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Acoustic scattering from functionally graded cylindrical shells
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In this paper, the method of wave function expansion is adopted to study the scat-
tering of a plane harmonic acoustic wave incident upon an arbitrarily thick-walled,
functionally graded cylindrical shell submerged in and filled with compressible ideal
fluids. A laminate approximate model and the so-called state space formulation in
conjunction with the classical transfer matrix (T-matrix) approach, are employed
to present an analytical solution based on the three-dimensional exact equations of
elasticity. Three models, representing the elastic properties of FGM interlayer are
considered. In all models, the mechanical properties of the graded shell are assumed
to vary smoothly and continuously with the change of volume concentrations of the
constituting materials across the thickness of the shell. In the first two models, the
rule of mixture governs. The main difference between them is the set of elastic con-
stants (e.g., Lamé’s constants in model I and Young’s modulus and Poisson’s ratio
in Model II) which are governed by the rule of mixtures. In the third model, an ele-
gant self-consistent micromechanical model which assumes an interconnected skeletal
microstructure in the graded region is employed. Particular attention is paid to back-
scattered acoustic response of these models in a wide range of frequency and for dif-
ferent shell wall-thicknesses. The results reveal a technical comparison between these
models. In addition, by examining various cases (i.e., different shell wall-thicknesses,
various profiles of variations and different volume concentration of constituents), the
impact of the overall volume concentration of constituents and also the profile of vari-
ations, on the resonant response of the graded shell is investigated. Limiting cases
are considered and good agreement with the solutions available in the literature is
obtained.
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1. Introduction

In recent years, the study of functionally graded materials (FGMs) has at-
tracted a lot of attention. FGMs are a new generation of composite materials
characterized by a continuously varying property due to a continuous change in
the microstructural gradients (e.g., composition, morphology and crystal struc-
ture) across their thickness [1, 2]. It takes advantage of certain desirable features
of each constituent phases and optimizes the distribution of material properties
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such as strength, hardness, thermal resistance, etc., so that the desired responses
to given mechanical and thermal loadings are achieved [3–5].

The scattered pressure field from the target contains valuable information
about the characteristics of the target and the surrounding medium. Appropri-
ate exploitation of this information and proper identification of the resonance
frequencies of the elastic object can serve as a powerful tool in many applica-
tions such as material characterization and non-destructive testing/evaluation
of materials [6, 7], remote classification of submerged targets [8, 9] and on-line
monitoring of elastic components [10]. The comprehensive reviews of the sound
scattering problems from cylindrical components and extensive bibliographies
can be found in the works of Gaunaurd [11], Überall [12], and Veksler [13];
here we just point out some of the most related work in this area.

Kaduchak and Loeffler [14] analyzed the backscattering effects due to fill-
ing of the interior cavity of a submerged cylindrical shell with a higher impedance
fluid such as water. Veksler and Izbicki [15] proposed a procedure for modal res-
onance isolation in the scattering problems of a plane acoustic wave by cylindrical
and spherical shells. Honarvar and Sinclair [16] developed an exact normal-
mode expansion for scattering of a compression acoustic wave from an immersed,
transversely isotropic solid cylinder. They allowed the incident acoustic wave to
make an arbitrary angle with the normal to the cylindrical surface, and examined
the effect of elastic constant changes on resonance frequencies of an isotropic alu-
minum cylinder. Joo et al. [17] subsequently extended the concept of the inherent
background to multilayered elastic cylindrical structures by solving the problem of
acoustic wave scattering, by an analogous liquid structure. Conoir et al. [18] stud-
ied the resonances of an air-filled elastic cylindrical shell immersed in a fluid using
the phase gradient method, which is based on the phase derivative of the scattering
matrix with regard to the frequency. Choi et al. [19, 20] considered resonance scat-
tering of acoustic waves from submerged penetrable targets of canonical geometry
(e.g., an empty cylindrical or spherical elastic shell in afluid) andproposed exact ex-
pressions, named the inherent background coefficients, which is obtained from the
zero-frequency limit of an equivalent fluid target, in order to properly describe the
acoustical background over the entire frequency range. Joo et al. [21] subsequently
extended the concept of the inherent background to multilayered elastic cylindrical
structures by solving the problem of acoustic wave scattering, by an analogous liq-
uid structure.Überall [22] reviewedthephysicalphenomenathatarise in the scat-
tering of acoustic waves from fluid-immersed elastic (metallic, spherical and cylin-
drical) shells, which may be either evacuated or filled with the same or with a differ-
ent fluid. He discussed the various phenomena occurring, including the formation
of circumferential (peripheral or “surface”) waves that circumnavigate the shells,
propagating either as elastic waves in the shell material or as fluid-borne waves of
the Scholte–Stoneley-type in the external or the internal fluid.Kim and Ih [23] used
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the normalmode expansion technique to present a resonance scattering analysis for
oblique incidence of a plane acoustic wave upon an air-filled, transversely isotropic
cylindrical shell immersed in water. Fan et al. [24] studied the circumferential reso-
nancemodes of an immersed solid elastic cylinderwhich is insonifiedbyanobliquely
incident plane acoustic wave over a large range of incidence angles. They employed
the Resonance Scattering Theory to derive physical explanations for singular fea-
tures of their frequency-incidence angle plots. Hasheminejad and Rajabi [25]
extended the Honarvar and Sinclair’s [16] analytical solution (for oblique in-
cidence of a plane acoustic wave upon a water-submerged, transversely isotropic
solid cylinder) to that of a fully orthotropic cylindrical shell of arbitrary thickness,
based on the three-dimensional exact equations of anisotropic elasticity. They used
their solutions to correlate the perturbation in the material elastic constants of an
aluminium cylindrical shell to the sensitivity of resonances associated with various
modes of wave propagation, appearing in the backscattered amplitude spectrum
(i.e., axially guided, Lamb, Rayleigh and Whispering Gallery waves). Most re-
cently, Hasheminejad and Rajabi [26] employed an exact treatment based on
the inherentbackgroundcoefficients to investigate the resonance scattering of time-
harmonic plane acoustic waves by functionally graded cylindrical shells, at normal
incidence. In this work, they just focused on the modal response of the graded shell
and their primary goal was to exhibit the capability of the inherent background
theories in order to isolate the modal resonance response of the structure.

