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The present paper is concerned with the linear theory of inhomogeneous and
orthotropic, porous elastic cylinders. The work is motivated by the recent interest
in using of orthotropic porous elastic solid as a model for bones and for various engi-
neering materials. A generalization of Saint–Venant’s problem to the case when the
cylinder is subjected to body forces and to surface forces on the lateral boundary. The
three-dimensional problem is reduced to the study of plane problems. The method is
applied to investigate the deformation of a uniformly loaded circular cylinder.
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1. Introduction

The mechanics of porous materials is of fundamental interest for the fields
of soil mechanics, powder technology and mechanics of bone. In recent years the
behaviour of porous elastic media has been studied in various papers (see, e.g.,
[1–3], and references therein). The mechanical behaviour of solids with voids
(porous solids) or of solids containing microscopic components, cannot be de-
scribed by means of the classical theory of elasticity. In [4, 5] Nunziato and
Cowin established a theory of elastic materials with voids for the treatment of
porous solids. This theory introduces an additional degree of kinematical free-
dom. Very much has been written in the last years on the theories of elastic
solids with inner structure, in which the deformation is described not only by
the usual vector displacement field, but by other vector or tensor fields as well.
The origin of the theories of continua with microstructure goes back to the pa-
pers of Ericksen and Truesdell [6], Mindlin [7], Eringen and Suhubi [8]
and Green and Rivlin [9]. Mindlin [7] formulated a theory of an elastic solid
which has some properties of a crystal lattice as a result of inclusion of the idea
of a unit cell. Mindlin begins with the general concept of an elastic continuum,
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each material point of which is a deformable medium. Independently, a theory of
microelastic continuum was published by Eringen and Suhubi [8], and a theory
of multipolar continuum mechanics by Green and Rivlin [9]. Green [10] has
established the relation of the theory of multipolar mechanics to the other the-
ories. Much of the theoretical progress is discussed in the books of Kunin [11],
Eringen [12] and Mariano [13]. In the theory developed by Mindlin [7], each
material point is constrained to deform homogeneously. In this theory, the de-
grees of freedom for each material point are twelve: three translations, ui, and
nine microdeformations, ψij . The theory of bodies with microstructure intro-
duces generalized body forces, surface forces and generalized stresses (or dipolar
body forces, dipolar surface forces and stresses [9]). The physical significance
of the new forces and stresses has been discussed in the papers [7, 9, 14]. The
domain of applicability of the theory of continua with microstructure has been
investigated in [11].

A special class of bodies with microstructure [12] is characterized by a mi-
crodeformation tensor of the form ψij = νδij , where ν is the microstretch func-
tion (or microdilatation function) and δij is the Kronecker delta. In this case
the material points undergo a uniform microdilatation (a breathing motion).
The linear equations which describe the behavior of an elastic body with this
kind of microstructure, coincide with the equations of the linear theory of elastic
materials with voids, established by Cowin and Nunziato [5] (cf. Eringen
[12, 15]). In what follows we shall refer to this model as a porous elastic contin-
uum. The linear theory of elastic materials with voids is the simplest theory of
elastic bodies that takes into account the inner structure of the material.

The linear theory of porous elastic bodies has received considerable attention
(see, e.g., [16, 17] and references therein). In particular, the deformation of elastic
cylinders has been a subject of intensive study. The solution of pure bending
of a cylinder made of an isotropic and homogeneous porous elastic material has
been investigated by Cowin and Nunziato [5]. The result has been extended to
inhomogeneous porous elastic bodies in [16]. Dell’Isola and Batra [18] have
investigated the Saint–Venant problem for isotropic and homogeneous porous
elastic bars. In the present paper we study the deformation of orthotropic porous
elastic bars subjected to resultant forces and moments on the ends, to body
forces, and to surface forces on the lateral boundary. The solution is new even
for homogeneous and isotropic porous elastic solids. The work is motivated by
the recent interest in using of the orthotropic elastic solid as a model for bones
(see, e.g., [19–22] and references therein), and for various engineering materials
(see., e.g., [23–26]). In biomechanics, the bone tissue is typically described as an
orthotropic elastic material. Earlier studies reported that bone tissue could be
assumed to be transversely isotropic. Subsequent investigations have confirmed
that in reality, orthotropy is the case that most closely describes mechanical
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anisotropy of a bone [20, 22]. We note that the cancellous bone is considered as
a porous material.

