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FE approach with Green’s function as internal trial function

for simulating bioheat transfer in the human eye
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Simulation of bioheat transfer in a human eye model is performed, using a newly
developed Green’s-function-based finite element formulation, named HFS-FEM. Non-
linear radiation conditions are first treated by introducing an effective convection coef-
ficient, and then two independent temperature fields are assumed within the element
and along its boundary, respectively. Subsequently, a hybrid variational functional
including the convection effect is constructed to guarantee the inter-element field
continuity and to establish a linkage between the two independent fields. By virtue of
the use of Green’s functions as trial functions, the resulting nonlinear system contains
only the element boundary integrals and is solved with an iteration technique. The
results obtained are compared with those from ABAQUS and a good agreement is
observed. Subsequently, the effect of control parameters is investigated to determine
the temperature variation in the eye model; the results show that the proposed hybrid
computational method is an effective tool for investigating the thermal performance
of the human eye.
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1. Introduction

Prediction of bioheat transport in a biological system is important in many
diagnostic and therapeutic applications. However, biological tissues, such as the
human eye consisting of several subdomains with different material properties,
usually have complex geometry and thus its analytical prediction is difficult
in practice. The application of computational methods in modeling biological
systems is currently attracting increased attention with the rapid development
of computer science.
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Among the numerical methods developed so far, finite element and boundary
element techniques have been widely used to analyze bioheat transfer phenomena
in the human eye. For example, finite element formulations for two-dimensional
human eye structures were developed by Scott [1], and Ng et al. [2], who used
the commercial software FEMLAB3.1 as a computing tool. By considering the
natural circulation of aqueous humor, Ooi et al. [3] utilized the finite element
technique to conduct the heat transfer analysis for two-dimensional eye prob-
lems. A cylindrical eye model based on the finite element method was developed
by Brinkmann et al. [4]. For the finite element method (FEM), the solution
domain is firstly divided into several cells or elements with independent mate-
rial definitions, and in each subdomain, the physical fields are approximated by
appropriate polynomial interpolations. A weak-form integral functional is de-
veloped to produce the final stiffness equations. However, the domain integrals
and discontinuity of heat flux components between elements are disadvantages
in the majority of conventional FEM. Additionally, refined meshes are necessary
in FEM to achieve meaningful results for those regions near a local defect, such
as holes, cracks, inclusions and so on. It should be also mentioned that the fi-
nite volume method (FVM) [5, 6] and the finite difference method (FDM) [7]
have been employed to study transient temperature responses in the human eye
caused by a laser source.

Besides the domain-type methods mentioned above, boundary element meth-
ods (BEM) or dual reciprocity BEM (DRBEM) involving boundary integrals
only have also been applied to numerical thermal analysis in human eye struc-
tures [8–11]. Unlike FEM, FVM and FDM, the BEM formulation contains bound-
ary integrals only. However, the treatment of singular or near-singular boundary
integrals is usually quite tedious and inefficient and an extra boundary integral
equation is also required to evaluate the interior fields inside the domain; ad-
ditionally, for solving multi-domain problems with BEM, each region is dealt
with separately and then the whole body is linked together by applying compat-
ibility and equilibrium conditions along the interfaces between the subregions.
As a result, the implementation of the BEM becomes quite complicated and
the nonsymmetrical coefficient matrix of the resulting equations weakens the
advantages of BEM. More discussion on FEM and BEM can be found in the
literature [12, 13].

To alleviate some of these difficulties encountered in BEM and FEM, while re-
taining all of their advantages, a novel hybrid finite element model with Green’s
functions (also known as fundamental solutions), as a trial function, was re-
cently developed by Wang and Qin [14–16] to deal with heat transfer problems
and anisotropic elastic problems. In the new hybrid finite element model, two
independent fields (one defined in the element domain and the other on the ele-
ment boundary) are constructed, using Green’s functions and conventional shape
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functions used in BEM, respectively. A new hybrid variational functional is con-
structed to link these two independent fields for producing the final standard
force-displacement equation system. Noting that the intra-element field approx-
imated by the linear combination of Green’s function analytically satisfies the
related governing equation, the domain integrals in the hybrid functional can
be directly converted into boundary integrals without any appreciable increase
in computational effort. It is worth pointing out that no singular integrals are
involved in the HFS-FEM, although the Green’s function has been employed
in the model. The reason is that the sources used for the evaluation of Green’s
function are placed outside the element of interest, as in the method of fun-
damental solution (MFS) [17–19]; thus, the source point and field point can
never overlap during the computation. Moreover, the features of two indepen-
dent interpolation fields and element boundary integral in HFS-FEM make the
algorithm have potential applications in the aspect of mesh reduction by con-
structing specially-purposed elements such as functionally graded element, hole
element, crack element, and so on.