The resonances are the fingerprints of specimens. ForNDEand on-linemonitor-
ing purposes, these resonances are used to evaluate various properties of cylindrical
structures by matching the measured data to theoretical models through itera-
tive algorithms (e.g., the measured form function amplitude in resonance acoustic
spectroscopy technique). Therefore, the precision of the process is strictly depen-
dent on the accuracy of the theoretical model. In literature, many models exist
which describe the elasticity of graded shells. The compatibility between the the-
oretical models and the measured response depend on many factors such as the
manufacturing condition, operating state, etc; but it is important to identify the
frequency-dependent deviation which may occur due to the incorrect recognition
of the proper model. In this work, we employ a laminate approximate model along
with the so-called state space formulation in conjunction with the transfer matrix
(T-matrix) approach, to interrogate the back-scattered acoustic response of three
practical elastic models of FGMs in a wide frequency range. Also, by the aid of the
classic resonance scattering theorem, the behavior of the resonance frequencies of
the graded shells to the variation of the overall volume fraction of constituting
materials for different profiles of distribution is investigated. This work would serve
as an extension of the existing analytical solution for normal incidence of a plane
acoustic wave upon a water-submerged, isotropic, functionally graded cylindrical
shell [26] to that of a fully orthotropic, functionally graded cylindrical shell. In the
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extended formulation, the incident waves can insonify the cylindrical shell at any
desired angle. We show that how the resonance frequencies of the graded cylin-
drical components can be utilized as an indicator of the overall volume fractions
and the profile of distribution of their constituents. The results reveal a number
of technical points for the resonance acoustic spectroscopy purposes of cylindrical
component with graded material properties.

2. Formulation

2.1. Basic acoustic field equations

Figure 1 shows an infinite plane acoustic wave of frequency ω/2π incident
at an angle α on a submerged and fluid-filled orthotropic-FGM cylindrical shell
of infinite length, inner radius a0 and outer radius aq. (x, y, z) is the Cartesian
coordinate system with origin at O and z direction, coincident with the axis

Fig. 1. Problem geometry.
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of the cylindrical shell, and (r, θ, z) is the corresponding cylindrical coordinate
system. The field equations for an inviscid and ideal compressible medium that
can not support shear stresses, may conveniently be expressed in terms of a scalar
velocity potential ϕ as [27],

(2.1) v = −∇ϕ, p = −iωρϕ, ∇2ϕ+K2ϕ = 0,

where K = ω/c is the wave number for the dilatational wave, c is the speed of
sound, ρ is the ambient density, v is the fluid particle velocity vector, and p is
the acoustic pressure. The expansion of the incident plane wave, propagating in
the surrounding fluid medium, in a cylindrical coordinate system (see Fig. 1) has
the form [27],

(2.2) ϕinc(r, θ, ω) = ϕ0

∞
∑

n=0

εni
nJn(K1,rr) cos(nθ)ei(kzz−ωt),

where kz = K1 sinα, K1,r = K1 cosα and K1 = ω/c1 is the wave number in the
outer fluid medium 1 (see Fig. 1), Jn is the cylindrical Bessel function of the
first kind of order n. εn is the Neumann factor (εn = 1 for n = 0, and εn = 2
for n > 0), i =

√
−1, and ϕ0 is the amplitude of the incident wave. Likewise,

the scattered potential in the surrounding fluid medium 1, and the transmitted
potential in the inner fluid medium 2, can be expressed as a linear combination
of cylindrical waves as [27],

(2.3)

ϕ1(r, θ, ω) =

∞
∑

n=0

εni
nAn(ω)H(1)

n (K1,rr) cos(nθ)ei(kzz−ωt),

ϕ2(r, θ, ω) =

∞
∑

n=0

εni
nBn(ω)Jn(K2,rr) cos(nθ)ei(kzz−ωt),

where K2,r =
√

K2
2 − k2

z , and K2 = ω/c2 is the acoustic wave number in the

inner medium 2, H
(1)
n (x) = Jn(x) + iYn(x) is the cylindrical Hankel function of

the first kind of order n, Yn(x) is the cylindrical Bessel function of the second kind
of order n, and An and Bn are unknown scattering and transmission coefficients.
Furthermore, using Eq. (2.1), the acoustic pressures and radial velocities in the
fluid media 1 and 2 are respectively written as

(2.4)

p1 = − iωρ1(ϕinc + ϕ1)

= − ωρ1

∞
∑

n=0

in+1εn

[

ϕ0Jn(K1,rr)+H
(1)
n (K1,rr)An(ω)

]

cos(nθ)ei(kzz−ωt),

p2 = − iωρ2ϕ2 = −
∞
∑

n=0

ωρ2εni
n+1Jn(K2,rr)Bn(ω) cos(nθ)ei(kzz−ωt),
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and

(2.5)

v(1)
r = −∂(ϕinc + ϕ1)

∂r

= −K1,r

∞
∑

n=0

εni
n
[

ϕ0J
′
n(K1,rr)+H

(1)′
n (K1,rr)An(ω)

]

cos(nθ)ei(kzz−ωt),

v(2)
r = −∂ϕ2

∂r
= −K2,r

∞
∑

n=0

εni
nJ ′

n(K2,rr)Bn(ω) cos(nθ)ei(kzz−ωt),

where prime denotes differentiation with respect to the argument.

2.2. Sandwich cylindrical shell

Now, we consider a sandwich cylindrical shell of uniform thickness h, with
a functionally graded interlayer core of uniform thickness hI , inner radius a0 and
outer radius aq, with variable material properties suspended in and filled with
ideal compressible fluids. Adopting a laminate model [26, 28, 29], the sandwich
cylindrical shell is assumed to be composed of q sublayers of homogeneous or-
thotropic materials, which are perfectly bonded at their interfaces and lined up
such that their axes of symmetry coincide with each other (Fig. 1). The solu-
tion is expected to gradually approach the exact one as the number of sublayers
increases. The material properties within each layer of inner radius ak−1, outer
radius ak and uniform thickness hk = ak − ak−1, are described by the elastic co-
efficients ckij and mass density ρk

c where k = 1, . . . , q. In what follows, we look for
a technique to solve the equations of motion for the k-th layer of the multilayered
cylindrical shell.