In Sec. 2 we present the equations of the linear theory of orthotropic porous
elastic bodies and formulate the problem of loaded cylinders. Section 3 is devoted
to the plane strain problem for inhomogeneous and orthotropic, porous elastic
solids. We introduce three special plane strain problems characterized by external
data, which depend only on the constitutive coefficients and the domain under
consideration. These plane strain problems shall be used in the study of the
deformation of loaded bars. In Sec. 4 we present a solution of the problem of
loaded cylinders, when the body forces and surface forces on the lateral surface
are independent of the axial coordinate. In the classical elasticity, this problem
was initiated by Almansi [27] and Michell [28] and it is known as Almansi–
Michell problem (see, e.g., [29, 30] and references therein). The method presented
in this paper is used in Sec. 5 to study the deformation of a loaded circular
cylinder.

2. Preliminaries. Statement of the problem

Throughout this paper we denote by B the interior of a right cylinder of
length ` with open cross-section Σ and lateral boundary Π. Let L be the bound-
ary of Σ. We call ∂B the boundary of B, and denote by ni the components of
the outward unit normal of ∂B. A rectangular cartesian coordinate system Oxk

(k = 1, 2, 3) is used. The rectangular cartesian coordinate frame is chosen such
that the x3-axis is parallel to the generators of B and x1Ox2 plane contains one
of terminal cross-sections. We denote by Σ(0) and Σ(`), respectively, the cross-
section located at x3 = 0 and x3 = `. We shall employ the usual summation
and differentiation conventions: Greek subscripts are understood to range over
integers (1, 2) whereas Latin subscripts (unless otherwise specified) to the range
(1, 2, 3); summation over repeated subscripts is implied and subscripts preceded
by a comma denote partial differentiation with respect to the corresponding
cartesian coordinate.

In this paper we consider the equilibrium theory of porous elastic materials.
Let ui be the components of the displacement vector field over B. The linear
strain measure eij is given by

(2.1) eij =
1
2
(ui,j + uj,i).

We denote by tij the stress tensor, and by hi the equilibrated stress vector. The
surface force and the equilibrated surface force at a regular point of ∂B, are
given by

ti = tjinj , h = hjnj ,
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respectively. The equilibrium equations of porous continua are (cf. [5])

(2.2) tji,j + fi = 0, hj,j + g + q = 0,

where fi is the body force, q is the extrinsic equilibrated body force, and g is
the intrinsic equilibrated body force. The constitutive equations of orthotropic
porous elastic solids are

(2.3)

t11 = c11e11 + c12e22 + c13e33 + β1ϕ,

t22 = c12e11 + c22e22 + c23e33 + β2ϕ,

t33 = c13e11 + c23e22 + c33e33 + β3ϕ,

t23 = 2c44e23, t31 = 2c55e13, t12 = 2c66e12,

h1 = α1ϕ,1, h2 = α2ϕ,2, h3 = α3ϕ,3,

g = −β1e11 − β2e22 − β3e33 − ξϕ,

where ϕ is the porosity function and crs (r, s = 1, 2, . . . , 6), αk, βk and ξ are
constitutive coefficients.

The cylinder is supposed to be subjected to surface forces on the lateral
surface and to appropriate global conditions over its ends. On the lateral surface
of the cylinder we have the conditions

(2.4) tαinα = t̃i, hαnα = h̃ on Π,

where t̃i and h̃ are the prescribed, piecewise regular functions. We assume that
the body loads and the forces applied on the lateral surface are independent of
the axial coordinate x3. Let R and M be the prescribed vectors representing
the resultant force and the resultant moment about O of the tractions acting
on Σ(0). On Σ(`) there are tractions applied so as to satisfy the equilibrium
conditions of the body. Thus, for x3 = 0 we have the following conditions:∫

Σ(0)

tα3da = −Rα,(2.5)

∫

Σ(0)

t33da = −R3,(2.6)

∫

Σ(0)

xαt33da = εαβ3Mβ,(2.7)

∫

Σ(0)

εαβ3xαtβ3da = −M3,(2.8)
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where εijk is the alternating symbol. We note that there is no contribution of the
equilibrated surface force in the resultant force and resultant moment (cf. [31]).