In the present paper, the Green’s-function-based FEM is extended to pre-
dict the steady-state temperature distribution of the eyeball in two-dimensional
space with nonlinear boundary conditions. Linearization of the nonlinear ra-
diation condition is first conducted by introducing the equivalent convection
coefficient based on the iteration procedure, and then the modified hybrid varia-
tional functional is established to include the convection effect and produce the
linkage between independent internal and boundary fields. The results obtained
by means of the proposed algorithm are verified by comparison with those from
ABAQUS R©1), and different control parameters are investigated to reveal their
bioheat effect.

2. Mathematical model of the human eye

A typical 2D model of the human eye sketched in Fig. 1 is considered here. It
should be mentioned that only cornea, iris, lens, aqueous humor, sclera, vitreous
and optic nerve are involved in the figure. In fact, between the sclera and the
vitreous, there are two thin layers known as retina and choroid. Since these
two layers are relatively thin, they are usually modeled together with the sclera
and the optic nerve as a single homogeneous region [2]. Moreover, for the sake
of simplicity, each of the subdomains is assumed to be thermally isotropic and
homogeneous, and their conductivities are listed in Table 1, based on data in the
literature [1, 2, 8, 9]. Table 1 also lists various thermal properties of the lens for
different water contents caused by aging [2].

1)ABAQUS 6.9, http://www.simulia.com/
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Fig. 1. Sketch diagram of the human eye.

Fig. 2. The computational model and surface boundary conditions.

For convenience, the cornea and the aqueous humor are denoted by R1

and R2, respectively, as shown in Fig. 2. The other two regions that are the
lens and the vitreous are denoted by R3 and R4, respectively. As it can be seen
in Table 1, the iris and the sclera have the same thermal conductivity and are
contiguous, so they can be modeled as a single homogeneous region, denoted by
R5 in the practical computation.
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Table 1. Thermal conductivity of the subdomains in the human eye.

Subdomains Thermal conductivity (W/mK)

Cornea 0.58
Aqueous humor 0.58
Sclera 1.0042
Iris 1.0042
Lens 0.21–0.54
Vitreous 0.603

In the analysis, a rectangular coordinate system (X1,X2) with the axis X1

coinciding with the pupillary axis is employed. Under the coordinate system, the
governing equation representing the bioheat transfer can be written by the well-
known Pennes equation, addressing the effect of blood perfusion and metabolic
activities in the biological system [20]:

(2.1) k∇2T + ρbcbwb(T − Tb) + Qm + Qi = ρc
∂T

∂t
,

where

∇2 =
∂2

∂X2
1

+
∂2

∂X2
2

denotes the Laplace operator, t the time variable, ρ the density of the tissue,
c the tissue specific heat, k the tissue thermal conductivity, wb the blood flow
rate, ρb the blood density, cb the blood specified heat, T the unknown tissue
temperature, Tb the blood temperature, Qm the metabolic heat source term,
and Qi the internal heat source, which may be caused by external laser heating,
electric disturbance or radiation of electromagnetic waves.

In this work, our interest is to determine the maximum temperature increase
in the human eye, so we assume that a steady-state temperature is reached.
Besides, in the human eye, only small parts of the eyeball, such as the sclera
and optic nerve, are perfused and have metabolic activity (see Table 1 in [21]),
so blood perfusion and metabolic heat generation can be disregarded [2, 8]. The
resulting governing equation is reduced to a classic Laplace-type equation in the
absence of external heat source. If the temperature in the region Ri is represented
by Ti, then the heat flow Eq. (2.1) can be simplified to

(2.2) ki∇
2Ti(x) = 0, x ∈ Ri (i = 1, 2, 3, 4, 5),

where ki is the thermal conductivity of the region i, and no summation occurs
in Eq. (2.2) and subsequent equations for the repeated subscript.