2.2.1. Local transfer matrix. Let us consider a hollow cylinder of infinite length
with orthotropic sublayers. For the k-th layer, the equations of motion, in absence
of body forces and in terms of stress components, are written as [30]

∂σk
rr

∂r
+
∂σk

rθ

r∂θ
+
∂σk

rz

∂z
+

1

r
(σk

rr − σk
θθ) = ρk

c

∂2uk
r

∂t2
,

∂σk
rθ

∂r
+
∂σk

θθ

r∂θ
+
∂σk

zθ

∂z
+

2

r
σk

rθ = ρk
c

∂2uk
θ

∂t2
,(2.6)

∂σk
rz

∂r
+
∂σk

θz

r∂θ
+
∂σk

zz

∂z
+
σk

rz

r
= ρk

c

∂2uk
z

∂t2
,

where ρk
c is the solid material density, and uk

r , u
k
θ and uk

z are the material displace-
ments in the r, θ and z directions, respectively. Moreover, noting that a cylin-
drically orthotropic homogeneous material is characterized by nine independent
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elastic constants, the generalized Hooke’s law in a cylindrical coordinate system
for the k-th layer may be written as [31]:

(2.7)
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where ckij are the elastic constants and εk
ij are the strain components defined as:

(2.8)

εk
rr =

∂uk
r

∂r
, εk

θθ =
∂uk

θ

r∂θ
+
uk

r

r
, εk

zz =
∂uk

z

∂z
,

εk
rθ =

1

2

(

∂uk
r

r∂θ
+
∂uk

θ

∂r
− uk

θ

r

)

,

εk
θz =

1

2

(

∂uk
z

r∂θ
+
∂uk

θ

∂z

)

,

εk
rz =

1

2

(

∂ uk
z

∂r
+
∂ uk

r

∂z

)

.

Following the state space approach [28, 29], the state equations can be derived
by direct substitution of constitutive equation, Eq. (2.7), and kinematic equa-
tion, Eq. (2.8), into equations of motion, Eq. (2.6), which after some tedious
manipulations lead to:

(2.9)
∂Yk

∂r
= M

k
Y

k,

where Y
k = [uk

z , u
k
θ , u

k
r , σ

k
rr, σ

k
rθ, σ

k
rz]

T is the state vector, and M
k is a 6 × 6

coefficient matrix whose elements are given in Appendix I. Next, by employing
normal mode expansion, the state vector Y

k is expanded in terms of unknown
modal coefficients as

(2.10) Y
k =
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=

∞
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aqu
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ei(kzz−ωt),
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where ξ = r/aq is the dimensionless radial coordinate and cq44 is one of the
elements of the stiffness matrix of the q-th layer (outer layer) of the multilayered
shell. Subsequent substitution of Eq. (2.10) into Eq. (2.9) and utilization of the
orthogonality of trigonometric functions, gives

(2.11)
dVk

n

dξ
= D

k
n(ξ)Vk

n,

where V
k
n = [uk

z,n, u
k
θ,n, u

k
r,n, σ

k
rr,n, σ

k
rθ,n, σ

k
rz,n]T is the modal state vector, and

D
k
n(ξ) is a 6×6 modal coefficient matrix whose elements are given in Appendix II.

A laminate approximate model is adopted for solving of the equations [28, 29].
As the thickness of each sublayer is supposed to be very small, the coefficient
matrix can advantageously be assumed to be constant within each sublayer.
This coefficient matrix is denoted as D

k
n(ξk−1) for the k-th sublayer, where

ξk−1 = ak−1/aq. Thus, within the k-th sublayer, the solution to Eq. (2.11) can
be written as

(2.12) V
k
n(ξ) = V

k
n(ξk−1) exp

[

(ξ − ξk−1)D
k
n(ξk−1)

]

,

where ξk−1 ≤ ξ ≤ ξk, and k = 1, . . . , q. Subsequent evaluation of Eq. (2.12) at
the outer surface of the k-th sublayer, leads to the following useful recurrence
equation:

(2.13) V
k
n(ξk) = L

k
nV

k
n(ξk−1),

where L
k
n = exp[hkD

k
n(ξk−1)/aq] is a 6 × 6 local transfer matrix corresponding

to the k-th layer of the multilayered cylindrical shell, which relates the state
variables at the outer surface of the k-th sublayer to those at the inner surface.

2.2.2. Global transfer matrix and boundary conditions. By invoking the continu-
ity conditions between all interface layers, the state variables at the outer radius
of the cylindrical shell (i.e., at r = aq for which ξq = 1) are advantageously
related to those at the inner radius (i.e., at r = a0 for which ξ0 = a0/aq) by

(2.14) V
q
n(ξq) = TnV

1
n(ξ0),

where Tn =
∏q

k=1 L
k
n =

∏q
k=1 exp[hkD

k
n(ξk−1)/aq] is the 6 × 6 global modal

transfer matrix.
The unknown coefficients An and Bn and the elements of the modal state

variable vector, V
1
n(ξ0) = [u0

z,n, u
0
θ,n, u

0
r,n, σ

0
rr,n, σ

0
rθ,n, σ

0
rz,n]T , can be determined

from the boundary conditions imposed at the inner (r = a0) and outer (r = aq)
surfaces of the multilayered shell. By assuming continuity of normal fluid and
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solid velocities, normal stress and fluid pressure and vanishing of tangential stress
at boundaries r = a0 and r = aq, we can write:

(−iω)ur(r, θ, ω)|r=a0,aq = vr(r, θ, ω)|r=a0,aq ,

σrr(r, θ, ω)|r=a0,aq = −p(r, θ, ω)|r=a0,aq ,(2.15)

σrθ(r, θ, ω)|r=a0,aq = σrz(r, θ, ω)|r=a0,aq = 0.

Now, making use of Eqs. (2.4), (2.5) and Eq. (2.14) in Eq. (2.15), we obtain the
following 8 × 8 coupled linear system of equations:

(2.16)































C1,n 0 T 3,1
n T 3,2

n T 3,3
n T 3,4

n T 3,5
n T 3,6

n

0 C2,n 0 0 1 0 0 0

C3,n 0 T 4,1
n T 4,2

n T 4,3
n T 4,4

n T 4,5
n T 4,6

n

0 C4,n 0 0 0 1 0 0

0 0 T 5,1
n T 5,2

n T 5,3
n T 5,4

n T 5,5
n T 5,6

n

0 0 0 0 0 0 1 0

0 0 T 6,1
n T 6,2

n T 6,3
n T 6,4

n T 6,5
n T 6,6

n

0 0 0 0 0 0 0 1

























































































An

Bn

u0
z,n

u0
θ,n

u0
r,n

σ0
rr,n

σ0
rθ,n

σ0
rz,n



























































=





























C5,n

0

C6,n

0

0

0
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,

where T i,j
n (i, j = 1, 2, . . . , 6) are elements of the global modal transfer matrix, Tn,

and

(2.17)

C1,n = −K1,rεni
n−1H(1)′

n (K1,raq)/ωaq,

C2,n = −K2,rεni
n−1J ′

n(K2,ra0)/ωaq,

C3,n = −ωρ1εni
n+1H(1)

n (K1,raq)/c
q
44,

C4,n = ωρ2εni
n+1Jn(K2,ra0)/c

q
44,

C5,n = ϕ0K1,rεni
n−1J ′

n(K1,raq)/ωaq,

C6,n = ωρ1ϕ0εni
n+1Jn(K1,raq)/c

q
44.