In what follows we assume that the constitutive coefficients are functions
independent of the axial coordinate,

(2.9)
cmn = ĉmn(x1, x2), αk = α̂k(x1, x2), βk = β̂k(x1, x2),

ξ = ξ̂(x1, x2), (x1, x2) ∈ Σ(0).

Throughout this paper we suppose that the cross-section is C∞-smooth. More-
over, we assume that the constitutive coefficients belong to C∞(Σ(0)). We have
chosen these hypotheses in order to emphasize the method of solution of the
considered problem.

The problem of Almansi–Michell consists in finding of the functions ui and
ϕ which satisfy the equations (2.1)–(2.3) on B, the conditions (2.4) on Π, and
the conditions (2.5)–(2.8) on Σ(0), when the body loads and surface forces are
independent of the axial coordinate.

The elastic potential W is defined by

2W = c11e
2
11 + c22e

2
22 + c33e

2
33 + 4c44e

2
23 + 4c55e

2
31 + 4c66e

2
12

+ 2c12e11e22 + 2c13e11e33 + 2c23e22e33 + ξϕ2 + 2β1e11ϕ

+ 2β2e22ϕ + 2β3e33ϕ + α1(ϕ,1)2 + α2(ϕ,2)2 + α3(ϕ,3)2.

Throughout this paper we assume that the elastic potential is a positive definite
quadratic form in the variables eij , ϕ and ϕ,j .

3. Plane strain problems

We recall that in the classical elasticity, solving of Saint–Venant’s problem
is reduced to the study of two-dimensional problems. In this paper we shall use
three special problems of plane strain of the cylinder B. A state of plane strain,
parallel to the x1, x2-plane, is characterized by

(3.1) uα = uα(x1, x2), u3 = 0, ϕ = ϕ(x1, x2), (x1, x2) ∈ Σ(0).

These restrictions, in conjunction with the strain-displacement relations (2.1)
and the constitutive equations (2.3), imply that eij , tij , hi and g are all indepen-
dent of x3. The non-zero components of the strain tensor are given by

(3.2) eαβ =
1
2
(uα,β + uβ,α).
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The constitutive equations imply that tα3 = 0, h3 = 0 and

(3.3)

t11 = c11e11 + c12e22 + β1ϕ,

t22 = c12e11 + c22e22 + β2ϕ,

t12 = 2c66e12,

h1 = α1ϕ,1, h2 = α2ϕ,2,

g = −β1e11 − β2e22 − ξϕ.

The equilibrium equations reduce to

(3.4) tβα,β + fα = 0, hα,α + g + q = 0,

on Σ(0). The conditions on the lateral surface become

(3.5) tβαnβ = t̃α, hαnα = h̃ on L.

We assume that fα, q, t̃α and h̃ are functions of class C∞.
The plane strain problem consists in finding the displacement uα and the

porosity ϕ which satisfy the Eqs. (3.2)–(3.4) on Σ(0) and the boundary conditions
(3.5) on L. The necessary and sufficient conditions for the existence of solutions
belonging to C∞(Σ(0)) are (cf. [32, 33])

(3.6)
∫

Σ(0)

fαda +
∫

L

t̃αds = 0,

∫

Σ(0)

εαβ3xαfβda +
∫

L

εαβ3xαt̃βds = 0.

