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The present paper extends recent effective, linear anisotropic elasticity model
[6, 7] for cellular materials by implying geometric nonlinearity, which is built as
the constitutive relation between Green’s Lagrangean strain in the tensor and the
second Piola–Kirchhoff stress tensor and strain potential formulation. Cellular ma-
terials may easily experience large deformations due to large pores-to-volume ratio,
since such a deformation on the macroscopic level usually requires smaller deforma-
tions of the individual struts constituting the skeleton. The formulation based on
micromechanical modeling assumes that essential macroscopic features of mechanical
behavior on a macro scale, can be inferred from the deformation response of a repre-
sentative volume element. Open-cell materials with diverse regular skeleton structures
are considered. The initial stiffness tensor components for anisotropic continuum are
expressed as fuctions of microstructural parameters, such as skeleton geometric data
of representative volume element and skeleton material properties. Since large strains
in skeleton structure are characteristic for elasto-plastic behavior, interest is focused
on the large displacement and small strain cases. Examples involving numerical tests
on cellular materials under homogenoeous strain, relevant to simple shearing and to
uniaxial or biaxial loading in the tensile and compressive range, are considered.
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Notations

E Green–Lagrange strain tensor,
Λi relative stretch along the i axis,
Γij change of angle between two perpendicular axes i, j,
F deformation gradient,
T first Piola–Kirchhoff stress tensor,
Π second Piola–Kirchhoff stress tensor.

Geometric microstructural parameters:

b
0
i half strut of the length |b0

i | = L0−i/2,
L, h, t geometric microstructural parameters.
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Material microstructural parameters:
σs

f rupture modulus of skeleton material,
Es Young’s modulus of skeleton material,
β structure orientation angle,

0
S initial stiffness matrix,

λα eigenvalues of 0
S, α = I, II, III,

α
Ẽ unit strain eigenstates,

α
E

cr critical strain eigenstates,
kα scalar multiplier for critical eigenstate,
ΦE strain energy density,

αΦcr
E critical energy densities stored in eigenstates, α = I, II, III.

1. Introduction

Cellular solids represent a class of materials investigated with increasing in-
terest due to their unique properties. Macroscopic behavior described in terms of
effective properties can be explained only by fundamental studies on a microscale.
Such approach yields better understanding of overall properties and facilitates of
the manufacture of custom-tailored materials. It is very important to correlate
microstructural features with engineering design criteria in order to optimize
manufacturing process and material selection. Generally, cellular materials are
characterized by high deformability and reversibility of deformation due to their
geometric structure of skeleton, thus showing hyperelastic behaviour. Large dis-
placements on the macroscopic level usually result in smaller deformations of
the individual struts constituting the skeleton. Nonlinear response of cellular
material stems from reorientation of struts, originating in rigid motion of struc-
tural nodes. It is not necessary to invoke nonlinear behavior of the constituent
material to predict nonlinear behaviour of cellular solid.

In this study, our interest is concentrated upon the geometric nonlinearity.
Work is focused on the large displacement and small strain case. This is most
typical for skeleton structure since for large strains, the elasto-plastic response in
skeleton node areas should be taken into account. For compressive loads, struts
buckling may occur. It is not accounted for in this analysis and limits the strains
for which the model is valid.

The problem considered is not new, the geometrically nonlinear behaviour
of cellulars was extensively studied by Warren and Kraynik [1], Warren,
Kraynik and Stone [2] on the example of foam, using simplified pin-jointed
model for which bending contribution for skeleton struts was neglected. Another
approach was given by Wang and Cuitiño [3] where axial, bending and twisting
deformation at local level were considered. Both authors formulate the strain
energy function. The latest study based on the homogenization technique was
given by Hohe and Becker [4].
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Different models of microstructures are known in the literature. The most
typical model is the truss model used by Warren and Kraynik [1] and War-
ren, Kraynik and Stone [2] and Wang and Cuitiño [3], a very simplified
model indeed. It assumes hinges associated with plastic deformation. This model
works well only for stretching the dominant structures. Structures, in which
stretching and simultaneous bending occurs, are analyzed on the basis of a beam
model, which is successfully applied to linear analysis by Janus-Michalska and
Pęcherski [5] and Janus-Michalska [6].

