundary conditions

(2.18)

f =
∂f

∂y
= 0,

∂θ

∂y
= −γ(1 + θ) (NH) at y = 0,

∂f

∂y
→ 3

2

sinx

x
, θ → 0 as y → ∞,

along with θ(0) = 1 (CWT) and θ′(0) = −1 (CHF).
It can be seen that at the lower stagnation point of the sphere, x ≈ 0,

Eqs. (2.16) and (2.17) reduce to the following ordinary differential equations:

f ′′′ + 2ff ′′ − f ′2 + λθ +
9

4
= 0,(2.19)

1

Pr
θ′′ + 2fθ′ = 0,(2.20)

and the boundary conditions become

(2.21)
f(0) = f ′(0) = 0, θ′(0) = −γ(1 + θ(0)) (NH),

f ′ → 3

2
, θ → 0 as y → ∞,

where primes denote differentiation with respect to y.
The quantities of physical interest in this problem are the skin friction coef-

ficient, Cf and the wall temperature, θw(x), which are given by

(2.22) Re1/2Cf = x
∂2f

∂y2
(x, 0), θw(x) = −1 − ∂θ

∂y
(x, 0).

where Cf = τw/(ρU
2
∞

) and τw = µ(∂ū/∂ȳ)ȳ=0 is the wall shear stress.
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3. Solution procedure

Equations (2.16) and (2.17) subject to boundary conditions (2.18) are solved
numerically using the Keller-box method as described in the books by Na [31]
and Cebeci and Bradshaw [32]. The solution is obtained in the following four
steps:

• reduce Eqs. (2.16) and (2.17) to a first-order system,
• write the difference equations using central differences,
• linearize the resulting algebraic equations by Newton’s method, and write

them in the matrix-vector form,
• solve the linear system by the block triadiagonal elimination technique (see

Salleh et al. [36] and Ishak et al. [37] for the details of this method).

4. Results and discussion

Equations (2.16) and (2.17) subject to the boundary conditions (2.18) were
solved numerically using an efficient, implicit finite-difference method known
as the Keller-box scheme for the cases of CWT, CHF and NH with several
parameters considered, namely, the mixed convection parameter λ, the Prandtl
number Pr, the conjugate parameter γ and the coordinate running along the
surface of the sphere, x. The numerical solutions start at the lower stagnation
point of the sphere, x ≈ 0, with initial profiles as given by Eqs. (2.19) and (2.20)
and proceed round the sphere up to 120◦ (see Nazar et al. [10, 11]). Values of
Pr considered are Pr = 0.7, 1 and 7. It is worth mentioning that small values
of Pr (≪ 1) physically correspond to liquid metals, which have high thermal
conductivity but low viscosity, while large values of Pr (≫ 1) correspond to
high-viscosity oils. It is also worth to be pointed out that specifically, the Prandtl
number considered in this study, namely Pr = 0.7, 1.0 and 7.0, correspond to
air, electrolyte solution and water, respectively.

At the lower stagnation point of the sphere, x ≈ 0, due to the decoupled
boundary layer equations (2.19) and (2.20) when the mixed convection parame-
ter λ = 0 (forced convection), there is a unique value of the reduced skin friction
coefficient, f ′′(0) = 2.4104 for all Prandtl numbers Pr, which is in good agree-
ment with the value f ′′(0) = 2.4151 found by Nazar et al. [10, 11] by using the
Keller-box method as well as the series solutions.

The values of f ′′(0), −θ′(0) and θ(0) for the cases of CWT and CHF, are
shown in Tables 1 and 2, respectively. Some numerical results obtained by an
implicit finite-difference scheme as reported by Nazar et al. [10, 11] for the cases
of CWT and CHF, are also included in these tables for comparison purposes. It
is found that the agreement between the previously published results with the
present ones is very good. We can conclude that this numerical method works
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Table 1. Values of f ′′(0) and −θ′(0) for various values of λ when Pr = 0.7 (CWT).

f ′′(0) −θ′(0)