In what follows we introduce three plane strain problems, in which the body
loads and the surface tractions on the lateral boundary depend on the constitu-
tive coefficients of the material. We denote these problems by P (k) (k = 1, 2, 3).
The problem P (k) is characterized by the equations of equilibrium

(3.7) t
(k)
βα,β + f (k)

α = 0, h(k)
α,α + g(k) + q(k) = 0,

the constitutive equations

(3.8)

t
(k)
11 = c11e

(k)
11 + c12e

(k)
22 + β1ϕ

(k),

t
(k)
22 = c12e

(k)
11 + c22e

(k)
22 + β2ϕ

(k),

t
(k)
12 = 2c66e

(k)
12 ,

h
(k)
1 = α1ϕ

(k)
,1 , h

(k)
2 = α2ϕ

(k)
,2 ,

g(k) = −β1e
(k)
11 − β2e

(k)
22 − ξϕ(k),

and the geometrical equations

(3.9) 2e(k)
αβ = u

(k)
α,β + u

(k)
β,α,
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on Σ(0), and the boundary conditions

(3.10) t
(k)
βαnβ = t̃(k)

α , h(k)
α nα = h̃(k) on L,

where the body loads and the surface forces are given by

(3.11)

f
(1)
1 = (c13x1),1, f

(1)
2 = (c23x1),2, q(1) = −β3x1,

f
(2)
1 = (c13x2),1, f

(2)
2 = (c23x2),2, q(2) = −β3x2,

f
(3)
1 = c13,1, f

(3)
2 = c23,2, q(3) = −β3,

t̃
(1)
1 = −c13x1n1, t̃

(1)
2 = −c23x1n2, h̃(1) = 0,

t̃
(2)
1 = −c13x2n1, t̃

(2)
2 = −c23x2n2, h̃(2) = 0,

t̃
(3)
1 = −c13n1, t̃

(3)
2 = −c23n2, h̃(3) = 0 (k = 1, 2, 3).

We can see that the necessary and sufficient conditions (3.6) for the existence of
the solutions are satisfied for each problem P (k) (k = 1, 2, 3).

4. Almansi–Michell problem

In this section we present the solution of the Almansi–Michell problem for-
mulated in Sec. 2. We seek the solution of the problem of loaded cylinders in the
form

uα = −1
2
aαx2

3 −
1
6
bαx3

3 −
1
24

cαx4
3 + ε3βα

(
τ1x3 +

1
2
τ2x

2
3

)
xβ

+
3∑

s=1

(
as + bsx3 +

1
2
csx

2
3

)
u(s)

α + vα(x1, x2),

u3 = (a1x1 + a2x2 + a3)x3 +
1
2
(b1x1 + b2x2 + b3)x2

3(4.1)

+
1
6
(c1x1 + c2x2 + c3)x3

3 + (τ1 + x3τ2)Φ + Ψ(x1, x2) + x3χ(x1, x2),

ϕ =
3∑

s=1

(
as + bsx3 +

1
2
csx

2
3

)
ϕ(s) + w(x1, x2),

where (u(k)
α , ϕ(k)) is the solution of the problem P (k) (k = 1, 2, 3), introduced

in Sec. 3, vα, Φ, Ψ, χ and w are unknown functions independent of x3, and
ak, bk, ck, τ1 and τ2 are unknown constants. Let us prove that we can deter-
mine the functions vα, Φ, Ψ, χ and w, and the constants aj , bj , cj , τ1 and τ2, such
that the functions (4.1) will be a solution of the Eqs. (2.1)–(2.3) with conditions
(2.4)–(2.8).



10 D. Ieşan

In view of the geometrical equations (2.1) and (4.1) we find that

(4.2)

eαβ =
3∑

s=1

(
as + bsx3 +

1
2
csx

2
3

)
e
(s)
αβ + γαβ ,

2eα3 = (τ1 + τ2x3)(Φ,α + ε3βαxβ) + Ψ,α + x3χ,α +
3∑

s=1

(bs + csx3)u(s)
α ,

e33 = a1x1 + a2x2 + a3 + (b1x1 + b2x2 + b3)x3

+
1
2
(c1x1 + c2x2 + c3)x2

3 + τ2Φ + χ,

where e
(s)
αβ , (s = 1, 2, 3), are given by (3.8) and γαβ are defined by

(4.3) γαβ =
1
2
(vα,β + vβ,α).

