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GPU-based simulation of 3D blood flow in abdominal aorta
using OpenFOAM
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The simulation of blood flow in the cardiac system has the potential to become
an attractive diagnostic tool for many cardiovascular diseases, such as in the case of
aneurysm. This potential could be reached if the simulations were to be completed in
hours rather than days and without resorting to the use of expensive supercomputers.
Therefore we have investigated a possibility of accelerating medical computational fluid
dynamics (CFD) simulations using graphics processing units (GPUs). Our results for
the 3D blood flow in the human abdominal aorta show that by transferring only a part
of the computations (linear system solvers) to the GPU, it is possible to make the
typical CFD simulations three to four times faster depending on the CFD model being
used. Since these simulations were performed on widely available GPUs that had been
designed as mass-market PC extension cards, our results suggest that porting larger
parts of CFD to GPUs could really bring the technology into hospitals.∗)
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1. Introduction

Computational fluid dynamics (CFD) simulations are receiving more and
more attention from the medical sector due to their ability to mimic effects that
directly or indirectly impact the diagnosis. Recent advances in CFD have shown
that simulations of the blood flow and pressure field in the organ of interest
achieve the point where practical conclusions can be derived, even for a given
patient. Simulations of the cerebrospinal fluid flow [1], aortic bifurcation [2],
mechano-chemical model of a solid tumor [3], mechanism and localization of
wall failure during abdominal aortic aneurysm formation [4], and vascular sys-
tem simulations in arbitrary anatomies [5], are just a few examples of the cur-
rent academic research. CFD computations also have the potential to become
an attractive option for medical diagnosis and interventional planning; for ex-
ample, oscillatory flow disturbances may influence the formation of an aortic
aneurysm [4], and information about flow conditions in different parts of the
aorta may help doctors identify high-risk cases that require surgical treatment.
The blood flow in arteries is also interesting in itself for its oscillatory and even
turbulent nature.

The aortic bifurcation is an example of a case where the arterial flow is char-
acterized in terms of complex geometry, with pressure fluctuations and shear
stress varying both in time and space, and is therefore the most vulnerable to
injuries [4]. Medical image acquisition systems such as angiography, computed
tomography and magnetic resonance imaging (MRI), allow the construction of
patient-specific, 3D models of the geometry of organs and vessels. Doppler ultra-
sonography and phase-contrast MRI (PC-MRI) provide partial flow information
that can be used to construct the boundary conditions. Before the simulation is
launched, the computational mesh needs to be generated to cover the complex
geometry and the partial differential equations governing the blood velocity and

Fig. 1. The steady-state solution to the fluid flow through abdominal aorta. The figure shows se-
lected streamlines coloured by the magnitude of the velocity vectors. The solution was obtained
with the GPU-accelerated Semi-Implicit Method for Pressure Linked Equations (SIMPLE)

using OpenFOAM [6] and SpeedIT [8] libraries.
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pressure need to be carefully discretized to avoid numerical instabilities. Next,
the numerical solutions must be stable in time, and be of sufficient quality to rely
on in medical diagnosis. Finally, it must be possible to complete the simulations
in hours rather than days or weeks.

To reduce computational time, a significant effort is being made to parallelize
the medical CFD simulations using state-of-the art numerical methods [2]. Still,
the simulations are time-consuming and their direct applicability in medical
treatment is highly limited. Therefore in this paper we examine the possibility
of accelerating a part of the simulations in a special, massively parallel hardware
– graphics processing units.

Modern graphics processing units (GPUs) are many-core processors which,
aside from their main application in computer graphics, can also be used in gen-
eral purpose computations. In contrast to central processing units (CPUs), which
currently contain up to eight general-purpose cores and are connected to the main
memory through sophisticated, hierarchical caches, GPUs contain hundreds of
rather simple computational cores connected to a very wide and highly clocked
external memory bus. These design features result in computational power and
memory bandwidth exceeding that of the fastest multi-core CPUs by almost an
order of magnitude. However, this tremendous potential can only be exploited in
computations which can be parallelized into at least tens of thousands of threads,
with a very regular memory access pattern and small on-chip memory footprint.
Fortunately, CFD algorithms contain many steps which satisfy these conditions,
and so their acceleration in GPUs is certainly worth trying.

In this paper we report the results of our attempt to accelerate a well-defined
and self-contained part of CFD simulations in a GPU. To this end we chose
to accelerate two iterative solvers of large systems of sparse linear equations:
Conjugate Gradients (CG) and Bi-Conjugate Gradients Stabilized (BiCGStab).
These two methods are standard building blocks of CFD simulations based on
the Finite Difference Method (FDM), Finite Element Method (FEM) or Finite
Volume Method (FVM). As these solvers spent most of their time working out
sparse matrix-vector products (SmVP), we performed tests of our GPU SmVP
implementation and compared its efficiency with that offered by a CPU im-
plementation from the Intel Math Kernel Library. Next, we linked our GPU-
accelerated iterative solvers with OpenFOAM (Open Source Field Operation
and Manipulation) [6], an FVM-based, open-source C++ library for solving par-
tial differential equations (PDEs) in arbitrary 3D geometries. Then we used this
to solve the flow problem in the human abdominal aorta with three flow mod-
els of increasing complexity: potential, steady and unsteady, each solved with
a different computational method, respectively: direct, SIMPLE (Semi-Implicit
Method for Pressure Linked Equations), and PISO (Pressure Implicit Splitting
Operator) [9–13].