λ Nazar et al. [10] Present Nazar et al. [10] Present

−4.6 0.0770 0.0699 0.6011 0.5990

−4.5 0.1566 0.1544 0.6117 0.6115

−4.0 0.5028 0.4996 0.6534 0.6528

−3.0 1.0700 1.0664 0.7108 0.7099

−2.0 1.5581 1.5542 0.7529 0.7519

−1.0 2.0016 1.9973 0.7870 0.7860

−0.5 2.2115 2.2070 0.8021 0.8010

0.0 2.4151 2.4104 0.8162 0.8150

1.0 2.8064 2.8012 0.8463 0.8406

2.0 3.1804 3.1745 0.8648 0.8636

3.0 3.5401 3.5336 0.8857 0.8845

4.0 3.8880 3.8807 0.9050 0.9038

5.0 4.2257 4.2177 0.9230 0.9217

6.0 4.5546 4.5457 0.9397 0.9385

7.0 4.8756 4.8659 0.9555 0.9542

8.0 5.1896 5.1791 0.9704 0.9691

9.0 5.4974 5.4859 0.9846 0.9833

10.0 5.7995 5.7870 0.9981 0.9967

20.0 8.5876 8.5647 1.1077 1.1061

Table 2. Values of f ′′(0) and θ(0) for various values of λ when Pr = 0.7 (CHF).

f ′′(0) θ(0)

λ Nazar et al. [11] Present Nazar et al. [11] Present

−2.8 0.0791 0.0669 1.6504 1.6567

−1.5 1.5620 1.5560 1.3277 1.3302

−1.0 1.8785 1.8731 1.2856 1.2878

−0.5 2.1592 2.1541 1.2525 1.2545

0.0 2.4151 2.4104 1.2252 1.2270

0.5 2.6526 2.6478 1.2020 1.2038

1.0 2.8756 2.8707 1.1818 1.1834

2.0 3.2881 3.2830 1.1479 1.1494

3.0 – 3.6613 – 1.1214

4.0 – 4.0136 – 1.0977

5.0 4.3515 4.3451 1.0759 1.0773

6.0 – 4.6602 – 1.0591

7.0 – 4.9606 – 1.0430

8.0 – 5.249 – 1.0284

9.0 – 5.5272 – 1.0151

10.0 5.8046 5.7954 1.0017 1.0029

20.0 8.1431 8.1273 0.9160 0.9171
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efficiently for the present problem and we are also confident that the results
presented here are accurate.

For the case of NH, the values of f ′′(0) and θ(0) obtained numerically by
solving Eqs. (2.19) and (2.20) subject to boundary conditions (2.21) for various
values of λ when γ = 1 and Pr = 0.7, 1 and 7, are presented in Tables 3 and 4,
respectively. It can be seen from these tables that the values of f ′′(0) and θ(0)
are higher for Pr = 0.7 than those for Pr = 1 and 7.

Further, Tables 5 to 10 show the numerical values of Cf and θw(x) at the
different positions of x for different values of λ when γ = 1 and Pr = 0.7, 1 and 7,
respectively. It can be seen from these tables that the values of Cf and θw(x) are
higher for Pr = 0.7 than for Pr = 7, when the parameter x and λ are fixed. It is
also seen from these tables that θw(x) decreases as the mixed convection param-
eter, λ, increases. Also, for a given value of λ, the skin friction coefficient Cf and
the wall temperature θw(x) are seen to increase with increasing the distance x
from the stagnation point. Further, we can see from these tables that, increasing
of λ delays the separation and that separation can be completely suppressed in
the range 0 ≤ x ≤ 120◦ for sufficiently large values of λ (> 0). The actual value of

Table 3. Values of f ′′(0) and θ(0) for various values of λ when Pr = 0.7 and 1,
and γ = 1 (NH).

Pr = 0.7 Pr = 1

λ f ′′(0) θ(0) f ′′(0) θ(0)

0.01 5.8834 1032.4011 3.3748 274.6189

0.02 5.9061 520.1127 3.4225 144.4513

0.03 5.9269 349.0227 3.4683 100.9444

0.04 5.9491 263.6847 3.5101 78.7904

0.05 5.9694 212.2873 3.5485 65.4268

0.1 6.0716 109.6156 3.7186 37.9501

0.5 6.7525 26.6476 4.3491 28.9103

1.0 7.4152 15.7022 5.2161 8.7364

2.0 8.4538 9.7883 6.1773 6.0929

3.0 9.2945 7.6114 6.9258 5.0014

4.0 10.0216 6.4336 7.5625 4.3714

5.0 10.6723 5.6782 8.1273 3.9495

6.0 11.2669 5.1456 8.6407 3.6419

7.0 11.8173 4.7431 9.1151 3.4047

8.0 12.3355 4.4287 9.5584 3.2147

9.0 12.8236 4.1733 9.9763 3.0580

10.0 13.2876 3.9609 10.3730 2.9258

20.0 17.0966 2.8658 13.6177 2.2136
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Table 4. Values of f ′′(0) and θ(0) for various values of λ when Pr = 7
and γ = 1 (NH).