From (4.2) and the constitutive equations (2.3) we obtain

(4.4)

t11 = c13

[
a1x1 +a2x2 +a3 +(b1x1 +b2x2 +b3)x3 +

1
2
(c1x1 +c2x2 +c3)x2

3

]

+
3∑

s=1

(
as +bsx3 +

1
2
csx

2
3

)
t
(s)
11 +σ11 +c13(τ2Φ+χ),

t22 = c23

[
a1x1 +a2x2 +a3 +(b1x1 +b2x2 +b3)x3 +

1
2
(c1x1 +c2x2 +c3)x2

3

]

+
3∑

s=1

(
as +bsx3 +

1
2
csx

2
3

)
t
(s)
22 +σ22 +c23(τ2Φ+χ),

t33 = c33

[
a1x1 +a2x2 +a3 +(b1x1 +b2x2 +b3)x3 +

1
2
(c1x1 +c2x2 +c3)x2

3

]

+
3∑

s=1

(
as +bsx3 +

1
2
csx

2
3

)
(c13e

(s)
11 +c23e

(s)
22 +β3ϕ

(s))

+c13γ11 +c23γ22 +β3w+c33(τ2Φ+χ),

t12 =
3∑

s=1

(
as +bsx3 +

1
2
csx

2
3

)
t
(s)
12 +σ12,

t23 = c44

[
(τ1 +τ2x3)(Φ,2 +x1)+Ψ,2 +x3χ,2 +

3∑

s=1

(bs +csx3)u
(s)
2

]
,

t13 = c55

[
(τ1 +τ2x3)(Φ,1−x2)+Ψ,1 +x3χ,1 +

3∑

s=1

(bs +csx3)u
(s)
1

]
,
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(4.4)
[cont.]

hα =
3∑

s=1

(
as +bsx3 +

1
2
csx

2
3

)
h(s)

α +Hα,

h3 = α3

3∑

s=1

(bs +csx3)ϕ(s),

g =
3∑

s=1

(
as +bsx3 +

1
2
csx

2
3

)
g(s)−β3

[
a1x1 +a2x2 +a3

+(b1x1 +b2x2 +b3)x3 +
1
2
(c1x1 +c2x2 +c3)x2

3 +τ2Φ+χ

]
+G,

where t
(s)
αβ , h

(s)
α and g(s) are given by (3.8), and we have used the notations

(4.5)

σ11 = c11γ11 + c12γ22 + β1w,

σ22 = c12γ11 + c22γ22 + β2w,

σ12 = 2c66γ12,

H1 = α1w,1, H2 = α2w,2,

G = −β1γ11 − β2γ22 − ξw.

It follows from Eqs. (3.7), (3.11) and (4.4) that the equilibrium equations (2.2)
are satisfied if vα, Φ, Ψ, χ and w satisfy the equations

(4.6) σβα,β + Fα = 0, Hα,α + G + Q = 0,

(4.7) (c55Φ,1),1 + (c44Φ,2),2 = Λ,

(4.8) (c55Ψ,1),1 + (c44Ψ,2),2 = −f3 − c33(b1x1 + b2x2 + b3)

−
3∑

s=1

bs[(c55u
(s)
1 ),1 + (c44u

(s)
2 ),2 + c13e

(s)
11 + c23e

(s)
22 + β3ϕ

(s)],

(4.9) (c55χ,1),1 + (c44χ,2),2 = −c33(c1x1 + c2x2 + c3)

−
3∑

s=1

cs[(c55u
(s)
1 ),1 + (c44u

(s)
2 ),2 + c13e

(s)
11 + c23e

(s)
22 + β3ϕ

(s)],

on Σ(0). In (4.6) we have used the notations



12 D. Ieşan

(4.10)

F1 = f1 + [c13(τ2Φ + χ)],1 + c55

[
τ2(Φ,1 − x2) + χ,1 +

3∑

s=1

csu
(s)
1

]
,

F2 = f2 + [c23(τ2Φ + χ)],2 + c44

[
τ2(Φ,2 + x1) + χ,2 +

3∑

s=1

csu
(s)
2

]
,

Q = q + α3

3∑

s=1

csϕ
(s) − β3(τ2Φ + χ),

Λ = (c55x2),1 − (c44x1),2.