The following boundary conditions are added to the biological system:

(1) Convection, radiation and tear evaporation on the corneal surface Γ1.
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Since the cornea is the only region in the eye that is exposed to the en-
vironment, the heat loss caused through convection and radiation should be
considered. Also, the evaporation of tears on the corneal surface increases the
cooling rate on the corneal surface. Thus, three forms of cooling mechanism can
be combined and the related boundary condition on the surface of cornea is
written by [2, 3, 8, 21]

(2.3) q1 ≡ −k1
∂T1

∂n
= h∞(T1 − T∞) + εcσ(T 4

1 − T 4
∞) + Et on Γ1,

where n is the unit outward normal to the surface, h∞ the heat transfer coef-
ficient between the eye and ambient environment, T∞ the sink temperature, σ
the Stefan-Boltzman constant with value 5.669 × 10−8 W/m2K4, εc the corneal
emissivity, and Et the heat loss due to tear evaporation.

(2) Convection condition on the outer surface Γ2 of the sclera.

On the outer surface of the sclera, the heat flows run into the eye with the
complicated network of ophthalmic vessels which are located inside the choroidal
layer acting as a heating source to the sclera. To simulate this heating mecha-
nism, the human eye is assumed to be embedded in a homogeneous surrounding
anatomy such that the heat exchange between the eye and the surrounding may
be modeled using the following convection boundary condition [2, 3, 8, 21]:

(2.4) q2 ≡ −k2
∂T2

∂n
= hb(T2 − Tb) on Γ2,

where hb denotes the blood convection coefficient from the sclera to the body
core, and Tb is the temperature of the surrounding blood.

(3) Continuous conditions on the interfaces between any two contiguous re-
gions Ri and Rj in the eye

(2.5) Ti = Tj , qi + qj = 0 on Ri ∩ Rj .

3. Hybrid finite element approach

3.1. Treatment of nonlinear radiation condition

The presence of the nonlinear radiation term in the boundary conditions
makes the problem difficult to formulate. This difficulty can be resolved by in-
troducing a suitable iterative procedure. For this purpose, we recast the nonlinear
boundary condition (2.3) as

(3.1) q1 ≡ −k1
∂T1

∂n
=

[

h∞ + εσ(T1 + T∞)(T 2
1 + T 2

∞)
]

(T1 − T∞) + Et
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from which we can see that if the term (T1 + T∞)(T 2
1 + T 2

∞) is known, the con-
dition (3.1) can be viewed as a generalized convection condition. Based on this
concept, we design the following iterative algorithm:

(3.2) q1 ≡ −k1
∂T

(m)
1

∂n
= h(T

(m)
1 − T∞) + Et

with

(3.3) h = h∞ + εσ(T
(m−1)
1 + T∞)[(T

(m−1)
1 )2 + T 2

∞],

where {T
(m)
1 } are temperature sequences for m = 1, 2, 3, . . . , and T

(0)
1 represents

an initial guess as to temperature.
The iteration is completed when the convergent condition related to the inter-

iteration difference is satisfied:

(3.4) ‖T
(m)
1 − T

(m−1)
1 ‖∞ ≤ δ,

where δ is a sufficiently small real number representing a specified iteration
tolerance; for example, δ = 10−6 ◦C can be used in the subsequent calculation.

3.2. Hybrid finite element formulation

The temperature and heat flux in any iteration step can be evaluated by
the Green’s-function-based finite element model. For the sake of simplicity, the
subscripts attached to temperature, heat flux and thermal conductivity repre-
senting the region number and the superscript representing iteration step, are
discarded. In this model, the temperature in a particular element e occupying
the domain Ωe with boundary Γe is approximated by the linear combination of
Green’s functions, as it was done in the method of fundamental solution (MFS)
[17–19],

(3.5) T (P ) =

ns
∑

j=1

T ∗(P,Qj)cej = {N}{ce}.

Differentiation of Eq. (3.5) with respect to the outward normal gives

q ≡ −k
∂T

∂n
=

{

n1 n2

}















−k
∂T

∂X1

−k
∂T

∂X2















(3.6)

=
{

n1 n2

}















−k
∂ {N}

∂X1

−k
∂ {N}

∂X2















{ce} = {Q} {ce} ,
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where P is a field point which may be located within the element or on its
boundary, Qj is a source point placed outside the element to avoid the singular-
ity of the Green’s function with unknown source intensity cj , T ∗(P,Qj) is the
temperature response at the point P due to the unit point heat source applied
at the point Qj

(3.7) T ∗(P,Qj) = −
1

2πk
ln ‖P − Qj‖.