Pr = 7

λ f ′′(0) θ(0)

0.05 2.4235 1.1174

0.1 2.4365 1.1141

0.5 2.5378 1.0933

1.0 2.6579 1.0709

2.0 2.8808 1.0326

3.0 3.0854 1.0009

4.0 3.2760 0.9739

5.0 3.4552 0.9503

6.0 3.6249 0.9296

7.0 3.7867 0.9110

8.0 3.9415 0.8943

9.0 4.0904 0.8790

10.0 4.2340 0.8651

20.0 5.4682 0.7679

Table 5. Values of Cf at the different positions x for various values of λ when
Pr = 0.7 and γ = 1.

Cf

λ 0.01 0.02 0.04 1 7
xs

0◦ 0.0000 0.0000 0.0000 0.0000 0.0000

10◦ 2.4247 2.4143 2.4192 2.5549 3.0281

20◦ 5.1300 5.1086 5.1168 5.3448 6.2020

30◦ 7.7607 7.7283 7.7395 8.0487 9.2646

40◦ 10.4076 10.3645 10.3784 10.7600 12.3109

50◦ 12.8475 12.7946 12.8110 13.2593 15.1916

60◦ 15.2483 15.0594 15.0779 15.5847 18.0592

70◦ 17.3454 17.2749 17.2954 17.8562 20.8610

80◦ 19.2011 19.1229 19.1451 19.7677 23.1955

90◦ 20.8530 20.8766 21.5858 25.2947

100◦ 22.0944 22.1192 22.9133 26.7892

110◦ 23.1678 24.0142 27.9605

120◦ 23.5698 24.4255 28.3528
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Table 6. Values of θw(x) at the different positions x for various values of λ when
Pr = 0.7 and γ = 1.

θw(x)

λ 0.01 0.02 0.04 1 7
xs

0◦ 1032.4011 520.1127 263.6847 15.7022 4.7431

10◦ 4593.8650 2279.8779 1143.2143 49.4303 9.1384

20◦ 4932.8780 2448.5298 1227.1952 52.3580 9.4377

30◦ 5135.8530 2549.5688 1277.5526 54.1713 9.6484

40◦ 5309.2326 2635.8811 1320.6215 55.7855 9.8618

50◦ 5484.3107 2723.0335 1364.5369 57.4712 10.0882

60◦ 5675.1214 2815.1750 1410.2106 59.2949 10.2630

70◦ 5885.0581 2922.5078 1463.8869 61.4519 10.4711

80◦ 6134.9920 3046.9182 1526.1240 63.9607 10.7660

90◦ 3193.0798 1599.2579 66.8564 11.1646

100◦ 3367.0696 1686.3283 70.2466 11.6790

110◦ 1791.3590 74.3284 12.3286

120◦ 1920.3443 79.3798 13.1477

Table 7. Values of Cf at the different positions x for various values of λ when
Pr = 1 and γ = 1.

Cf

λ 0.01 0.03 0.06 0.1 2

xs

0◦ 0.0000 0.0000 0.0000 0.0000 0.0000

10◦ 1.4834 1.4934 1.5062 1.5214 1.7821

20◦ 3.2056 3.2216 3.2422 3.2667 3.7124

30◦ 4.8554 4.8765 4.9038 4.9363 5.5491

40◦ 6.5608 6.5861 6.6190 6.6584 7.4212

50◦ 8.0932 8.1223 8.1603 8.2059 9.1097

60◦ 9.5454 9.5777 9.6200 9.6709 10.7082

70◦ 10.9992 11.0342 11.0803 11.1359 12.3647

80◦ 12.1980 12.3642 12.3070 13.7480

90◦ 13.3567 13.4085 13.4714 15.0774

100◦ 14.1970 14.2624 15.9685

110◦ 14.9453 15.0122 16.7488

120◦ 15.2655 16.9774
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Table 8. Values of θw(x) at the different positions x for various values of λ when
Pr = 1 and γ = 1.