140 Z. Malecha et al.

We found that although our GPU implementation of CG and BiCGStab
solvers used rather simple preconditioners, whereas the original OpenFOAM
CPU implementation uses state-of-the art preconditioners, using the GPU-acce-
lerated iterative solvers alone resulted in the four-fold acceleration of the direct
CFD solver and in the three-fold acceleration of the SIMPLE method. These
results are very promising, as they suggest that porting larger parts of CFD
simulations to GPUs could lead to significant acceleration in computation and
bring the CFD technology into hospitals as a routine diagnostic method.

The structure of the paper is as follows: the remaining part of the current
section contains a basic introduction to using GPUs as general-purpose com-
puting devices (Sec. 1.1), a brief review of recent research on accelerating CFD
computations with GPUs (Sec. 1.2), the presentation of iterative linear solvers
and their role in CFD simulations (Sec. 1.3), and some details of our GPU im-
plementation (Sec. 1.4). Section 2 presents results of general performance tests
of our GPU code. Our results for the human abdominal aorta are reported in
Sec. 3. Finally, Sec. 4 presents conclusions and outlook.

1.1. GPUs as general-purpose computing devices

Graphics processing units, or GPUs, were invented in the late 1990s as fixed-
pipeline application-specific integrated circuits (ASICs) designed to accelerate
computations necessary in 3D real-time graphics. The very idea of building
a hardware graphics accelerator came from the observation that rendering a
3D scene requires a well-defined sequence of computational steps (the so-called
graphics pipeline), which need to be applied to large streams of easily separable
data, e.g. vertex coordinate and color descriptors, a task that in principle could
and should be parallelized to the extent unattainable for standard CPUs. Since
then, every two or three years, GPU designers have released new and revolution-
ary architecture which not only allows the users to enjoy increasingly life-like
graphics effects, but which also renders the devices more flexible and easier to
program. Although the first programmable GPUs appeared in the early 2000s,
this feature was hardly noticed outside graphics engineering, for it required the
mastering of special-purpose assembly languages and any general-purpose com-
putation had to be expressed in terms of graphics primitives. The situation
changed completely in 2006, when NVIDIA released its first fully programmable
GPU processor, GT80, together with all the software tools sufficient to write
GPU programs in a popular, high-level computer language (C or C++). This
new programming environment is called CUDA [14]; ATI Stream is a similar
product for AMD ATI graphics cards [15].

Typical examples of modern GPUs are the GF100 and RV790 processors. The
former has up to 512 computational cores which can deliver ≈ 1 TFLOPS of com-
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putational power for single precision floating point numbers and ≈ 0.5 TFLOPS
for double precision floating point numbers. It can also access the GPU memory
at 177 GB/s. The latter includes 800 cores, which can deliver 1.4 TFLOPS in
single precision and can access the main memory at 125 GB/s. Note that the
fastest eight-core CPUs can deliver about 0.15 TFLOPS in single precision and
can access their main memory at about 25 GB/s.

Although GPUs apparently surpass CPUs in computational power, neither
end-users nor programmers are rushing to replace their CPUs with GPUs, and
this is for a good reason. The tremendous computational power of GPUs comes
with a price. Firstly, GPUs are designed as co-processors to CPUs and cannot
run programs by itself nor communicate with any external device other than
the host CPU. The launching of GPU programs (“kernels”), as well as GPU
memory management, can only be performed by the CPU. Secondly, GPU cores
are arranged in a multi-level hierarchical structure. Essentially, all cores must
execute the same program and all cores on the lowest hierarchical level must
execute the same instruction or stay idle. Thirdly, the GPU memory has a very
special organization which works optimally if the data are accessed in order,
as if in streams of consecutive items. If different cores want to simultaneously
access memory addresses located in different 256-byte long memory chunks, the
main memory bandwidth drops by an order of magnitude. Moreover, to hide
large DRAM memory latencies, GPUs can launch in hardware tens or even
hundreds of threads per each physical computational unit, all resident in the on-
chip memory which implies that the number of registers available to each thread
is quite limited, a phenomenon known as “register pressure”. For this reason, GPU
kernels tend to be rather small programs launched from the CPU in sequence, and
the efficiency of on-chip memory utilization is of highest priority. Fourthly, the
PCI-Express bus connecting GPUs to the CPUs is relatively slow (up to 8 GB/s),
much slower than the internal buses in CPUs and GPUs. Lastly, even though
GPUs can be programmed in slightly extended high-level languages, they cannot
run routines written in these languages for CPUs. Moreover, a vast majority of
existing C or C++ libraries are targeted at either serial processors or parallel
systems adhering to a completely different parallelization model and hence their
porting to massively parallel GPUs can be a very nontrivial, time-consuming,
error-prone task. The number of production-quality libraries for GPUs is thus
very limited. This means that practically all numerical software for GPUs must
be written from scratch.

Taking these restrictions into account, one concludes that efficient GPU ac-
celeration is possible only for problems with large, homogeneous data sets that
can be easily processed with at least tens of thousands of independent, identical
threads sharing the data only occasionally. Effective GPU-accelerated programs
should also minimize data transfers between the CPU and the GPU and between
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GPU cores and the main GPU memory, so that the cost of these transfers could
be compensated by a large amount of computations performed in the GPU. It is
also clear that the acceleration of CFD simulations, which are usually based on
complex CPU codes developed in decades by large groups of highly skilled profes-
sionals, must be carried out in small steps targeting rather small, self-contained
areas, critical to the overall performance of CFD programs. In accordance with
this observation, in this paper we restrict GPU acceleration to sparse linear sys-
tem solvers and investigate how this can impact the performance of three basic
OpenFOAM CFD solvers.

1.2. Applications of GPUs in CFD simulations

Since the data sets used in CFD problems are typically very large and eas-
ily separable into small chunks that can be processed in parallel by individual
computing threads, CFD belongs to the area where the GPU architecture can
be expected to show its advantages. This is confirmed by the available research
on this subject.