In Eq. (3.5), it is important to determine the position of source point Qj .
Following the way in our previous work [14–16], the location of sources Qj

(j = 1, 2, . . . , ns) is determined by a non-dimensionless parameter γ =
(Qj − Pb)/Pb > 0, which represents a distance between the element boundary
point Pb and the sources, and which may be chosen in a wide range (2 ≤ γ ≤ 9
in our analysis) to give stable and accurate results [14–16].

Meanwhile, an independent frame field defined over the element boundary is
assumed in the form

(3.8) ˜Te(P ) =

nd
∑

i=1

˜Nidi =
{

˜N

}

{de} ,

where ˜Ni stands for the conventional 1D shape functions as used in BEM, and
di is the unknown nodal temperature.

To establish the linkage between the two independent fields (3.5) and (3.8)
and to include the effective convection boundary condition (3.2), a modified
hybrid variational functional is constructed based on the authors’ previous
work [14]:

(3.9) Πme = −
1

2

∫

Ωe

k

[

(

∂T

∂X1

)2

+

(

∂T

∂X2

)2
]

dΩ

−

∫

Γqe

q̄ ˜TdΓ +

∫

Γe

q
(

˜T − T
)

dΓ −
1

2

∫

Γce

h
(

˜T − T∞

)2
dΓ ,

in which the last boundary integral reflects the effective convection effect, Γqe and
Γce respectively denote the heat flux and convective boundaries, and q̄ represents
the specified boundary heat flux.

By invoking the divergence theorem

(3.10)
∫

Ω

(

∂f

∂X1

∂h

∂X1
+

∂f

∂X2

∂h

∂X2

)

dΩ =

∫

Γ

h
∂f

∂n
dΓ −

∫

Ω

h∇2fdΩ

for any continuous functions f and h in the domain, the first-order variational
can be expressed as
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(3.11) δΠme =

∫

Ωe

k∇2TδTdΩ −

∫

Γqe

(q̄ − q) δ ˜TdΓ +

∫

ΓIe

qδ ˜TdΓ

+

∫

Γe

(

˜T − T
)

δqdΓ −

∫

Γce

h
(

˜T − T∞

)

δ ˜TdΓ ,

in which the first and second integrals enforce the governing equation and the
heat flux boundary conditions, the third and fourth integrals enforce the inter-
element continuity condition, and the last integral enforces the convection bound-
ary condition.

Since the internal field T defined in Eq. (3.5) satisfies analytically the gov-
erning equation (2.2), the domain integral in Eq. (3.9) can be straightforwardly
converted into a boundary integral defined on the element boundary, and we
finally have

(3.12) Πme = −
1

2

∫

Γe

qTdΓ −

∫

Γqe

q̄ ˜TdΓ +

∫

Γe

q ˜TdΓ −

∫

Γce

h

2

(

˜T − T∞

)2
dΓ .

Substituting Eqs. (3.5) and (3.8) into Eq. (3.12) yields

(3.13) Πme = −
1

2
{ce}

T [He] {ce} − {de}
T {ge} + {ce}

T [Ge] {de}

−
1

2
{de}

T [Fe] {de} + {de}
T {fe} − {ae}.

By virtue of the stationary condition

(3.14)
∂Πme

∂ {ce}
T

= {0} ,
∂Πme

∂ {de}
T

= {0} ,

we have the following stiffness equations for determining all unknowns:

(3.15) [Ke] {de}= {ge} − {fe} , {ce}= [He]
−1 [Ge] {de} ,

where

[He] =

∫

Γe

{Q}T {N} dΓ , [Ge] =

∫

Γe

{Q}T
{

˜N

}

dΓ

[Fe] =

∫

Γce

h
{

˜N

}T {

˜N

}

dΓ , {fe} =

∫

Γce

hT∞

{

˜N

}T

dΓ ,(3.16)

{ge} =

∫

Γeq

{

˜N

}T

e
q̄dΓ , {ae} =

∫

Γce

hT 2
∞

2
dΓ .
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4. Numerical results

To simulate the temperature distribution and investigate the effect of con-
trol parameters on the temperature variation in the eye model, the approach
presented here is applied to a practical example, and the results obtained are
compared with those from ABAQUS. For reference, the values of the control
parameters related to the outer boundary conditions are listed in Table 2 [1, 2].
It should be mentioned that the geometrical dimensions of the computing model
employed in this paper are taken from the literature [8] and regenerated; there-
fore, the geometrical dimensions of the computing model here might differ from
those in [8] and the results may thus show some discrepancy with those from [8].