2.3. Functionally graded model

In the case of orthotropic FGMs, we use the rule of mixtures in order to find
the elastic properties as [28],

(2.18)
ckij = VF (r̄k) c

1
ij + [1 − VF (r̄k)] c

q
ij ,

ρk = VF (r̄k)ρ
1 + [1 − VF (r̄k)] ρ

q,

where r̄k = (ak−1 + ak)/2 (k = 1, 2, . . . , q) and VF (r̄k) is the volume fraction
of the constituting materials in the k-th sublayer. The given solution is based
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on a high degree of anisotropy (i.e. cylindrically orthotropic) for functionally
graded constituents, and can easily be reduced to simpler cases (e.g., isotropic
cylinders). Since the isotropic materials are more common in practice, our results
will be focused on isotropic materials. For this purpose, three practical models
for isotropic FGMs are summarized as follows.

2.3.1. Model I. The first model is as same as the model used by Hasheminejad
and Rajabi [26], in which the rule of mixture governs on the Lamé constants
and the material density function of graded shell. Considering the aforementioned
laminate model of the cylindrical shell, we have

(2.19)

λk = VF (r̄k)λ
1 + [1 − VF (r̄k)]λ

q,

µk = VF (r̄k)µ
1 + [1 − VF (r̄k)]µ

q,

ρk = VF (r̄k)ρ
1 + [1 − VF (r̄k)] ρ

q.

Also, the elastic constants of the sublayeres can be expressed in terms of these
Lamé constants as

(2.20)

ck11 = ck22 = ck33 = λk + 2µk,

ck12 = ck13 = ck23 = λk,

ck44 = ck55 = ck66 = µk.

2.3.2. Model II. In this model, the Young modulus, Ek, and the Poisson ratio, νk,
of the graded shell are assumed to be the elastic properties governed by the rule
of mixtures:

(2.21)

Ek = VF (r̄k)E
1 + [1 − VF (r̄k)]E

q,

νk = VF (r̄k)ν
1 + [1 − VF (r̄k)] ν

q,

ρk = VF (r̄k)ρ
1 + [1 − VF (r̄k)] ρ

q.

The elastic constants of sublayeres are expressed as

(2.22)

ck11 = ck22 = ck33 =
Ek(1 − νk)

(1 + νk)(1 − 2νk)
,

ck12 = ck13 = ck23 =
Ekνk

(1 + νk)(1 − 2νk)
,

ck44 = ck55 = ck66 =
Ek

2(1 + νk)
.

2.3.3. Model III. In this model, an elegant self-consistent micromechanical model
[32, 33], which assumes an interconnected skeletal microstructure in the graded
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region, is employed. According to this model, no distinctions between the con-
stituent phases are made and the same overall moduli are predicted in another
composite in which the roles of the phases are interchanged. Consequently, the
locally effective bulk modulus of the FGM interlayer may be related to the elastic
moduli of the constituent materials as

(2.23) Kk =

[

1 − V k
F (r̄k)

Kq + 4µk/3
+

V k
F (r̄k)

K1 + 4µk/3

]−1

− 4µk

3
.

Also, µk (effective shear modulus of the k-th layer) is obtained by solving the
following quartic equation:

(2.24)
[1 − V k

F (r̄k)]K
q

Kq + 4µk/3
+

V k
F (r̄k)K

1

K1 + 4µk/3

+ 5

{

[1 − V k
F (r̄k)]µ

1

µk − µ1
+
V k

F (r̄k)µ
q

µk − µq

}

+ 2 = 0.

Also, assuming that the density ratio contrast between constituents is not too
high, it is appropriate to assume that the effective density of the FGM interlayer
is the mean density, given by the straightforward rule-of-mixtures as

(2.25) ρk = VF (r̄k)ρ
1 + [1 − VF (r̄k)] ρ

q,

and the elastic constants of the sublayeres can be expressed as

(2.26)

ck11 = ck22 = ck33 = Kk + 4µk/3,

ck12 = ck13 = ck23 = Kk − 2µk/3,

ck44 = ck55 = ck66 = µk.

2.4. The global and resonance scattering coefficients

The most relevant field quantities associated with acoustic resonance scat-
tering are the global and resonance scattering coefficients. The global scattering
coefficient may be obtained from the standard definition of the backscattering
form-function amplitude [34],

(2.27) |f∞(θ = π, ω)| ≈ lim
r→∞

√

2r

aq

∣

∣

∣

∣

ϕ1(r, θ = π, ω)

ϕinc

∣

∣

∣

∣

=

∣

∣

∣

∣

∞
∑

n=0

fn(θ = π,K1aq)

∣

∣

∣

∣

,

where

(2.28) fn(θ,K1, aq) =
2εn

√

πiK1aq

An cos(nθ),
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is referred to as the global scattering coefficient for the n-th mode. Consequently,
the pure resonances in the scattering amplitudes of the n-th normal mode can be
isolated by subtracting the inherent backgrounds from the global form function
as follows [34]:

(2.29) |f (res)
n (θ,K1aq)| = | fn(θ,K1aq) − f (b)

n (θ,K1aq)|,

where the inherent background coefficients are defined as:

(2.30) f (b)
n (θ,K1aq) =

2εn
√

πiK1aq

A(b)
n cos(nθ).

The background scattering coefficient, A
(b)
n , which is determined by solving the

problem of interaction of a plane acoustic wave with an analogous multilayered
fluid shell (i.e., by setting the transverse wave speeds in all of the solid layers
equal to zero), is defined as [34]

(2.31) A(b)
n = (−1)

K1,raqJ
′
n(K1,raq) − [Gn(0+)]qJn(K1,raq)

K1,raqH
(1)′
n (K1,raq) − [Gn(0+)]qHn(K1,raq)

,

where the superscript “b” denotes the acoustical background and [Gn(0+)]q is
the zero limit of the acceleration function, associated with the outer (q-th) layer
of the multilayered shell structure that, for the n = 0 mode, can be obtained
through the following recurrence relation [34, 35]:

[Gn(0+)]0 =
4ρ

(2)
c

ρ2 − 4ρ
(1)
c ln(1 − h1/a1)

,

[Gn(0+)]k =
ρk+1

c

ρk
c

[Gn(0+)]k−1

[1 − ln(1 − hk/ak)[Gn(0+)]k−1]
,(2.32)1

[Gn(0+)]q =
ρ1

ρq
c

[Gn(0+)]q−1

[1 − ln(1 − hq/aq+1)[Gn(0+)]q−1]
,

where k = 1, 2, . . . , q−1, and similarly for the n ≥ 1 modes,

[Gn(0+)]0 =
ρ
(1)
c

ρ2
n,

[Gn(0+)]k =
ρk+1

c

ρk
c

n2 + lk[Gn(0+)]k+1

lk + [Gn(0+]k−1
,(2.32)2

[Gn(0+]q =
ρ1

ρq
c

n2 + lq[Gn(0+)]q−1

lq + [Gn(0+]q−1
,
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in which lk = n
1 + (1 − hk/ak)

2n

1 − (1 − hk/ak)2n
and k = 1, 2, . . . , q−1. This completes the

solution required for the exact resonance scattering analysis of an orthotropic
functionally graded cylindrical shell in an acoustic medium. Next we consider
some numerical examples.