The present study is a continuation of works on cellulars, based on mi-
cromechanical modeling by Janus-Michalska and Pęcherski [5], Janus-
Michalska [6], Kordzikowski, Janus-Michalska and Pęcherski [7] and
extends recent linear effective model. It is used to construct the strain-stress
relation and strain energy function for the hyperelastic cellular material with
arbitrary symmetry. The main advantage of such an approach is that the macro-
scopic constitutive model follows readily from the analytical or numerical treat-
ment. The elastic stiffness and strength are expressed in terms of geometric
and material parameters of a skeleton structure. Thus it is possible to prepare
the material to special mechanical requirements. The effect of only geometrical
nonlinearity for materials of different structures is analysed and the influence
of microstructural parameters is studied. Significant differences between the in-
finitesimal strain behaviour and small strain regimes is observed.

2. Small strain anisotropic hyperelasticity

The basis of typical nonlinear analysis is a neo-Hookean constitutive relation-
ship between Green’s strain tensor and its conjugate stress, the second Piola–
Kirchhoff stress tensor or formulation of the strain energy density. The purpose of
this paper is to present a derivation of constitutive equation for the hyperelastic
cellular material with arbitrary symmetry. The concept of multiscale modeling is
applied to specify equivalent continuum as an effective model of cellular material
by formulating appropriate constitutive equation on this level.

2.1. Strain and stress measures for nonlinear elasticity

The physical Green’s Lagrangean strain tensor is formulated with respect to
initial coordinate system. The material lines, which are orthogonal in the initial
configuration, are considered to control deformations of the cellular continuum.
Strain components that characterize the elongations of line elements parallel to
the coordinate axes before deformation, are defined as follows [8, 9]:

(2.1) Eii =
1

2
(Λ2

i − 1)
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where: Λi = dx(i)/dX(i) – relative stretch in the direction of i axis, dx(i), dX(i)

– denote the current and initial length of infinitesimal line element, aligned with
i-axis before deformation.

Strain components, which characterize the change of angle between two per-
pendicular lines, are defined as written below:

(2.2) Eij =
1

2
ΛiΛj sinΓij

where: Γij – change of angle between two different axes i, j.
When the deformation is given by the deformation gradient F, the strain

tensor can be obtained using the following formula:

(2.3) 2E = F
T
F − I

where: I – unit tensor.
Two stress tensors may be used to describe the stress state. The first Piola–

Kirchhoff stress tensor T, is aligned with the directions of the initial tangent base
vectors in the undeformed state and the second Piola–Kirchhoff stress tensor Π,
referred to axes aligned with the tangent base vectors in the deformed state.

Both tensors comply with the relation:

(2.4)1 Π = F
−1

T

and the following relation with the Cauchy’s stress tensor σ:

(2.4)2 σ = J−1
FΠF

T .

2.2. Constitutive equations

The linear constitutive equations for various cellular structures may be
found in many works by Kraynik [2], Janus-Michalska [6], Wang, McDo-
well [15], where the stiffness matrix components are expressed as functions of
microstructural geometric and material parameters. These constitutive relations
can be extended to the large displacements and small strain case by rewriting
them as a relationship between the Lagrangean strain tensor and the second
Piola–Kirchhoff stress tensor [10, 11]. For the case of small strains, after appli-
cation of expansion into Taylor series, if the first-order expression is taken into
account, the relation can be written as follows:

(2.5) Π(E) =
∂Π

∂E

∣

∣

∣

∣

E=0

: E = 0
S : E

where: 0
S – initial elasticity tensor (initial tangent operator).

Fully nonlinear range must be established in terms of a hyperelastic strain
energy potential what will be the subject of further investigations.
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3. Micromechanical analysis

In the present study, the strain stress relation for cellular materials will be
given, based on studies of mechanical response on a microscale. On microscale
only, the brief outline of micromechanical analysis, which was the subject of the
previous works by Janus-Michalska [6] is given.

Fundamental study of deformation on a micro-scale yields the explanation
of macroscopic behavior of such structured bodies. The effective properties are
then used to determine the response of structural elements on a macro-scale and
emerge naturally as a consequence of micro-macro transition, without depending
on specific physical measurements. Such a derivation is typical for micromechan-
ical modeling [13].

In micromechanics it is assumed that essential macroscopic features of me-
chanical behavior can be inferred from the deformation response of a represen-
tative volume element.

The concept is applied to chosen cellular materials with different structures
exhibiting regular cell arrangement. For the sake of simplicity, two-dimensional
planar model is proposed to be sufficient for planar deformation analysis, but
without loosing the generality, the framework is also valid for a 3D analysis.