In 2008 Tölke and Krafczyk [16] reported that a GPU-accelerated imple-
mentation of the Lattice-Boltzmann solver applied to the problem of a moving
sphere in a cylindrical pipe at various Reynolds numbers was ≈ 100 times faster
than a similar implementation run on the Intel Xeon (3.4 GHz) CPU. They also
found that their implementation achieved as much as 44% of the peak GPU
computational power and 61% of its peak memory bandwidth. The success of
the Lattice-Boltzmann approach is closely related to the fact that it uses reg-
ular lattices for which strict memory access requirements of GPU processors
are easier to satisfy than in methods based on an irregular computational mesh
(e.g. FEM).

In [17], GPUs were used to simulate the flow over a hypersonic vehicle. To
this end, the compressible Euler equations were solved with a multi-grid, vertex-
based, finite-difference method. Depending on the complexity of the geometry,
the NVIDIA 8800GTX GPU was demonstrated to be between 20 and 40 times
faster than the Intel Core 2 Duo CPU.

In [18], the Boussinesq approximation of the Navier–Stokes equations
was implemented on the GT 200 GPU processor. The maximum problem size
(384 × 384 × 192) was limited by the GPU memory size (4 GB). The perfor-
mance acceleration against an eight-core Intel Xeon E5420 2.5 GHz system
ranged from 2 for small problems to 8.5 for the largest system.

In [19, 20], a solver for the Navier–Stokes equations with up to four GPUs was
proposed. Its performance was compared against two CPU-based systems: one
with 2 Intel Core 2 Duo (E8400) 3.0 GHz CPUs and the other one with 4 AMD
dual-core Opteron 2.4 GHz (8216) processors. A single GPU implementation was
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12.6 times faster than the implementation of a single core Intel CPU. Adding
more GPUs yielded an almost linear performance growth – a 4 GPU system was
3 times faster than a 1 GPU system and about 100 times faster than a single
4-core Opteron.

An interesting report on multi-GPU clusters recently appeared in [21]. Several
mixed MPI-CUDA implementations were tested to investigate the best strategy
of developing an efficient and scalable method of accelerating incompressible flow
computations on large, mixed CPU-GPU clusters. The tests were performed on
a 64-node cluster with 128 GPUs, each with 240 computational units. In this
heterogeneous configuration, it was possible to obtain a sustainable performance
of 2.4 TeraFLOPS.

In [22], a possibility of GPU acceleration of a Navier–Stokes solver for a sta-
tionary laminar flow was investigated. The analysis was carried out on a 4-node
cluster, each node equipped with a dual core AMD Opteron X2 Santa Rosa
1.8 GHz with 6.4 GB/s memory bandwidth and an NVIDIA GeForce 8800 GTX
GPU with 86.4 GB/s memory bandwidth. The application of GPU coprocessors
resulted in a rather small performance gain (160%), which was caused by two
factors. Firstly, the GT 8800 processor cannot handle double precision numbers.
Secondly, a complex algorithm used in that study required intensive communi-
cation between GPU and CPU memories.

The main conclusion emerging from these results is that modern GPU pro-
cessors allow for up to, approximately, a tenfold performance increase in typical
CFD simulations against eight-core CPUs. Methods based on regular lattices,
e.g. the lattice Boltzmann method, allow for even greater acceleration. An addi-
tional advantage of GPU acceleration is its good scalability with the number of
GPUs in use.

1.3. Iterative linear solvers

The most popular numerical methods of solving flow equations consist of
three main steps. Firstly, continuous time and space are approximated by finite
sets of discrete points (mesh generation). In the second step, the partial differ-
ential equations governing the flow are discretized on the mesh points leading to
a large set of linear or non-linear algebraic equations. Finally, algebraic equations
are solved using iterative or direct methods.

The Navier–Stokes equations are non-linear, but a common technique is to
linearize them during the discretization step, which leads to a set of linear
algebraic equations with solution-dependent coefficients [12, 23, 24]. The main
reason for using linearization methods is the fact that linear algebraic equa-
tions can be solved by using very efficient methods of computational linear al-
gebra.
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From this description, it is clear that linear solvers are the first candidate
for GPU acceleration in CFD programs. Linear systems found in CFD problems
have a few common features. The number of unknowns in these equations is
proportional to the number of mesh vertices and is very large, often exceeding
106. Each equation includes only variables from neighboring vertices, and hence
the system is sparse. The computational meshes are usually irregular, so the
matrix of the linear equations is not only sparse, but also unstructured.

Thus, our problem is efficiently using a GPU to solve a system of linear
equations of a general form

(1.1) Ax = b

where A is a huge, unstructured, sparse, real matrix, and x, b are real vectors.
A number of special techniques for such systems has been developed. Among
them, Krylov subspace iterative methods have become a de facto standard for
large linear problems. A thorough review of these methods can be found in [25],
and many technical details of their computer implementations are discussed in
[26]. We chose to accelerate two popular Krylov subspace methods: Conjugate
Gradient (CG) and Biconjugate Gradient Stabilized Method (BiCGStab). Below,
we present only those of their properties which are relevant to our present work.

All Krylov subspace methods are based on the observation that the product
of a sparse matrix A with any vector x is a relatively cheap operation that can
be completed in a time proportional to the number of nonzero elements of A.
Thus, it is not difficult to construct a sequence of vectors x,Ax,A2x, . . . . By
taking their linear combinations it is then easy to compute any member of the
so-called Krylov subspace

(1.2) Kr(A,x) = span{x,Ax,A2x, . . . ,Ar−1x}
spanned by these vectors. A sequence of approximate solutions xr = x0 + wr to
Eq. (1.1) is then computed, where x0 is the initial guess (often chosen to be the
zero vector) and wr is a vector from the Krylov subspace Kr(A,Ax0−b). There
are many possible algorithms of generating “the best” sequence wr for which the
iterates xr will quickly converge to the exact solution. These methods often use
some additional information on A, such as whether it is symmetric and whether
it is positive definite, etc.