The boundary conditions (2.4) are satisfied if the following conditions hold
on L,

σβαnβ = pα, Hαnα = h̃,(4.11)

c55Φ,1n1 + c44Φ,2n2 = m,(4.12)

c55Ψ,1n1 + c44Ψ,2n2 = t̃3 −
3∑

s=1

bs(c55u
(s)
1 n1 + c44u

(s)
2 n2),(4.13)

c55χ,1n1 + c44χ,2n2 = −
3∑

s=1

cs(c55u
(s)
1 n1 + c44u

(s)
2 n2),(4.14)

where

(4.15)
p1 = t̃1 − c13(τ2Φ + χ)n1, p2 = t̃2 − c23(τ2Φ + χ)n2,

m = c55x2n1 − c44x1n2.

The function Φ satisfies the boundary-value problem (4.7), (4.12). The necessary
and sufficient condition to solve this problem is [32]

(4.16)
∫

Σ(0)

Λda =
∫

L

mds.

With the help of the divergence theorem, Eqs. (4.10) and (4.12), we see that the
condition (4.16) is satisfied. Function Φ is the torsion function in context of the
classical elasticity (see, e.g., [30, 34]).

From (4.3), (4.5), (4.6) and (4.11) we conclude that vα and w satisfy the
equations and the boundary conditions of a plane strain problem. The necessary
and sufficient conditions to solve this problem are

(4.17)
∫

Σ(0)

Fαda +
∫

L

pαds = 0,

∫

Σ(0)

εαβ3xαFβda +
∫

L

εαβ3xαpβds = 0.
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By the divergence theorem, Eqs. (4.4), (4.10) and (4.15), we find that

(4.18)
∫

Σ(0)

Fαda +
∫

L

pαds =
∫

Σ(0)

fαda +
∫

L

t̃αds +
∫

Σ(0)

tα3,3da,

∫

Σ(0)

εαβ3xαFβda +
∫

L

εαβ3xαpβds =
∫

Σ(0)

εαβ3xαfβda

+
∫

L

εαβ3xαt̃βds +
∫

Σ(0)

εαβ3xαtβ3,3da.

In view of the equilibrium equations, and taking into account that the body
forces are independent of the axial coordinate, we obtain

tα3,3 = tα3,3 + xα(tj3,j + f3),3 = (tα3 + xαtj3,j),3

= [(xαtβ3),β + xαt33,3],3 = (xαtβ3,3),β + xαt33,33.

By using the conditions on the lateral surface we get

(4.19)
∫

Σ(0)

tα3,3da =
∫

Σ(0)

xαt33,33da.

It follows from (4.18), (4.19) and (4.4) that

(4.20)
∫

Σ(0)

Fαda +
∫

L

pαds =
∫

Σ(0)

fαda +
∫

L

t̃αds + Dαjcj ,

where

(4.21)

Dαβ =
∫

Σ(0)

xα[c33xβ + c13e
(β)
11 + c23e

(β)
22 + β3ϕ

(β)]da,

Dα3 =
∫

Σ(0)

xα[c33 + c13e
(3)
11 + c23e

(3)
22 + β3ϕ

(3)]da.

In view of Eq. (4.20), the first two conditions from (4.17) reduce to

(4.22) Dαjcj = −
∫

Σ(0)

fαda−
∫

L

t̃αds.
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Next, we consider the boundary value problem (4.9), (4.14) for the unknown
function χ. The necessary and sufficient condition to solve this problem can be
expressed as

(4.23) D3jcj = 0,

where we have used the notations

(4.24)

D3α =
∫

Σ(0)

(
c33xα + c13e

(α)
11 + c23e

(α)
22 + β3ϕ

(α)
)

da,

D33 =
∫

Σ(0)

(
c33 + c13e

(3)
11 + c23e

(3)
22 + β3ϕ

(3)
)

da.

We note that the constants Dij can be determined after solving of the problems
P (k), (k = 1, 2, 3). Following [33], the constants Dij have the properties

(4.25) Dij = Dji, det(Dij) 6= 0.

We conclude that we can determine the constants c1, c2 and c3 so that the con-
ditions (4.22) and (4.23) will be satisfied.