3.1. Cellular microstructure

Cellular materials reveal different anisotropic properties due to variations
in material structure topology. Materials with repetitive microstructure can be
modeled by idealized, regularly repeating pattern of unit cells. A skeleton of
a cell is modeled as elastic beam structure with stiff joints. The following planar
cellular structures are analyzed: a) square cell structure, b) ‘honeycomb’ struc-
ture, c) equilateral triangular structure. Each structure may be represented by
a unit cell, in part filled by skeleton with i half-struts b

0
i of length |b0

i | = L0−i/2
measured from vertex 0 (node) to point i, Ai faces perpendicular to struts i and
occupying volume V . Figure 1 shows material structures mentioned above and
their representative unit cells.

Linear elastic brittle skeleton material with the following material data is
adopted: σs

f – the modulus of rupture, Es – Young’s modulus.
The considered structures in real cellular materials can be microdimensional

and material parameters on microscale are not identical with the material pa-
rameters of material considered as a bulk. In such a case, the tension test is
performed on individual ligament sample in order to determine experimentally
the ligament Young modulus and rupture modulus. This approach is applied for
foams and has been presented by Beechem and Lafdi [26].

Cellular structures of greater dimensions can be also described by the pre-
sented micromechanical approach. In this case, material parameters are similar
as for bulk material.
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a)

b)

c)

Fig. 1. Regular planar cellular structures, their material symmetries and representative unit
cells. a) Square cell structure, square unit cell; tetragonal material symmetry. b) ‘Honeycomb’
structure, triangular unit cell; transversely isotropic material symmetry. c) Equilateral trian-

gular structure, hexagonal unit cell; transversely isotropic material symmetry.

3.2. Microstructural deformation

A framework of micromechanical modeling begins with analysis of uniform
deformation on macro-scale, defined in micromechanics by gradient of deforma-
tion as follows [13]:

(3.1)1 F =
1

V

∫

∂V

(x ⊗N)dA

where: x denote current position vector, N – unit normal to the cell boundary
in reference configuration.
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For the given microstructures with beam solid skeleton, the formula is equiv-
alent to:

(3.1)2 F =
1

V

∑

Ai

(xi ⊗ Ni)dAi

where: xi = Xi + ∆i for midpoints i = 1, 2 . . . n, ∆i – midpoint displacement,
Ai – face perpendicular to i strut, Ni = b

0
i /|b0

i |.
Detailed description of deformation is given in [6] and repeated in the Ap-

pendix. The example of uniform deformation is presented in Fig. 2. Relevant
midpoint displacements can be expressed as a sum of relative displacements of
the beam midpoints with respect to the junction point (vertex) and vertex rigid
motion as written below [6]:

(3.1) ∆i = ∆i−0 + ∆0 +ψ× b0

where: ∆0 – translational component of rigid motion, ψ – rotation.

Fig. 2. Displacements in uniform deformation.

It is important to notice that only relative components produce forces in
microstructure. The most important fact is that the large displacements on the
macroscopic level usually result in smaller deformations of the individual struts
constituting the skeleton. Nonlinear response in macroscale stems from the re-
orientation of struts in the microstructure.

For regular periodic infinite structures in homogeneous deformation modes,
the interaction between neighbouring RVE is represented only by forces, since
moments vanish due to affinity of nodal displacements (Appendix 1a). The affin-
ity of nodal displacements observed in Fig. 2 was presented and described in
earlier works by Warren and Kraynik [1, 2] and confirmed in experiments
by microtomography methods. This justifies application of Cauchy to Cauchy
averaging rules for micro-macro transition.
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To represent cellular material, classical Cauchy continuum theory has been
applied. This theory does not take into account size effects or edge effects typical
for micromorphic continua [25]. For comparison of theoretical predictions with
experiments, macroscopic sample size d must fulfill condition d≫ L (in practice,
condition d > 10L is sufficient to obtain reasonable results [25]). To avoid this
assumption and simplification, generalized continuum theory should be adopted
for analysis [20, 21]. The example of application of micropolar Cosserat con-
tinuum for two-scale modeling of cellular material can be found in works by
Jänicke, Diebels, Sehlhorst, Dürster [21].

3.3. Mechanical model of cellular skeleton structure

Typical skeleton of cellular microstructure consists of thick beams, which may
be described by Timoshenko beam model. The methods of structural mechanics
are used to analyze this skeleton structure. Resultant forces, for the sets of
midpoint displacements related to uniform deformation, can be obtained using
the FEM code.

The idea of micro-macro transition applied here is presented in [6] and re-
peated in the Appendix.