The Conjugate Gradient (CG) method is applicable only to systems with
a symmetrical, positive definite matrix A. It involves only one matrix-vector
multiplication per iteration, and requires storage for just a few temporary vec-
tors rather than the whole sequence {xr}. Systems with general nonsingular
sparse matrices can be solved using the Biconjugate Gradient Stabilized Method
(BiCGStab). This method requires two matrix-vector multiplications per itera-
tion and, like CG, storage for a limited number of vectors.
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Since all iterative methods aim at finding an approximate rather than exact
solution, they usually involve a second matrix M, called a preconditioner, the role
of which is to transform the original problem into one with improved convergence
properties. This idea is based on an observation that equation

(1.3) M−1Ax = M−1b

is mathematically equivalent to (1.1), but for a well-chosen M, the transformed
equation can be solved more quickly. A good preconditioner should satisfy two
conditions. Firstly, it should resemble the original matrix A, so that M−1A

would approximate the identity matrix. Secondly, it should be possible to solve
Mx = b for x far more efficiently than Ax = b (which is necessary to work
out expressions like M−1b). Although constructing and applying precondition-
ers usually implies a substantial computational overhead, a well-chosen precondi-
tioner can greatly improve the convergence rate of iterative methods, which fully
compensates the overhead. Actually, in many practical cases, iterative methods
fail to converge without a preconditioner.

There are only a few theoretical results concerning the rate of convergence of
the Krylov subspace methods. For example, assuming the exact computer arith-
metic, the upper bound for the number of iterations to reach a given relative
error in the solution of (1.3) using the CG method is proportional to

√
κ2, where

κ2 is the spectral condition number of M−1A. Thus, the role of a good pre-
conditioner is to reduce the spectral condition number of the coefficient matrix,
which in turn not only speeds up the convergence, but also reduces the round-off
errors. An example of a preconditioner is the Jacobi preconditioner defined as
the diagonal part of A, M = diag(A).

1.4. GPU implementation

GPU vendors offer several programming frameworks for general-purpose
GPU computing. Currently, the most advanced of them are NVIDIA CUDA
(proprietary, free) and OpenCL (open standard). We chose CUDA [14], as it
appears to be the most mature solution for GPU programming, offering such
programming tools as a debugger and profiler. An important and unique feature
of CUDA is its full support for C++ templates, which are widely used in our
code.

Using CUDA, we ported to GPU the CG and BiCGStab iterative solvers, as
well as the Jacobi (diagonal) preconditioner. Both solvers can be used in single
and double floating point precision and can be used with or without the pre-
conditioner. It is also possible to use them to solve systems of linear equations
in complex arithmetics. All matrix-vector and vector-vector operations are per-
formed in the GPU. Implementation of the SmVP operation is based on the
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vector and scalar CSR kernels with data buffering through a texture cache pro-
posed in [27]. The vector-vector scalar product is calculated using the NVIDIA
CUBLAS library, and the remaining kernels are custom codes.

The GPU-accelarated linear solvers were then integrated with OpenFOAM
by subclassing their lduMatrix::solver class. Whenever the CG or BiCGStab
solver was about to be called by OpenFOAM to solve (1.1), we converted the
computer representation of A from the OpenFOAM format to the CSR [25, 26]
format, transferred it together with vectors x and b to the GPU memory, called
our GPU solver, and copied the result, i.e. x, back to the CPU memory. The
matrix format conversion is carried out in the CPU, which imposes some com-
putational overhead. We chose the CSR format because of its simplicity and
generality, which minimized the format conversion overhead.

2. Performance tests

2.1. Hardware and software specification

All performance tests were done on a desktop PC computer with a four-core
Intel(R) Core 2 Quad CPU Q8400 clocked at 2.66 GHz, connected to 4 GB of
a dual channel DDR2 memory clocked at 800 MHz and offering the peak band-
width of 12.8 GB/s. The GPU device was an EVGA GeForce GTX 275 graphics
card with a GT 200 processor clocked at 633 MHz (240 CUDA cores), con-
nected to 1792 MB of DDR3 448bit memory. In this configuration, the measured
peak GPU bandwidth was 103 GB/s and the theoretical peak GPU computa-
tional performance was ≈ 0.9 TFLOPS (single precision) and ≈ 76 GFLOPS
(double precision). The measured peak bandwidth of the GPU-CPU bus (PCI-
Express x16 gen 2) was 3.1 GB/s for non-pageable memory and 2 GB/s for
pageable memory. All bandwidth measurements were done with bandwidthTest
utility from CUDA SDK. The operating system was an Ubuntu 9.04 Desktop
x86-64 with CUDA 2.3 and NVIDIA driver v. 190.53.

2.2. Test procedure

Our GPU-accelerated linear solvers were tested in two scenarios. In the first
scenario, we chose a set of test matrices and for each solver, we measured its
acceleration as compared to the corresponding CPU implementation. Next, the
solvers were integrated with OpenFOAM to determine how much they could
accelerate solutions of typical medical CFD problems.

The test matrices, representing typical matrices found in 2D and 3D prob-
lems, are listed in Table 1. These are unstructured, real and sparse matrices
of medium to large size, with various algebraic properties, including symmet-
ric positive definite, symmetric indefinite, and non-symmetric matrices. They
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Table. 1. The basic parameters of the test matrices from [28] used in the GPU
performance measurements. nnz denotes the number of matrix nonzero elements,
m denotes the number of matrix rows, and the ratio nnz/m gives the average

number of nonzero elements per matrix row.