Let us consider now the boundary value problem (4.8), (4.13) for the func-
tion Ψ. The necessary and sufficient condition for the existence of the solution
of this problem can be expressed in the form

(4.26) D3jbj = −
∫

Σ(0)

f3da−
∫

L

t̃3ds.

Next, we consider the end conditions (2.5). First, we note that
∫

Σ(0)

tα3da =
∫

Σ(0)

[tα3 + xα(tj3,j + f3)]da(4.27)

=
∫

Σ(0)

xαt33,3da +
∫

Σ(0)

xαf3da +
∫

L

xαt̃3ds.

If we take into account Eqs. (4.27), (4.4) and (4.21), then we see that the con-
ditions (2.5) can be written as

(4.28) Dαjbj = −Rα −
∫

Σ(0)

xαf3da−
∫

L

xαt̃3ds.



Deformation of orthotropic porous elastic bars . . . 15

The Eqs. (4.26) and (4.27) determine the constants b1, b2 and b3. After finding
of the functions vα, w, Φ, Ψ and χ, and the constants bk and ck, we can pass to
study the other boundary conditions.

If we take into account (4.4) and (4.18), then the third of the conditions
(4.17) becomes

(4.29) Dτ2 = −
∫

Σ(0)

εαβ3xαfβda−
∫

L

εαβ3xαt̃βds

−
∫

Σ(0)

[
x1c44

(
χ,2 +

3∑

s=1

csu
(s)
2

)
− x2c55

(
χ,1 +

3∑

s=1

csu
(s)
1

)]
da,

where D is the torsional rigidity

(4.30) D =
∫

Σ(0)

[c44x1(Φ,2 + x1)− c55x2(Φ,1 − x2)]da.

It is known (see, e.g., [34]) that D 6= 0. Thus, the constant τ2 is determined by
(4.29).

In view of (4.4), the conditions (2.6) and (2.7) reduce to the equations

(4.31) Dkjaj = Ck,

where

(4.32)

Cα = ε3αβMβ −
∫

Σ(0)

xα[c13γ11 + c23γ22 + β3w + c33(τ2Φ + χ)]da,

C3 = −R3 −
∫

Σ(0)

[c13γ11 + c23γ22 + β3w + c33(τ2Φ + χ)]da.

From (4.31) we can determine the constants a1, a2 and a3.
With the help of Eq. (4.4), the condition (2.8) becomes

(4.33) Dτ1 = −M3−
∫

Σ(0)

[
x1c44

(
Ψ,2 +

3∑

s=1

bsu
(s)
2

)
−x2c55

(
Ψ,1 +

3∑

s=1

bsu
(s)
1

)]
da.

This relation determines the constant τ1. We conclude that the considered prob-
lem is solved. First, we have to determine the solutions of the problems P (k)

(k = 1, 2, 3). Next, we determine the function Φ and calculate the torsional
rigidity by (4.30). Then, we determine the constants bj by (4.26) and (4.28).
Since bj and (v(s)

α , ϕ(s)) are known, from (4.8) and (4.13) we can find the func-
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tion Ψ. From (4.33) we can calculate the constant τ1. Next, from (4.21) and (4.24)
we determine the constants Dij , and consequently the unknown constants ck by
(4.22) and (4.23). Now, we can find the function χ from (4.9) and (4.14). From
(4.29) we determine the constant τ2. Since the functions Fα, Q and pα are known,
we can determine the solution (v1, v2, w) of the plane strain problem (4.3), (4.5),
(4.6), (4.11). Next, we determine Ck by (4.32) and the constants aj from the sys-
tem (4.31). Thus, the solution of the Almansi–Michell problem is given by (4.1).

We note that in absence of the classical loads (fi = 0, t̃i = 0, Ri = 0,
Mi = 0), we obtain bi = ci = 0, τ1 = τ2 = 0. It follows from (4.1) that in this
case, the generalized forces produce an extension, a bending and a plane strain
parallel to the x1, x2-plane.

5. Application

In this section we use the solution (4.1) to study the deformation of a uni-
formly loaded circular cylinder. We consider the cylinder B = {x : x2

1 + x2
2 < a2,

0 < x3 < `}, (a > 0), and assume that it is occupied by an orthotropic and
homogeneous material.