3.4. Initial stiffness matrix

The model adopted here is based on equivalence of the strain potential for
the discrete structure and the strain potential of an effective continuum. It refers
to averaging of the strain energy density [13] as written below:

(3.2) ΦE = 〈sΦE〉V =
1

V

∫

Vs

(sΦE)dVs

where: 〈 〉V stands for the volumetric average in skeleton s taken over V , V –
volume of unit cell, Vs – volume of skeleton in unit cell.

For simplicity it is convenient to express strains, stresses and stiffness matrix
in terms of a 6-D space with Kelvin notation, where plane strain tensor is rep-
resented by vector (Iε), I = 1, 2, 3 and stiffness tensor representation for a 2D
problem is SIJ matrix, 3 × 3.

The following stiffness matrix components for equivalent continuum can be
obtained using the following formula [11]:

(3.3) 0SIJ =
1

V





∂2
(

∫

Vs

sΦEdVs

)

∂(Iε)∂(Jε)



 .

Stiffness matrix components are given by analytical formulae – either
in dependence on microstructural geometric and skeleton material para-
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meters or obtained as a result of numerical procedure by the FEM code
(Appendix).

3.5. Evaluation of elastic range

For anisotropic solids with linear stress-strain relation on a macroscale, an
energy-based approach to limit conditions was proposed by M.M. Mehrabadi
and C. Cowin [12], and Rychlewski [16]. The idea is based on the orthogonal
energy elastic stress states concept, thus making possible the additive decompo-
sition of the elastic energy density, stored in an anisotropic body. The criterion
is formulated as a sum of weighted energy densities, stored in eigenstates as
written below:

(3.4)
III
∑

α=I

αΦE

αΦcr
E

= 1

where: αΦcr
E – critical energy density stored in an α eigenstate of stiffness ma-

trix 0
S, α = I, II, III, for a 2D problem.

Geometric nonlinear energy density stored in alfa eigenstate for arbitrarily
given strain state is given by formula:

(3.5) αΦE = λα(αE)2

where: λα – α eigenvalue of stiffness matrix 0
S, α

E – α strain eigenstate, αE =
|αE| =

√
αE · αE.

Critical energy density is given by formula:

(3.6) αΦcr
E = λα(αEcr)2

where: α
E

cr = αkα
Ẽ, αk – scalar multiplier of unit eigenstrain, α

Ẽ – unit eigen-
strain.

Eigenvalues λα and eigenstates α
Ẽ are given by analytical formulae in de-

pendence on microstructural geometric and skeleton material parameters or can
be obtained as a result of numerical procedure (Appendix).

Since the energy refers to linear elastic work of skeleton structure, critical
energy densities stored in subsequent eigenstates are the same as in a linear
case, although on macroscale it gives a geometrically nonlinear effect.

The detailed algorithm to calculate critical energies using micro-macro tran-
sition has been described in previous works on cellular materials [5, 6].
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4. Homogeneous deformations

4.1. Loading cases

The presented theory is limited to problems of homogeneous states of defor-
mation.

The loadings are chosen in such a way that they correspond to typical exper-
iments.

The effective stress-strain behavior is analyzed under the following three
types of loading:

A) uniaxial load in tensile and compressive range σx 6= 0, σy = 0, τxy = 0;
B) biaxial load in tensile and compressive range σx = σy = σ1 6= 0, τxy = 0;
C) simple shearing deformation σx = 0, σy 6= 0, τxy 6= 0,

where σx, σy, τxy denote components of Cauchy stress.

A) B) C)

Fig. 3. Stress states corresponding to applied stretches loadings.

The deformation gradients for subsequent types of loadings are as follows:

(4.1) A
F =

[

AΛx 0
0 AΛy

]

, B
F =

[

BΛx 0
0 BΛy

]

, C
F =

[

1 Γ
0 1

]

,

where relative stretches fulfilling the stress conditions comply with the following
relations:

(4.2)

AΛy =

√

S12 + S22 − S12(AΛx)2

S22
,

BΛy =

√

S22 − S11 + (S11 − S12)(BΛx)2

S22 − S12
,

where: SIJ – stiffnes matrix components in Kelvin’s notation of the considered
material with given microstructure.
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4.2. Cellular material structures and skeleton material

Cellular materials of all presented types are considered. Type of microstruc-
ture is determined by topology of structural nodes. Basic geometric parame-
ters L0−i, t, determine the beam slenderness, which influences microstructural
response due to resistance to axial and bending deformations. Cell orientation
different than that given in Fig. 2 may present an interesting case [17]. Skeleton
material parameters are specified separately, as they decide only on the magni-
tude of elastic range.