Matrix name nnz m nnz/m

af_shell10 52 672 325 1 508 065 34.9

apache1 542 184 80 800 6.7

audikw_1 77 651 847 943 695 82.3

F1 26 837 113 343 791 78.1

Freescale1 18 920 347 3 428 755 5.5

hood 10 768 436 220 542 48.8

nd12k 14 220 946 36 000 395.0

nd24k 28 715 634 72 000 398.8

were selected from the University of Florida Sparse Matrix Collection [28], and
originated from various applications, including CFD, circuit simulations and
structural analysis. The number of their nonzero elements vary from 542 184
to 77 651 847, the number of rows range from 36 000 to 3 428 755, and the
average number of nonzero elements per row lie between 5.5 and 398.8. They
require from 7 MB to 0.91 GB of storage and hence can be processed in most
modern graphics cards (usually equipped with 1 GB of RAM). Note that only 6
(out of 2272) of the largest matrices listed in [28] would require more than 1 GB
of storage.

The computational performance of CPU and GPU implementations was mea-
sured in GFLOPS (109 floating-point operations per second) and calculated as
the ratio of the required number of floating point operations to the time taken
by the computations. In the calculations of the number of floating point oper-
ations (computational complexity), each arithmetic operation carried on source
operands (elements of vectors or matrices) was counted as one floating-point op-
eration. In this model, the number of floating point operations for the dot product
of two m-element vectors was readily found to be equal to 2m − 1. A similar
formula for the computational complexity of sparse matrix-dense vector product
reads [8]

(2.1) NFLOP = 2nnz − m

where m is the number of rows in A, and nnz denotes the number of its non-zero
elements. Next, the computational complexity of iterative solvers was computed
as the sum of computational complexities of each of its elementary internal op-
erations.
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2.3. Iterative linear solvers

The computational performance of iterative solvers depends mainly on the
efficiency of the sparse matrix-vector product (SmVP) routine and in the case
of our GPU implementation, it was found to lie between 3.2 and 15.5 GFLOPS
for a single precision and between 2.3 and 12.0 GFLOPS for double precision
floating-point arithmetic. As seen in Fig. 2, comparison with a state-of-the art
CPU implementation from the Intel Math Kernel Library run on a 4-core Intel
CPU showed that the GPU-based version is between 7.3 and 14.5 times faster
for single precision, and between 5.1 and 15.9 times faster for double precision,
depending on the matrix structure.
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Fig. 2. Acceleration of the SmVP routines for the test matrices from Table 1 and two floating-
point precisions, single and double. CPU-GPU data transfer overhead is not taken into account.

Next, the computational performance of linear solvers was tested. For each
combination of the floating-point precision, preconditioner, and test matrix, we
ran the CG and BiCGStab solvers on both hardware platforms (CPU-only and
GPU-accelarated CPU). Note that although it is impossible to solve Eq. (1.1) us-
ing the CG method for some of the test matrices listed in Table 1, we used them
in the tests to examine the impact of their structure on the solver computational
performance.

The peak computational performance of our linear solvers was found to vary
between 2.3 and 15.2 GFLOPS for single precision and between 1.5 and 11.5
GFLOPS for double precision. These results are similar to the performance of
the SmVP routine, which takes up most of the solver run time.

The relation between the performance of the BiCGStab solver and the num-
ber of its internal iterations is shown in Fig. 3a for the two matrices with the
highest and lowest performances. The CPU-GPU memory transfer overhead was
not taken into account in this figure. Notice that after a few iterations, the
computational performance stabilized at the maximum level. An initial, small
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Fig. 3. GPU-accelerated BiCGStab solver performance as a function of the number of solver
internal iterations a) without and b) including the CPU-GPU data transfer overhead.

performance drop was caused by the time necessary for the solver’s internal data
allocation and initialization.

Figure 3b presents the performance of the BiCGStab solver as a function
of the number of solver iterations, with the data transfer overhead taken into
account. This overhead is responsible for a lower performance if the number of
iterations is small. As the number of iteration increases, the performance of the
solver converges asymptotically to the maximum value.

To analyze the cost of using the diagonal preconditioner, the time overhead
introduced by this preconditioner was defined as

(2.2)
tdiag

tnone
− 1,

where tdiag is the time taken by the diagonally preconditioned CG solver, and
tnone is the time taken by this solver without being preconditioned. The results
are shown in Fig. 4a. The maximum performance deceleration caused by the
diagonal preconditioner may be as high as approximately 40% for a small number
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Fig. 4. a) Time overhead of the diagonal preconditioner for the single precision CG solver,
computed from Eq. (2.2), b) time ratios of the double-precision, diagonal-preconditioned, GPU-
accelerated BiCGStab solver to the corresponding CPU implementation. In b) the CPU-GPU

data transfer overhead is taken into account.



150 Z. Malecha et al.

of iterations, but as the number of iteration increases, the diagonal preconditioner
overhead drops below 10% for all test matrices. The results for the BiCGStab
solver are similar (data not shown).

In order to compare our GPU-accelerated solvers with corresponding
CPU implementations, we developed our own highly optimized, multi-threaded
BiCGStab solver based on the SmVP routine from the Intel Math Kernel Li-
brary and a BiCGStab algorithm from [26]. Results of the performance com-
parison are presented in Fig. 4b and include the data transfer overhead. The
GPU-accelerated solver turned out to be always faster than its CPU equivalent
running on a 4-core CPU.