We suppose that the bar is subjected to a constant pressure on the lateral
surface, and to extension and torsion. In this case we have

(5.1)
fi = 0, q = 0, t̃α = Pnα, t̃3 = 0, h̃ = 0, Rα = 0, R3 = T,

Mα = 0, M3 = M,

where P, T and M are the given constants. From (4.22), (4.23), (5.1) and (4.25)
we conclude that cj = 0. By (4.26), (4.28) and (5.1) we find that bj = 0. In this
case, from (4.9) and (4.14) we obtain χ = 0. By using this result, from (4.29) we
find that τ2 = 0. It follows from (4.8), (4.13) and (5.1) that Ψ = 0. From (4.10),
(4.15) and (5.1) we conclude that

(5.2) F1 = 0, F2 = 0, Q = 0, p1 = Pn1, p2 = Pn2, h̃ = 0.

Let us prove that the solution of the problem (4.3), (4.5), (4.6), (4.11), with
the data (5.2), is

(5.3) v1 = d1x1, v2 = d2x2, w = d3,

where the constants d1, d2 and d3 are given by

(5.4)

d1 = ξP [ξ(c22 − c12) + β1β2 − β2
2 ]Ω,

d2 = ξP [ξ(c11 − c12) + β1β2 − β2
1 ]Ω,

d3 = −(β1d1 + β2d2)ξ−1,

Ω−1 = (ξc11 − β2
1)(ξc22 − β2

2)− (ξc12 − β1β2)(ξc22 − β2
2).
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From (4.3), (5.4) and (4.5) we find that

σ11 = c11d1 + c12d2 + β1d3,

σ22 = c12d1 + c22d2 + β2d3,

σ12 = 0,

H1 = 0, H2 = 0,

G = −β1d1 − β2d2 − ξd3.

It is easy to see that the Eqs. (4.6) and the boundary conditions (4.11) are
satisfied on the basis of relations (5.4).

Similarly, we can show that the solution of the problem P (3) is

(5.5) u
(3)
1 = k1x1, u

(3)
2 = k2x2, ϕ(3) = k3,

where the constants kj are determined by the following system:

(5.6)

c11k1 + c12k2 + β1k3 = −c13,

c12k1 + c22k2 + β2k3 = −c23,

β1k1 + β2k2 + ξk3 = −β3.

It is a simple matter to see that positive definiteness of the elastic potential
implies that the determinant of the system (5.6) is different from zero.

It follows from (4.21), (4.24) and (5.5) that

(5.7) Dα3 = 0, D33 = πa2(c33 + c13k1 + c23k2 + β3k3).

In view of (4.32) and (5.3), we find

(5.8) Cα = 0, C3 = −R3 −R0
3, R0

3 = πa2(c13d1 + c23d2 + β3d3).

Since Dij = Dji, we conclude that D3α = 0. By (5.7) and (5.8) we see that the
system (4.31) reduces to

Dαβaβ = 0, D33a3 = −R3 −R0
3.

Thus, we obtain

(5.9) a1 = a2 = 0, a3 = − 1
D33

(R3 + R0
3).

The solution of the boundary value problem (4.7), (4.12) is given by

(5.10) Φ =
c55 − c44

c55 + c44
x1x2, (x1x2) ∈ Σ(0).
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From (4.30) and (5.10) we get

D =
πa4c44c55

2(c44 + c5)
.

The constant τ1 is given by

(5.11) τ1 = −M3/D.

It follows from Eq. (4.1) that the solution of the considered problem is

u1 = a3k1x1 + d1x1 − τ1x2x3,

u2 = a3k2x2 + d2x2 + τ1x1x3,

u3 = a3x3 + τ1(c55 − c44)(c55 + c44)−1x1x2,

ϕ = a3k3 + d3,

where a3, kj , dj and τ1 are defined by Eqs. (5.4), (5.6), (5.9) and (5.11). We note
that the loading (5.1) produces a uniform variation of porosity. The porosity is
not influenced by the torsion of the cylinder.
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