Table 2. Control parameters associated with boundary conditions.

Control parameters Value

Blood temperature Tb 37 (◦C)
Blood convection coefficient hb 65 (Wm

−2
K

−1)
Ambient temperature T∞ 10–40 (◦C)
Ambient convection coefficient h∞ 8–100 (Wm

−2
K

−1)
Cornea surface emissivity εc 0.975
Evaporation rate of tear 20–320 (Wm−2)

4.1. Verification of the presented approach

The computational model is descretized with 1374 eight-node elements, and
in total 4243 nodal degrees of freedom are included (see Fig. 3). For simplicity,

Fig. 3. Hybrid finite elements for human eye model.
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in Tables 1 and 2, the thermal conductivity of lens is taken to be 0.4 Wm−1K−1,
T∞ = 25 ◦C, h∞ = 10 Wm−2K−1, and Et = 40 Wm−2 here [8]. The initial guess
for the temperature is taken to be the ambient temperature in the following
calculation.

Firstly, the influence of the parameter γ is investigated and convergent results
of temperature at the origin of coordinate system are shown in Fig. 4 with three
iterations. It can be seen that there is a large range of the parameter γ which
yields stable results (2≤ γ ≤ 9 from Fig. 4), and the unstable results are observed
for the value of γ is less than 1 due to the near singular property of Green’s
function. The same conclusion can also be found in our previous work [14–16],
so in the following computation, γ = 5 is employed.

Fig. 4. Temperature variation at the origin of coordinate system with different γ.

Subsequently, the distribution of temperature along the papillary axis is plot-
ted in Fig. 5, in which the results from ABAQUS with the same element mesh
are provided for the purpose of comparison. It can be seen that good agreement
is achieved between the proposed Green’s-function-based FEM and ABAQUS.
The temperature discrepancy between the two methods is only 0.001◦C or per-
centage 0.004% at the center of the corneal surface. The temperature isotherms
in the entire domain are displayed in Fig. 6, in which the solid lines represent the
results of the proposed Green’s-function-based FEM, and the dashed lines rep-
resent those from ABAQUS. As expected, good agreement is achieved between
the results of HFS-FEM and those from ABAQUS. The presented computing
model is therefore verified.

It should be noted that the radiation effect is smaller than the convection
effect in practice, especially for the larger convection coefficient. This can be seen
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Fig. 5. Temperature distribution on the papilary axis.

Fig. 6. Isotermal lines in the human eye domain.

from Eq. (3.3), in which h∞ is usually much larger than

εσ
(

T
(m−1)
1 + T∞

) [

(T
(m−1)
1 )2 + T 2

∞

]

.

In order to clearly show how the nonlinear iterative procedure works, the linear
convection effect and tear evaporation effect on the corneal surface are discarded,
that is, h∞ = 0, Et = 0. At the same time, to enlarge the radiation effect, the
ambient temperature T∞ is changed to 250 ◦C. After 7 iterations, the convergent



FE approach with Green’s function as internal trial function. . . 505

temperature at the origin of coordinate system is achieved as 41.058 ◦C, which
agrees well with the result 41.062 ◦C of ABAQUS. Thus, the constructed iteration
procedure can be used to effectively deal with radiation problems.

4.2. Effect of tear evaporation

There is usually a thin lipid layer covering the corneal surface, the function
of which is to prevent evaporation of tears from the corneal surface. When the
layer is destroyed, the evaporation rate increases dramatically, and can reach
as high as 320 Wm−2, whereas the evaporation rate of normal eyes is in the
range of 20–100 Wm−2 [2]. It is therefore necessary to investigate the effect
of evaporation on temperature distribution in the eye model. In the following
analysis, the temperature and convection coefficient of ambient fluid are taken to
be 25 ◦C and 10 Wm−2K−1, respectively, and the thermal conductivity of the lens
region is assumed to be 0.4 Wm−1K−1. The temperature variation along the X1

axis is shown in Fig. 7, from which the evaporation rate seems to be important in
changing the corneal surface temperature. It is observed that either in the normal
eye with evaporation rate in the range [20–100] Wm−2, or when the lipid layer
is destroyed, there is an approximately steady decrease in the value of 0.16◦ at
the center of the corneal surface for every increment in the value of 10 Wm−2 for
evaporation rate, while a small change in temperature occurs at the rear of the
eye, as expected. The detailed computing data is listed in Table 3. It is reasonable
that the cooling effect increases as the evaporation rate increases. Additionally,
good agreement is observed with the results obtained from ABAQUS with same
mesh, and the accuracy of the proposed HFS-FEM is again verified.