Finally, we compared the times needed to solve three systems of linear equa-
tions. In all cases, the solvers were run with the same initial conditions and
required error tolerance. The results are shown in Table 2. The acceleration was
computed as the ratio of the CPU to GPU solver run times. The data trans-
fer overhead was included in the times for the GPU-accelerated solver. In all
the cases, the GPU-accelerated solvers turned out to be significantly faster than
a highly optimized CPU implementation run on a 4-core processor.

Table 2. Comparison of double precision GPU and CPU linear solver
performances.

Matrix name
Number Residuum Time

Speedupof iterations [×10−11] [s]

CPU GPU CPU GPU CPU GPU

apache1 2014 2157 2.88 5.17 18.37 3.51 5.24

F1 4396 5516 2.88 9.97 1339.59 87.40 15.33

hood 6165 9811 7.67 9.72 686.86 86.99 7.90

3. Flow in abdominal aorta

CFD flow problems can be tackled using various methods which, aside from
linear solvers, require many more components. One can expect that the more
complex an algorithm is, the smaller the benefits will be from accelerating lin-
ear solvers only. Moreover, if only a part of essential algorithms has been im-
plemented on the GPU, the overall computational performance is likely to be
affected by low-bandwidth communication between the GPU and its host CPU.
To investigate these problems, we decided to solve the flow in the abdominal
aorta using three different types of flow models: potential, steady and unsteady.
Each was solved with a different CFD method: direct, SIMPLE, and PISO [9–13],
respectively. To this end, three OpenFOAM flow solvers were used: potential-



GPU-based simulation of 3D blood flow. . . 151

FOAM, simpleFOAM and pisoFOAM. They were modified and recompiled to
adjust to our needs.

The flow geometry of the abdominal aorta used in our tests is shown in Fig. 5.
It was generated from Virtual Family models and originated from high resolution
MRI scans (0.5–0.9 mm pixel size, 1–2 mm slice thickness) of healthy volunteers
[29]. To obtain a convenient mathematical description of the aorta surface, the
geometry was expressed in the STL format which is commonly used to describe
unstructured, triangulated surfaces. This data was then used to generate a three-
dimensional, computational mesh. In this study, an unstructured tetrahedral
mesh was used.

Fig. 5. Geometry of the human abdominal aorta used in the numerical calculations. A, B, C
and D are cross-sections of the aorta employed in Fig. 10.

3.1. Acceleration measurement

Generally, the acceleration of a GPU-accelerated CFD solver is defined as
the ratio of the original (CPU-only) to the GPU-accelerated OpenFOAM solver
runtimes, including the time spent on reading the data from the hard disk.
However, evaluation of the acceleration is complicated by the fact that Open-
FOAM implements various preconditioners, some of which use sequential algo-
rithms that cannot be efficiently ported to a massively parallel device such as
the GPU. Therefore, we investigated two accelerations. In the first one, both
GPU and CPU implementations of a particular OpenFOAM solver were forced
to use the same preconditioner – the diagonal preconditioner. This test was called
“diagonal vs. diagonal”. In the second test, both implementations were allowed
to use “the best” preconditioners for a given platform. Thus, in this test, the
GPU-accelerated implementation used the diagonal preconditioner, whereas the
original CPU-only OpenFOAM implementation used more efficient, state-of-the-
art preconditioners: either the diagonal incomplete-LU (DILU) or the diagonal
incomplete-Cholesky (DIC) preconditioner. Additionally, in the PISO method,
the Geometric Agglomerated Algebraic Multigrid (GAMG) solver was used in
many steps of the algorithm. This test was called “diagonal vs. other”.
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3.2. Simple potential flow

Our first test focused on a very simplified flow in the abdominal aorta us-
ing PotentialFOAM solver [6]. The PotentialFOAM is the simplest solver among
OpenFOAM’s applications. It assumes that a flow is irrational, incompressible,
inviscid and steady, and is governed by the mass continuity and pressure equa-
tions [7]:

∇ · U = 0,(3.1)

∇2p = 0,(3.2)

where U is the velocity vector and p denotes the pressure. The name of the
solver and its description given by its authors can be misleading because a ve-
locity potential equation is not solved here. Our main goal with using the Poten-
tialFOAM solver was to show the acceleration of the calculations for problems
based on Laplace’s or Poisson’s equations. Since the above approximation is very
simplified, it cannot be used for serious clinical applications. Nevertheless, it can
be useful as a utility to provide the initial velocity field for more realistic flow
models [7].

The acceleration of the GPU-accelerated potentialFOAM solver is presented
in the first bar-graph of Fig. 6. In this case, we can observe that the GPU imple-
mentation was approximately 4 times faster than its CPU-only counterpart with
a recommended preconditioner. When both CFD solvers were forced to use the
same preconditioner, the acceleration increased to ≈ 6 times. Such acceleration
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tations with recommended preconditioners – GAMG for the PISO, and DILU/DIC for the
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was possible because the PotentialFOAM solver was based on a single Poisson
equation, which was approximated by a system of linear equations with a con-
stant coefficient matrix A. Hence, all calculations could be carried out on the
GPU device.

3.3. Steady incompressible flow

Next, we employed the SIMPLE method to solve the steady and incompress-
ible Navier–Stokes equations

(3.3) ∇ · (UU) = −∇p + ν∇2U,

where ν is the kinematic viscosity. Here and in the next example, blood was mod-
eled as a Newtonian fluid with a constant density ρ = 1020 kg/m3 and dynamic
viscosity η = νρ = 0.003 kg/ms. In this equation, both velocity U and pressure
p are unknown, so we had to perform outer iterations to calculate pressure and
velocity fields, verifying Eqs. (3.1) and (3.3), which is a characteristic feature of
the so-called projection methods [11, 12].