3. Numerical results

In order to illustrate the nature and general behavior of the solution, we
consider some numerical examples. Realizing the large number of parameters in-
volved here while keeping in view our computing hardware limitations, we confine
our attention to a particular problem. The surrounding and filling fluids are re-
spectively assumed to be water (ρ1 = 1000 kg/m3, c1 = 1480 m/s) and air (ρ2 =
1.2 kg/m3, c2 = 344 m/s) at atmospheric pressure and ambient temperature.

The cylindrical shell is assumed to be three-layered, in which the interlayer
(thickness hI = hi+1 + hi+2 + · · · + hj−1 + hj , i > 0 and j < q) is graded in the
radial direction with varying proportions of metallic aluminium (Al) substrate

Table 1. Material properties

Material ρs [kg/m3] c11, c22, c33 [GPa] c44, c55, c66 [GPa] c12, c13, c23 [GPa]

Aluminium (Al) 2706 110.47 26.69 57.09

Zirconia (ZrO2) 5700 318.60 94.80 129.00

Fig. 2. Variations in volume fraction of aluminum in a general composition of sandwich shell
with FGM interlayer.
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(thickness ha = h1 + · · · + hi) and ceramic zirconia (ZrO2) coating (thickness
hb = hj+1 +hj+2 + · · ·+hq). The volume fraction of metal in the FGM interlayer
is varied from 100% on the inner interface (at r = a0 + ha = ai) to zero on the
outer interface (at r = a0 +ha +hI = aj). A typical variation in volume fraction
of Al along the radial axis is shown in Fig. 2. In this work, two distinct gradient
profile families for the functionally graded interphase are studied in this work.
In the first family, called power-law distribution, the volume fraction of Al in
ai ≤ r ≤ aj is

(3.1)1 VF (r) =

(

1 − r − ai

hI

)γ

,

and for the second family, called sigmoidal distribution, we have

(3.1)2 VF (r) =















1

2
+

1

2

[

1 − 2(r − ai)

h

]γ

, ai < r < ai + (hI/2),

1

2
− 1

2

[

2(r − ai)

h
− 1

]γ

, ai + (hI/2) < r < aj .

Also, the overall volume concentration of Al (inner constituent) may be calcu-
lated as written in the following form:

(3.2) V̄F =

∫ aq

a0
VF (r)rdr
∫ aq

a0
rdr

.

A MATLAB code was constructed for computing the global transfer ma-
trix, Tn, treating boundary conditions and to calculate the unknown scattering
coefficients, and the global and the inherent background coefficients as functions
of the nondimensional frequency K1aq for a unit amplitude incident plane wave
(ϕ0 = 1). The computations were performed on a Pentium IV personal computer
with a maximum number of layers qmax = 100, a maximum truncation constant
of nmax = (K1aq)max + 15, especially selected to assure convergence in case of
a thick FGM interlayer and also in the high-frequency range. The convergence
was systematically checked in a simple trial and error manner, by increasing
the number of layers, q, as well as the truncation constant (i.e., by including
more modes in all summations), while looking for steadiness or stability in the
numerical value of the solutions.

In the research work made by Hasheminejad and Rajabi [26], the effect
of relative thickness of FGM mid-layer (i.e., hI/h on the resonant response of
the structure has been studied, where the total thickness of the shell is assumed
to be constant (i.e., h/aq = 0.1). Therefore, here we just focus on the case that
the Al substrate and the ZrO2 coating are absent (i.e., we have a single-layer
functionally graded cylindrical shell; ha = hb = 0, hI/h = 1).
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3.1. Comparison of elastic models

Figures 3a through d compare the frequency response of Model I (solid-line),
Model II (dotted-line) and Model III (dashed-line), by exhibiting the variations of
the backscattering form function amplitude, |f(θ = π,K1aq)|, with dimensionless
frequency, K1aq, for thin h/aq = 0.04 thick h/aq = 0.1 very thick h/aq = 0.25
and hollow cylinder h/aq = 0.5, functionally graded cylindrical shells respec-
tively. A linear distribution of constituting materials according to the power-law
variation (i.e., γ = 1 has been considered. As Fig. 3 shows, the dips and peaks
(i.e., resonances) associated to the response of Model III have a left-ward shift
in comparison to those associated to the Models I and II, especially for higher
frequencies and for higher thicknesses. In our frequency range, the maximum
relative errors may reach 15 percent which, in the case of improper recognition
of the model, may lead to an extraordinary inaccuracy in NDE process. Consid-
ering Figures 4a–f which compare the variation of the elastic properties (i.e., E,
ν, λ, µ, κ) and the mass density (i.e., ρ) along the radial axis (i.e., diemnsionless
radial coordinate: r̄ = r/aq, for Models I, II and III, this trend may be inter-
preted in this way that the Models I and II supply the higher overall stiffness
for the graded shell in comparison to the Model III.

As shown in Fig. 3, in a considerably wide range of frequencies (i.e.,
0 ≤ K1aq < 80 for a thin shell, 0 ≤ K1aq < 60 for a thick shell, 0 ≤ K1aq < 35
for a very thick shell and 0 ≤ K1aq < 20 for a hollow cylinder), the response of
the Models I and II are almost identical; but as the frequency increases, the differ-
ence between them increases. Initially, these differences demonstrate themselves
as slight resonance frequency variations (i.e., peaks and dips), but for higher
frequencies, these variations convert to a left-ward frequency shift of Model II
in comparison to Model I. Also, in the case of hollow cylinder, h/aq = 0.5 we
observe a completely different response for 80 ≤ K1aq. As Figure 4 exhibits, the
profile of variation of “Young’s modulus” and “µ” in both models are nearly iden-
tical; but the difference in profile of variation of “Poisson’s ratio” and “Lambda”
is the main cause of the observed differences in the response of these models.