Fig. 7. Temperature variation on the papillary axis for different evaporation rates.



506 H. Wang, Q. H. Qin

Table 3. Effects of evaporation rate on the temperature variation at the center

of the cornea surface.

Evaporation rate
Et (Wm−2)

Temperature at the center of cornea surface
(◦C)

HFS-FEM ABAQUS

20 34.755 34.757

40 34.435 34.436

70 33.954 33.956

100 33.474 33.475

320 29.948 29.950

4.3. Effect of ambient fluid

The effect of ambient fluid can be analyzed by changing two parameters:
ambient temperature T∞ and ambient convection coefficient h∞. Here, values
of T∞ in the range [20–50] ◦C and of h∞ in the range [8–100] Wm−2K−1 are
considered to study the temperature response caused by these two parameters.
The evaporation rate and the thermal conductivity of the lens are assumed to
be 40 Wm−2 and 0.4 Wm−1K−1, respectively. The numerical results are pre-
sented in Figs. 8 and 9. It can be seen from Fig. 8 that an increase in the

Fig. 8. Temperature variation on the papilary axis for different ambient convection
coefficients (T∞ = 25

◦C).
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Fig. 9. Temperature variation on the papillary axis for different ambient convection
coefficients (h∞ = 10 Wm−2K−1

).

convection coefficient of ambient fluid inevitably brings more heat loss from the
cornea surface, which finally leads to a low surface temperature. Meanwhile,
it seems from Fig. 9 that the ambient temperature has a significant effect on
the temperature at the center of the corneal surface. The lower is the ambient
temperature, the greater will be the temperature difference between the cornea
surface and the surrounding fluid. As a result, more heat energy is lost in the
eye model.

4.4. Effect of lens thermal conductivity

Finally, the effect of thermal conductivity in the transparent lens region
on the temperature distribution is studied. It is well known that the water
content of the lens decreases as a result of aging and thus the lens becomes
harder, causing different thermal conductivity [2]. For the purpose of compar-
ison, the values of thermal conductivity of the lens are assumed to be in the
range [0.21–0.54] Wm−1K−1 [2]. Other control parameters, including ambient
temperature, ambient convection coefficient, and evaporation rate, are assumed
to be 25 ◦C, 10 Wm−2K−1, and 40 Wm−2, respectively. From the variation of
temperature on the pupillary axis shown in Fig. 10 it is seen that very minor
change occurs at the rear of the eye, while a temperature rise of 0.088 ◦C is
detected at the center of the cornea surface, due to the increase in the thermal
conductivity of the lens. It is reasonable that higher values of thermal conduc-
tivity of the lens will permit more heat transfer from the rear of the eye (high



508 H. Wang, Q. H. Qin

Fig. 10. Temperature variation on the papillary axis for different lens thermal conductivity.

temperature region) to the corneal surface (low temperature region), and thus
cause the surface temperature to increase, although the influence is relatively
small.

5. Conclusions

A hybrid finite element model with Green’s function as the intra-element
trial function for heat transfer analysis of the human eye, was developed to
calculate the steady-state temperature distribution in a normal human eye. In
the proposed formulation, by virtue of the use of Green’s functions, the con-
structed variational functional involving the convection effect includes element
boundary integrals only. Results of the presented algorithm were compared with
those of ABAQUS, and their agreement shows promise for future applications
in the human eye. Further, to understand and access thermal mechanisms in
the eye model, a sensitivity analysis was performed by adjusting the values of
specified control parameters, which are usually uncertain in practice. Numerical
results showed that perturbations of evaporation rates significantly change the
cooling effect on the temperature distribution in the anterior regions. The tem-
perature distribution was also observed to be sensitive to variations of the am-
bient temperature and the ambient convection coefficient. Finally, it was found
that variations in the thermal conductivity of the lens lead to minor changes
in temperature in the anterior regions and negligible change at the rear of
the eye.
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