Another difficulty in solving the Navier–Stokes equations is the nonlinear
term ∇· (UU). In OpenFOAM, this term is replaced with a linear one, ∇· (φU),
where φ is the velocity flux, which is calculated using the value of U from the
previous iteration.

Figure 1 shows the steady-state solution to the fluid flow through the ab-
dominal aorta with selected streamlines colored by the magnitude of the veloc-
ity vectors. At the inlet, a fully developed flow was imposed as the boundary
condition. This boundary condition assumes that the velocity profile at the inlet
has a parabolic shape with velocity vanishing at the walls and maximum value
1.3 [m/s] in the middle. This value corresponds to the maximum blood velocity
in the entrance to the abdominal aorta [2]. To determine the developed-flow con-
dition, we solved an additional Poisson’s equation ∇2U0(x, y, z) = 1 exclusively
at the inlet patch with the zero Dirichlet boundary condition. The resulting
function U0(x, y, z) was then rescaled to the desired value and prescribed to the
normal component of the inlet boundary velocity. A no-slip boundary condition
was applied to the walls of the aorta, which were assumed to be rigid, whereas
the zero velocity gradient condition was used at the outlets.

As seen in the second bar-graph of Fig. 6, the GPU acceleration for the
SIMPLE method was found to be equal to roughly four or three, depending on
the linear preconditioner employed in the CPU implementation. These values are
a bit smaller than in the case of the potential flow. The main reason for this is
the fact that during the outer iteration, it was necessary to update the coefficient
matrix used by the linear solver in each iteration. This required frequent data
transfers between the GPU and the CPU, which is an inefficient operation.
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3.4. Unsteady flow

None of the methods described above is capable of revealing all details of
actual flows in the abdominal aorta, mainly because the inflow to the real aorta
is pulsatory and the equations used to determine such a flow have to be time-
dependent. Thus, we arrive at the full Navier–Stokes equations:

(3.4)
∂U

∂t
+ ∇ · (UU) = −∇p + ν∇2U

with the time-dependent, fully developed, inlet velocity, boundary condition:

(3.5) Uin = U0(x, y, z) (sin (2πωt) + 1)

where U0(x, y, z) is the function which is parabolic in shape, calculated in the
same way as in the previous section, but with a maximum value of 0.65 m/s. The
frequency corresponding to a heart rate of 80 beats per minute [2] is ω = 1.333 Hz.
The cross-section of the inlet velocity boundary condition described by 3.5 can
be seen in Fig. 7. As before, the no-slip boundary condition was applied to the
walls of the aorta, which were assumed to be rigid, whereas the zero velocity
gradient condition was used at the outlets.

Fig. 7. Time-dependent inlet boundary condition expressed by Eq. (3.5). Arrows represent lin-
ear cross-sections from two-dimensional profiles of velocity imposed as the boundary condition
at the inlet to the aorta. The profiles represent the developed boundary condition (parabolic

profile) for three selected time-steps: t = 0.18, 0.37, and 0.58 [s].

In reality, the minimum inlet velocity was measured as slightly negative,
revealing a short period of reverse flow. Our boundary condition (3.5) assumes
the minimum velocity to vanish, and in this respect slightly differs from the
boundary condition proposed in [2].
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Equations (3.4) were solved with the PISO method, another example of a
projection method which is used, more often, for time-dependent problems other
than SIMPLE. In the PISO algorithm, to enforce the continuity equation (3.1),
an additional pressure equation must be solved and the velocity field is then
corrected [11, 12].

3.5. Results

The unsteady simulations of the flow in the abdominal aorta reveals some
interesting features. Figures 8 and 9 show the flow for different times t, corre-
sponding to different phases of the inlet velocity boundary condition (cf. Fig. 7).
At t = 0.18 s, the inlet boundary velocity is in the increasing phase and is just
before it reaches maximum value. At t = 0.37 s, the inlet velocity is in the de-
creasing phase and for t = 0.58 s, it is just before it reaches minimum value.
After reaching the minimum value, the flow starts a new cycle. Figure 8 shows
selected three-dimensional streamlines in which different colors correspond to
different magnitudes of the velocity, whereas Fig. 9 represents the velocity mag-
nitude in the same horizontal cross-section as in the Fig. 8.

Fig. 8. Flow in abdominal aorta for times: a) t = 0.18 s, b) t = 0.37 s, c) t = 0.58 s. Selected
streamlines are shown, with color and intensity representing the velocity magnitude.
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Fig. 9. A cross-section of the abdominal aorta, with the magnitude of the velocity field at
times: a) t = 0.18 s, b) t = 0.37 s, c) t = 0.58 s. The cross-section is the same as in Fig. 8.

Analyzing the flow field in time, one can observe alternate periods of ordered
and very irregular flow patterns. This is caused by the fact that fluid dynamics
is strongly affected by the state of the inlet velocity. In the increasing phase of
the inlet velocity, the flow becomes gradually more ordered, and finally (for the
maximum inlet velocity) approaches a state similar to the one obtained in the
steady solution (compare Figs. 1 and 8a). In Fig. 9a, just before the exit from
the aorta, one can observe a characteristic region where the velocity is much
slower than in the surrounding fluid. In this region, when the inlet velocity has
just started to decrease after reaching its maximum value, a recirculation zone
manifests itself, see Figs. 8b and 9b.

During the decreasing phase of the inlet velocity, the flow becomes gradually
more complicated and finally reaches a very complex state, see pairs of Figs. 8b,
9b and 8c, 9c. There is no longer one dominant recirculation zone but new vortex
structures appear successively with strong mixing characteristics.

Figure 10 shows the magnitude of the velocity field for different times and
different cross-sections of the aorta. Each cross-section is marked with letters A,
B, C and D respectively, and corresponds to the indicators marked in Fig. 5.