θw(x)

λ 0.01 0.03 0.06 0.1 2
xs

0◦ 2742.3120 100.8235 56.4181 37.9501 6.0929

10◦ 2556.4810 859.8126 434.8734 264.4599 16.6862

20◦ 2793.4136 937.5609 472.9940 286.8403 17.4648

30◦ 2931.8003 983.1001 495.4030 300.0423 17.9706

40◦ 3045.9184 1020.7964 514.0432 311.0866 18.4440

50◦ 3158.1121 1057.9828 532.5109 322.0844 18.9597

60◦ 3274.3028 1096.5915 551.7461 333.5819 19.5281

70◦ 3407.9159 1141.0687 573.9547 346.8912 20.1585

80◦ 1192.2899 600.3492 362.2686 20.8382

90◦ 1252.1177 629.5182 380.2685 21.6373

100◦ 664.9468 401.5768 22.6267

110◦ 707.3675 427.1015 23.8709

120◦ 458.3454 25.4522

Table 9. Values of Cf at the different positions x for various values of λ when
Pr = 7 and γ = 1.

Cf

λ 0.01 0.02 0.03 0.1 3
xs

0◦ 0.0000 0.0000 0.0000 0.0000 0.0000

10◦ 0.1119 0.1139 0.1352 0.4705

20◦ 0.3326 0.3361 0.3614 1.0377

30◦ 0.3945 0.3992 0.4319 1.4934

40◦ 0.6322 0.6337 0.6718 2.0614

50◦ 0.6543 0.6572 0.7091 2.4761

60◦ 0.8914 0.7710 0.8397 2.9584

70◦ 1.0050 1.0096 1.0922 3.5252

80◦ 0.9784 1.0762 3.9618

90◦ 1.2065 1.3108 4.3058

100◦ 1.1202 1.2352 4.4679

110◦ 1.3184 1.4360 4.7778

120◦ 1.1603 1.2842 4.7417
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Table 10. Values of θw(x) at the different positions x for various values of λ when
Pr = 7 and γ = 1.

θw(x)

λ 0.01 0.02 0.03 0.1 3
xs

0◦ 1.1118 1.1219 1.1193 1.1139 2.1872

10◦ 43.1846 30.1700 10.5022 8.8129

20◦ 46.2051 32.2326 10.2346 9.2373

30◦ 48.8039 33.7935 10.1297 9.5529

40◦ 50.2278 34.3635 10.1304 9.7932

50◦ 51.6119 35.2579 10.2852 10.0785

60◦ 53.1400 36.3028 10.4855 10.3337

70◦ 55.0546 37.5999 10.7531 10.6022

80◦ 39.2765 11.1334 10.9429

90◦ 41.2613 11.6064 11.3547

100◦ 43.8152 12.2376 11.8991

110◦ 46.9797 13.0352 12.5949

120◦ 51.1374 14.0961 13.4929

λ = λk, which first gives no separation, is difficult to determine exactly as it has
to be found by successive integrations of the equations. However, the numerical
solutions indicate that the value of λ which first gives no separation, lies between
0.02 and 0.04 for Pr = 0.7, lies between 0.06 and 0.1 for Pr = 1, while for Pr = 7
the value of λ lies between 0.02 and 0.03.

Figure 2 illustrates the variation of the wall temperature θw(x) with Prandtl
number Pr when λ = 1 and γ = 1. To get a physically acceptable solution, Pr
must be greater than the critical value, say Prc = Prc(γ), i.e. Pr > Prc(γ). It can
be seen from this figure that θw(x) becomes large (unbounded) as Pr approaches
the critical value Prc

∼= 0.0169 when λ = 1 and γ = 1.

Fig. 2. Variation of the wall temperature with Prandtl number Pr when λ = 1 and γ = 1.
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Figure 3 shows the variation of the wall temperature θw(x) with the conjugate
parameter γ when Pr = 1 and λ = 1. Also, to get a physically acceptable solution,
γ must be less than a certain critical value, say γc = γc(Pr), i.e. γ < γc(Pr). It can
be seen from this figure that θw(x) becomes large (unbounded) as γ approaches
the critical value γc

∼= 3.522 when Pr = 1 and λ = 1.

Fig. 3. Variation of the wall temperature with conjugate parameter γ when λ = 1
and Pr = 1.