3.2. FGM material inspection

In what follows, we study the effects of the overall volume concentration of
constituting materials and the profile of variations on the frequency response of
a thick (h/aq = 0.9) and a thin (h/aq = 0.04) graded cylindrical shell, where
a power-law distribution governs the variations of elastic properties. Using a root-
finder code, the constant γ in Eq. (3.1)1 is found so that the discrete values
corresponding to overall volume concentration of Al is obtained. For the shell
with 0.9 thickness, the discrete values of V̄F = [0.0; 0.1; 0.2;. . . ; 1.0] are ob-
tained as γ = [+∞; 3.66; 1.95; 1.25; 0.86; 0.61; 0.42; 0.28; 0.16; 0.07; 0.0]. For the
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Back-scattered Form Function Amplitude
a)

b)

c)

d)

K1aq

Fig. 3. Variations of backscattering form function amplitudes with selected thicknesses:
a) h/aq = 0.04, b) h/aq = 0.1, c) h/aq = 0.25, d) h/aq = 0.5, for a functionally graded

cylindrical shell with linear profile of variation (i.e., γ = 1).
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Fig. 4. Variations of elasticity properties with normalized radial coordinate; a) λ(r̄), b) µ(r̄),
c) E(r̄), d) κ(r̄), e) ν(r̄), f) ρ(r̄)) for a thick (h/aq = 0.5), functionally graded hollow cylinder

with linear profile of variation (i.e., γ = 1).
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Fig. 5. Variations in volume fraction of aluminum in FGM interlayer of a thick (h/aq = 0.9)
functionally graded hollow cylinder in case of power-law distribution.

thin shell with 0.04 thickness for the same values of V̄F = [0.0; 0.1; 0.2; . . . ; 1.0],
we set γ = +∞; 8.93; 4.05; 2.35; 1.5; 1.0; 0.67; 0.43; 0.25; 0.11; 0.0]. It should be
noted that V̄F = 1.0 corresponds to a single Al shell and, V̄F = 0.0 corre-
sponds to a single ZrO2 shell. While in the theory γ → ∞ corresponds to
a ZrO2 shell, it was found that the lower limit of γ for a single ZrO2 shell
(i.e., V̄F < 0.01) may be set approximately to γ ∼= 102. Figure 5 shows the vol-
ume fraction profiles for some discrete values of overall volume concentration of
Al (i.e., V̄F = 0.1; 0.3; 0.5; 0.7; 0.9) along the radial axis of the thick shell. To
better study the effects of the overall volume concentration of constituting ma-
terials and the profile of variations on the frequency response of the graded shell,
Figs. 6a–c shows the variations of the modal resonance scattering coefficients,

|f (res)
n (θ = π,K1aq)| [i.e., a) n = 0, b) n = 1, c) n = 2], for the selected values

of volume concentration of constituents. In the case of a thin shell, Fig. 7 shows
the volume fraction profiles for some of the discrete values of overall volume
concentration of Al (i.e., V̄F = 0.1; 0.3; 0.5; 0.7; 0.9) along the radial axis. Also
Figs. 8a–c show the variations of the modal resonance scattering coefficients,

|f (res)
n (θ = π,K1aq)| (i.e., a) n = 2, b) n = 6, (c) n = 8), for selected values of

volume concentration of constituents. The most important observations are as
follows.

It is well-known that the elastic response consists of a smooth background
and a resonance spectrum. The resonance modes in the spectrum are linked to
the standing surface waves which are formed around the cylindrical shell. The
global scattering coefficients perfectly coincide with the inherent background co-
efficients, except in the resonance region where the resonances are clearly isolated
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Fig. 6. Variations of the normalized resonance scattering coefficients; a) n = 0, b) n = 1,
c) n = 2 with dimensionless frequency, for a thick (h/aq = 0.9) functionally graded hollow
cylinder, in case of power-law distribution and for selected values of volume fraction concen-

tration of Al.

in Figs. 6 and 8. The dependence of the resonance frequencies on the overall vol-
ume concentration of constituting materials and the profile of variations, can
be observed more clearly with these resonance spectra in Figs. 6 and 8 than
on the backscattering form function amplitudes [26]. The isolated resonances in
the case of the thick shell in Fig. 6 are the Rayleigh type or the Whispering
Gallery type waves, and the isolated resonances in the case of the thin shell in
Fig. 8 are Lamb-type or fluid-born A-type waves. Furthermore, in the n = 0
case (monopole mode) in Fig. 6, a notably high peak which is known in the
literature to be associated with the “giant monopole” resonance (i.e., analogous
to the situation of air bubbles in water) is observed at a very low frequency [36].
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Fig. 7. Variations in volume fraction of aluminum in FGM interlayer of a thin (h/aq = 0.04),
functionally graded hollow cylinder in case of power-law distribution.

The resonances of the FGM shell with different overall volume concentrations
of constituents and different profiles of variations, for both the thick and thin
shells in Figs. 6 and 8 have different characteristics of surface wave propaga-
tion and radiation damping. Both the amplitude and the quality of resonances
which are visible in these spectra vary with the change in the gradients frac-
tion and the style of distribution. The resonance frequencies of the thick and
thin-graded shells are nearly between those of the Al (i.e., V̄F = 1) and ZrO2

(i.e., V̄F = 0) shells, in the considered range of frequencies: the former is the
low frequency bound and the latter is the high frequency bound. As V̄F changes
from zero to one, the resonances of the graded shell vary from the resonances
corresponding to the single ZrO2 shell, to the resonances of the single Al shell
and a general left-ward shift is observed. In particular, several resonances (espe-
cially in the case of a thick shell) are observed that show approximately linear
and monotonic behavior with respect to the linear change of overall volume
fractions of constituents. This linear correlation may be linked to the fact that
these resonances are primarily the function of the overall volume concentration
of Al rather than the profile of distribution. Moreover, it can be shown that
this monotonic behavior and linear variation of resonances is consistent with
the dependence of phase velocities of their corresponding surface waves to the
overall volume fraction of constituents. These behaviors show that the frequen-
cies of these dominant resonances alone can be a good indicator of the overall
volume fraction of ingredients. However, for evaluating the profile of distribu-
tion, a number of resonances must be examined. In addition, when the partial
mode number n increases, the resonance frequencies (especially with higher ex-
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Fig. 8. Variations of the normalized resonance scattering coefficients: a) n = 2, b) n = 6,
c) n = 8, with dimensionless frequency, for a thin (h/aq = 0.04) functionally graded hollow
cylinder, in case of power-law distribution and for selected values of volume fraction concen-

tration of Al.

citation frequencies) exhibit more variations (i.e., sensitivity) to the change of
overall volume fractions of constituting materials. This is due to the fact that
for higher mode numbers and in higher ranges of frequencies, the position of the
resonances of the single Al shell (V̄F = 1) and the single ZrO2 shell (V̄F = 0),
with the same eigen-frequency label in each mode number, are generally farther
away from each other. Comparing the isolated resonances of thick-graded shell
in Fig. 6 with those of the thin shell in Fig. 8, it is observed that in the case
of a thick shell, there are more crowded regions of resonances in comparison to
the thin shell. Also, the resonance frequencies of the thin shell exhibit less sen-
sitivity to the variation of overall volume fraction of constituents compared to
those of a thick shell. In this case, we need to use the resonances corresponding
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to higher mode numbers. It is noticeable that in practice, the excitation of res-
onances corresponding to higher modes at high frequencies is a challenging task
and somewhere we should confine ourselves to the lower frequency (fundamental)
resonances.