By analyzing the flow patterns in the different cross-sections of the aorta, we
can confirm our previous observations. However, we can also observe some new,
interesting features. For time t = 0.18 s and cross-section D, we can see that the
flow is distributed almost uniformly across the section. But when we move closer
to the bifurcation region, the main flow shifts from the center of the aorta to one
of the sides, as seen in cross-section C. Consequently, we can observe that aorta



GPU-based simulation of 3D blood flow. . . 157

Fig. 10. Magnitudes of the velocity field for different times and cross-sections of the abdominal
aorta. The cross-sections are marked as A, B, C, D respectively and correspond to the indicators

in Fig. 5.

velocities are higher in one branch than in another, as shown in cross-sections B
and A. For time t = 0.37 s, the inlet velocity is in the decreasing phase and the
flow field becomes more complex, but the flow patterns in the cross-sections are
similar to those obtained at t = 0.18 s.

For times t = 0.18 s and t = 0.37 s, we can observe that the regions of
low and high velocities are separated and focused in different parts of the aorta.
But at t = 0.58 s, when the inlet velocity is in the decreasing phase and just
before it reaches minimum value, we can observe that regions of low and high
velocity penetrate each other, causing those regions to form very complex shapes.
It confirms again that the flow in the abdominal aorta has very strong mixing
features.

The results for the GPU acceleration are presented in Fig. 6 and show that the
acceleration of the PISO algorithm is hardly noticeable. This is a result of the fact
that OpenFOAM implements the PISO method using the Geometric Agglomer-
ated Algebraic Multigrid (GAMG) method, which was not ported to the GPU.

4. Conclusions

Recent advancements in computer fluid dynamics (CFD), combined with
the availability of high-resolution magnetic resonance images, suggest that the
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simulation of blood flow in the cardiac system has the potential to become
an attractive diagnostic tool for many cardiovascular diseases. The main prob-
lem that still needs to be solved is that such simulations are time-consuming,
even if they are carried out on supercomputers. Therefore, we have investigated
a possibility of accelerating medical computational fluid dynamics (CFD) sim-
ulations using graphics processing units (GPUs), a promising emerging hard-
ware and software platform whose computational power, already counted in
teraflops, place it among supercomputers of only five years ago. To this end,
we have implemented two GPU-accelerated iterative solvers for large systems of
sparse linear equations: the Preconditioned Conjugate Gradient (CG) method
and the Preconditioned BiConjugate Gradient Stabilized (BiCGStab) method.
The first of them can be used for computational problems with a symmet-
ric, positive definite coefficient matrix, while the second one can be used for
problems with arbitrary non-singular matrices. Together, they cover a large set
of problems appearing in Computational Fluid Dynamics and other numerical
problems.

We have tested these solvers on matrices from the Florida Matrix Collection.
The SmVP performance tests yielded a GPU acceleration factor that was between
3.5 and 14.5 for single precision and between 4.5 and 15.9 for double precision,
as compared to the same algorithm using the Intel MKL library and run on
a modern 4-core CPU. These results show that GPUs are a very attractive
supplement to traditional, CPU-based computational environments.

To test the performance of the GPU-accelerated linear solvers and their appli-
cability to more demanding problems, we have compiled them into a stand-alone
library (SpeedIT), integrated that with the OpenFOAM library, and then used
it to solve a realistic 3D flow in the bifurcation of the abdominal aorta. We in-
vestigated different types of flow models as well as different methods of solution.
Our investigations revealed that acceleration is limited by the amount of data
transfers between the CPU and the GPU, relative to the amount of computa-
tions done in the GPU. The acceleration was quite good for relatively simple
CFD methods. For example, potential flow calculations were approximately four
to six times faster, depending on the preconditioner used in the CPU implemen-
tation. This was possible because all calculations were done on the GPU. We also
found satisfactory acceleration for steady incompressible flows. In this case, the
Navier–Stokes equations were solved using the steady SIMPLE method. Despite
the computational algorithm of the SIMPLE method being much more compli-
cated than the one for potential flows, we were still able to gain acceleration, of
nearly four times, for the calculations.

Depending on the problem being considered, both potential flow or steady
flow solvers may be sufficient. In these cases, it is possible to accelerate linear
solvers only, and still achieve satisfactory acceleration. However, for more de-
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manding problems, such as in transient flow solvers, this simple strategy is no
longer sufficient, since when we linked our GPU-accelerated linear solvers with
the transient PISO method, the acceleration was hardly noticeable. This leads
to the conclusion that in order to obtain reasonably good acceleration for time-
dependent problems, the whole computational algorithm must be ported to the
GPU. The first step towards reaching this goal could be the generalization of
our solvers for handling systems of linear equations of the form A(x)x = b , i.e.
with the coefficient matrix A, depending on the solution, which is our next goal.

Another aim of our work was the investigation of the flow in the human
abdominal aorta, based on real three-dimensional geometry. By using the PISO
method for transient incompressible flows, we were able to observe several inter-
esting phenomena. We observed that the flow pattern had been strongly affected
by the state of the inlet velocity. When the inlet velocity was at an increasing
phase, the flow had gradually become more ordered and finally reached a state
that was similar to the one obtained with the steady SIMPLE solver. When the
inlet velocity was at the decreasing phase, the flow had become more complex
and chaotic. Shortly after passing the maximum inlet velocity value, a relatively
large recirculation zone emerged. With decreasing velocity, we were able to ob-
serve several different vortex structures. This indicated a strong mixing nature
for the flow. Our next step in more realistic blood flow simulations will be to con-
sider the blood as a non-Newtonian fluid, and to model the interaction between
the blood and the vein’s wall.
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