It should be pointed out that from the boundary conditions (2.5), we must
have (∂T/∂ȳ)ȳ=0 < 0, as the applied heating condition is given in terms of the
physical fluid temperature T , not of a temperature difference. Therefore, we can
only have physically acceptable solutions of the Eqs. (2.16) and (2.17) subject
to the boundary conditions (2.18), which have (∂θ/∂y)y=0 < 0. But we will
further refer to Eqs. (2.19) and (2.20) with the boundary conditions (2.21). From
these equations, in order to have θ′(0) < 0 it means that we can have solutions
only when γ < γc (γc is the critical value of γ), where the solutions become
unbounded, for the existence of mixed convection solution with the Newtonian
heating given by (2.11) or (2.21). This is shown in Figs. 2 and 3.

The velocity and temperature profiles near the lower stagnation point, x ≈ 0,
are given in Figs. 4 to 6 for some values of λ when Pr = 0.7 and γ = 1. We
found that for fixed values of Pr and γ, the velocity profiles increase, while the
temperature profiles decrease when the mixed convection parameter λ increases.
From Fig. 4 it is noticed that there are overshoots of the velocity profiles when
λ ≥ 1 where these overshoots take place higher for λ = 10 than for λ = 1.

The velocity and temperature profiles near the lower stagnation point of the
sphere, x ≈ 0, for some values of Pr when λ = 1.0 and γ = 1, are plotted in
Figs. 7 and 8. It can be seen from these figures that, as Pr increases, both the
velocity and temperature profiles decrease. At large Pr, the thermal boundary
layer is thinner than at a smaller Pr. This is because for small values of Pr (≪ 1),



298 M. Z. Salleh, R. Nazar, I. Pop

Fig. 4. Velocity profiles near the lower stagnation point of the sphere, x ≈ 0, for various
values of λ when Pr = 0.7 and γ = 1.

Fig. 5. Temperature profiles near the lower stagnation point of the sphere, x ≈ 0, for various
values of λ (≪ 1) when Pr = 0.7 and γ = 1.

Fig. 6. Temperature profiles near the lower stagnation point of the sphere, x ≈ 0, for various
values of λ (≫ 1) when Pr = 0.7 and γ = 1.
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Fig. 7. Velocity profiles near the lower stagnation point of the sphere, x ≈ 0, for various
values of Pr when λ = 1.0 and γ = 1.

Fig. 8. Temperature profiles near the lower stagnation point of the sphere, x ≈ 0, for various
values of Pr when λ = 1.0 and γ = 1

the fluid is highly conductive. Physically, if Pr increases, the thermal diffusivity
decreases and these phenomena lead to decreasing of the energy ability that
reduces the thermal boundary layer. From Fig. 7 it is also noticed that there
are overshoots of the velocity profiles when Pr ≤ 1 where these overshoots take
place higher for Pr = 0.7 than for Pr = 1.

Further, Figs. 9 and 10 illustrate the variation of θw(x) at different positions
x for different values of λ, when γ = 1 and Pr = 0.7 and 1, respectively. It can
be seen from these figures that the values of θw(x) are higher for Pr = 0.7 than
Pr = 1, when the parameters x and λ are fixed. It is also found that θw(x) de-
creases as the mixed convection parameter increases and θw(x) is seen to increase
with increasing of the distance x from the stagnation point of the sphere, x ≈ 0.
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Fig. 9. Variation of the wall temperature θw(x) with x for various values of λ when Pr = 0.7
and γ = 1.

Fig. 10. Variation of the wall temperature θw(x) with x for various values of λ when Pr = 1
and γ = 1.

5. Conclusions

In this paper, we have numerically studied the problem of mixed convec-
tion boundary layer flow of a solid sphere with Newtonian heating (NH). It is
shown how the mixed convection parameter λ, the Prandtl number Pr and the
conjugate parameter γ, affect the skin friction coefficient, the wall temperature
and the velocity and temperature profiles. We can conclude that (for the case
of NH):

• an increase of the value of Pr leads to a decrease of both the velocity and
temperature profiles;

• near the lower stagnation point of the sphere, when λ increases, the velocity
profiles increase but the temperature profiles decrease;
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• there are overshoots of the velocity profiles near the lower stagnation point
of the sphere from the free stream velocity;

• an increase of the value of Pr and λ leads to a decrease of the wall tem-
perature, θw(x);

• to get a physically acceptable solution, Pr must be greater than Prc (critical
value of Pr) depending on γ, and also γ must be less than γc (critical value
of γ) depending on Pr.
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