Until now, we have studied the simultaneous effects of the overall volume
fractions of the constituting materials and the profile of distribution on the res-
onances corresponding to the excited surface waves in the thick and thin FGM
shells. Here, by examining the frequency response of a thick (i.e., h/aq = 0.9)
and a thin (i.e., h/aq = 0.04) functionally graded cylindrical shells, where a sig-
moid distribution governs the variations of their elastic properties, we intend
to isolate the effect of the profile of distribution. Actually, by assuming the
sigmoid distribution, we will have a graded shell which for different styles of pro-
files, its overall volume concentrations of ingredients are restricted in a bound
(i.e., 0.3 ≤ V̄F ≤ 0.5 in the case of thick shell) or are approximately identical
(i.e., V̄F

∼= 0.5 in the case of a thin shell). In the case of a thick shell, the upper
extreme value of the overall volume concentration of Al is V̄F = 0.5 which corre-
sponds to γ → ∞ and the lower extreme is V̄F = 0.3, which is obtained for γ = 0.
Similar to the previous examples, by using a root-finder code, the γ constant in
Eq. ((3.1)2) may be found so that the discrete values corresponding to the overall
volume concentration of Al are obtained. For the thick shell, the discrete values
of V̄F = [0.3; 0.32; 0.34; 0.36; 0.38; 0.40; 0.42; 0.44; 0.46; 0.48; 0.50] are obtained as
γ = [0.0; 0.34; 0.70; 1.01; 1.68; 2.49; 3.76; 6.02; 11.13; 32.98; 102 ]. Clearly, γ = 102

corresponds to a single shell with properties equivalent to the average of Al and
ZrO2, and γ = 0.0 corresponds to a double shell (i.e., Al: inner layer and ZrO2:
outer layer). Figure 9 shows the volume fraction profiles for some of the discrete

Fig. 9. Variations in volume fraction of aluminum in FGM interlayer of a thick (h/aq = 0.9)
functionally graded hollow cylinder in case of sigmoid distribution.
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Fig. 10. Variations of the normalized resonance scattering coefficients: a) n = 2, b) n = 8,
c) n = 10, with dimensionless frequency, for a thick (h/aq = 0.9) functionally graded hollow
cylinder, in case of sigmoid distribution and for selected values of volume fraction concen-

tration of Al.

values of overall volume concentration of Al (i.e., V̄F = 0.3; 0.34; 0.38; 0.42; 0.46)
along the radial axis, for a thick shell. To study the effects of the overall vol-
ume concentration of constituting materials and the profile of variations on the
resonant response of the graded shell, Figs. 10a–c display the variations of the

modal resonance scattering coefficients, |f (res)
n (θ = π,K1aq)|; a) n = 2, b) n = 8,

c) n = 10. In the case of a thin shell and for a wide range of γ, the volume
concentration of Al is approximately constant, V̄F

∼= 0.5. Therefore, in order to
have different profiles, we select γ = [0.2; 0.5; 1; 2; 5]. As Figure 11 shows, the de-
signs corresponding to γ > 1 are desirable where a metal-rich composition near
the inner interface, and a ceramic-rich composition near the outer interface are
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Fig. 11. Variations in volume fraction of aluminum in FGM interlayer of a thin (h/aq = 0.04)
functionally graded hollow cylinder, in case of sigmoid distribution.

required. Figures 12a and b display the variations of the modal resonance scat-

tering coefficients, |f (res)
n (θ = π,K1aq)|, a) n = 5, b) n = 15, with dimensionless

frequency. The most important observations are as follows. Comparing Fig. 12a
with Fig. 6c, which exhibit the resonance scattering coefficients of a h/aq = 0.9
graded shell, for the same mode number, n = 2, and for different styles of pro-
files (i.e., power-law and sigmoid distributions, respectively), indicates that in
the case of sigmoid distribution, the variations of the resonance frequencies is
evidently less than those of in the case of power-law distribution. Due to the fact
that the profiles of distribution are varying in both cases, this observation can
be attributed to the restriction on the variations of the overall volume concen-
trations in the case of the sigmoid distribution. Taking a look at Figs. 10a–c, we
observe that several resonance frequencies demonstrate nonlinear and, in some
cases, non-monotonic behavior with respect to the linear change of overall vol-
ume fractions of constituents. This may be due to the more complex variations of
the profiles in the case of sigmoid distribution. Therefore, in the case of intricate
profiles, the overall volume concentration of ingredients and the profile of dis-
tribution must be evaluated simultaneously and by using a cluster of resonance
frequencies. Careful examination of Figs. 10a–c and Figs. 6a–c demonstrate the
relatively higher sensitivity of the Rayleigh-type resonances (i.e., first eigenfre-
quency in each mode number) to the profile of distribution, in comparison with
the Whispering Gallery resonances which are excited in higher frequencies. This
may be linked to the fact that the displacement field corresponding to this type
of surface wave is the result of continuous penetration of elastic waves into the
structure and consequently, a better sense of the structure details [37]. More-
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over, particular feature corresponding to this type of resonance in Fig. 10a is
observed where its frequency of excitation increases with the overall volume
fraction of Al.
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Fig. 12. Variations of the normalized resonance scattering coefficients: a) n = 5, b) n = 15,
with dimensionless frequency, for a thin (h/aq = 0.04) functionally graded hollow cylinder, in

case of sigmoid distribution and for selected values of γ.

As Figure 12 shows, in the selected frequency range, 0 ≤ K1aq ≤ 50, the
back-scattered response of the thin-graded shell for different profiles of varia-
tions which have equal volume concentration of ingredients, are the same (even
for high mode number, n = 15). Comparing these figures with Fig. 8, it is ob-
served that the influence of the overall volume fractions of constituents on the
resonance response of the thin-walled graded shells in comparison to the profile
of distribution is quite pronounced. This fact may be justified by noting that the
excited surface waves in such thin shells are often the zero-order Lamb or the
fluid-born A-type waves [37], and the phase velocities associated to these waves
are primarily the function of the averaged properties of the shell; therefore, in
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their resonance state, the shell vibrates as a whole body such that the least sense
of structure’s interior is achieved.

3.3. Validations

Finally, to check the overall validity of the model, we compute the variations
of the global scattering coefficient for an air-filled single-layer aluminum shell
submerged in water. For this, we increase the number of layers to q = 100 in the
multilayered cylindrical shell by setting h/aq = 0.8, q = 100, ρ(j) = 2790 kg/m3,

c
(j)
11 = c

(j)
22 = c

(j)
33 = 113.1 GPa, c

(j)
44 = c

(j)
55 = c

(j)
66 = 26.7 GPa where j =

1, 2, . . . , 100, ρ1 = 1000 kg/m3, c1 = 1480 m/s, ρ2 = 1.2 kg/m3 and c2 =
344 m/s. The numerical results, as shown in Fig. 13a, show good agreement with
those given in Fig. 1 of [36]. In order to check the FGM models, we compute
the variations of the resonance scattering coefficients, for air-filled and water-
submerged FGM shells with different thicknesses of FGM interlayer and for dif-
ferent profiles (MR: γ = 0.2, LN: γ = 0.1, CR: γ = 5.0) by setting h/aq = 0.1,

q = 100, ρ1
c = 2790 kg/m3, c

(1)
11 = c

(1)
22 = c

(1)
33 = 113.5 GPa, c

(1)
44 = c

(1)
55 = c

(1)
66 =

26.8 GPa, c
(1)
12 = c

(1)
13 = c

(1)
23 = 318.0 GPa, c

(q)
11 = c

(q)
22 = c

(q)
33 = 129.00 GPa,

c
(q)
44 = c

(q)
55 = c

(q)
66 = 94.80 GPa, ρ

(q)
c = 5700 kg/m3. For Case I, Case II and

Case III, we respectively set ha/h = hb/h = 0, ha/h = hb/h = 0.25 and
ha/h = hb/h = 0.45. For all cases, the numerical results, as shown in Fig. 13b,
are identical and show good agreement with those shown in Fig. 4 of [26]. At last,
in order to check the validity of the described analysis to model the cylindrical
anisotropy, we compute the variations of the backscattering form function ampli-
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Fig. 13. a) Variations of the modal backscattering form function amplitude with dimension-
less frequency for selected mode numbers (n = 0, 1, . . . , 5), for an air-filled aluminum shell

submerged in water.
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Fig. 13. b) Variations of the resonance scattering coefficient with dimensionless frequency
for selected mode number (n = 3) for an air-filled and water submerged aluminum shell,
moderately thick (h/aq = 0.1) functionally graded hollow cylinder, in case of power-
law distribution and for different configurations (Case I: ha/h = hb/h = 0.0, Case II:
ha/h = hb/h = 0.25, Case III: ha/h = hb/h = 0.45) (– – – γ = 5, · · · ·· γ = 1.00,

γ = 0.2. c) Variations of the backscattering form function with dimensionless fre-
quency, for oblique wave incidence (α = 9◦), upon an air-filled boron/aluminum unidirec-

tional composite cylindrical shell submerged in water.

tude for oblique incidence (α = 9◦) upon an air-filled boron/aluminum unidirec-
tional composite cylindrical shell, submerged in water by setting h/aq = 0.16,

q = 1, ρ
(1)
c = 2738 kg/m3, c

(1)
11 = c

(1)
22 = 142.1 GPa, c

(1)
12 = 71.1 GPa, c

(1)
13 =

c
(1)
23 = 66.4 GPa, c

(1)
33 = 219.4 GPa, c

(1)
44 = c

(1)
55 = 37.1 GPa, c

(1)
66 = 35.5 GPa,

ρ1 = 1000 kg/m3, c1 = 1480 m/s, ρ2 = 1.2 kg/m3 and c2 = 340 m/s in our
general MATLAB code. The numerical results, as shown in Fig. 13c, show good
agreement with those shown in Fig. 7a in [38].
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4. Conclusion

The present work is concerned with acoustic wave scattering from a thick-
walled sandwich cylindrical shell with FGM core. For generality of the solution,
the cylindrical shell is assumed to be orthotropic and the angle of incidence set to
be non-zero. An approximate laminate model, in the context of the so-called state
space formulation along with the classical T-matrix solution technique involving
a system global transfer matrix as the product of the individual transfer ma-
trices, is employed to solve for the unknown modal scattering and transmission
coefficients. Three models, representing the elastic properties of FGM interlayer
are considered. In the first two models, the rule of mixture governs. In the third
model, an elegant self-consistent micromechanical model which assumes an inter-
connected skeletal microstructure in the graded region is employed. Examining
the back-scattered acoustic response of these models reveals the lower overall
stiffness associated to the composite (third) model and consequently, the lower
resonance frequencies. In our frequency range, the maximum relative errors may
reach to 15 percent which in the case of improper recognition of the model may
lead to an extraordinary inaccuracy in NDE process.

The main aim of this work is concerned to investigate the sensitivity of the
resonance frequencies of the graded shells to the overall volume fraction of the
constituting materials for practical profiles of distribution (i.e., power-law and
sigmoidal), in order to make technical points for the resonance acoustic spec-
troscopy purposes of this kind of composite structures. The results reveal the
pronounced effect of the overall volume fraction of constituents on the resonance
frequencies of the graded shells, especially in the case of thick shells where the
Rayleigh and Whispering Gallery type waves are anticipated. The linear and
monotonic correlation between the resonance frequency variations and the over-
all volume fraction of ingredients may essentially be used for non-destructive
evaluation purposes. In addition, comparing the resonant responses correspond-
ing to the power-law and the sigmoid distributions for the same thicknesses of
the graded shell, indicates that the changes in the profile of distribution demon-
strates itself as higher-order terms in the variations of the resonance frequen-
cies, and the resonance frequencies are primarily affected by the overall volume
concentration of constituents rather than the detailed design of the variation’s
profile. Hence, a number of resonance frequencies must be tracked to estimate
the profile of distribution. In the case of thin-walled shells, where the zero-order
Lamb-type waves are anticipated, the resonance frequencies exhibit less sensitiv-
ity to the distribution’s profile in comparison to the Rayleigh and Whispering
Gallery waves, especially in the case of sigmoidal distribution. This observa-
tion is due to this fact that this type of surface waves is primarily affected by
the average bulk properties of the shell rather than the details of the struc-
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ture. Evidently, higher resonance frequencies (i.e., lower wavelengths) may be
functional assets for interrogating purposes of distribution profiles of graded
shells.
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