Numerical tests are carried out for a variety of combinations of geometric and
material parameters. Results for chosen examples are presented for structures
specified in Table 1. The structure a is tested for two types of orientation as
given in Fig. 4.

Table 1. Specification of microstructures.

Type Geometric parameters of skeleton [mm] Skeleton material parameters

a1) L01 = L02 = L03 = L04 = 20, t = 2.0 ES = 2 GPa, νS = 0.33, σs
f = 60 MPa

a2) L01 = L02 = L03 = L04 = 20, t = 2.0, β = 45◦0 ES = 2 GPa, νS = 0.33, σs
f = 60 MPa

b) L01 = L02 = L03 = L04 = L05 = L06 = 20, t = 2.0 ES = 2 GPa, νS = 0.33, σs
f = 60 MPa

c) L01 = L02 = L03 = 20, t = 2.0 ES = 2 GPa, νS = 0.33, σs
f = 60 MPa

Fig. 4. Orientation of microstructure with respect to global coordinate axes giving
structures a1) and a2).

Elastic range depends on skeleton material parameters and type of micro-
structure. Material parameters are chosen in such a way that the magnitude of
maximum strains is not so small as infinitesimal strains and allows to observe
the nonlinear path.
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4.3. Results

Plots of Cauchy’s stress versus relative stretch are presented for the load case
A) in Fig. 5 as the result of numerical analysis performed in MATHCAD code.
These plots are compared with results of linear analysis shown by in dashed
line.

Fig. 5. Uniaxial tensile and compressive Cauchy stress σx versus the applied stretch Λ, for
materials exhibiting the specified microstructures.

We may observe that the value of maximum tensile load differs from the
absolute value of compressive load, resulting in material dissymmetry in tension-
compression. The effect depends on the type of microstructure and its orien-
tation with respect to the direction of load. Structures b) and c) are isotropic
in plane, so the properties are independent of orientation. Generally, for stiff
structures such as a1) and c), for which deformation response results in domi-
nation of axial forces in microstructure, the difference between geometric non-
linearity and linear behavior is not significant. For compliant structures such
as a2), b) for which bending of microstructural beams dominates, the dis-
symetry in tension-compression is observed. Tests of the variety of combina-
tions of geometric parameters indicates that for slender beam structures, this
nonlinear effect is greater than that for thick ones for all types of microstruc-
tures.

For load case B) and materials of specified microstructures, the results are
presented in Fig. 6.
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Fig. 6. Biaxial tensile and compressive Cauchy stress σ1 versus the applied stretch Λ, for
materials of specified microstructures.

Biaxial load results in axial microstructural response for structures a1), a2),
b) and c) leading toa nearly linear behavior. It is visible that material response
depends on the state of strains. This property is generally exhibited by stiffer
response to biaxial load than to uniaxial ones.

Simple shearing deformation is obtained by applying shearing stress τ and
normal compressive stress σY . Nonlinear path for shearing stress versus shear
angle is compared with linear predictions (dashed line) at the left of Fig. 7.
A variety of behaviors is observed. The difference can be so great that linear
analysis is not acceptable [structures a1), b)].

At the right of Fig. 7 a comparison of nonlinear paths for shearing stress with
normal stress is presented. Anisotropic cellular material properties may result in
various ratios of maximum values of these stresses.

4.4. Comparison of theoretical predictions with FEM solutions

The results shown in Figs. 5–7 are obtained with the use of the derived
macroscopic, hyperelastic constitutive relation (2.5), with the limit of elasticity
specified by (3.5). These predictions are now compared with numerical results
for the corresponding beam structures mentioned in Sec. 3.3, under specified
types of loadings with appropriate boundary conditions. These results are ob-
tained using FEM code (ABAQUS). Structures are dicretized by Timoshenko
beam element, 36 elements per unit cell. For such a comparison, the most inter-
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Fig. 7. Tangent and normal Cauchy stress versus the shearing angle for materials of
specified microstructures.

esting are examples that reveal the difference between the nonlinear and linear
behaviour.

Two chosen examples are presented in Fig. 8. Dotted line denote numerical
nonlinear path. They show very good agreement of both methods.
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Fig. 8. Comparison of theoretical predictions with numerical results for chosen examples.

5. Conclusions

This paper presents an application of constitutive equation for the hyper-
elastic cellular material exhibiting arbitrary symmetry. Almost every cellular
material reveals nonlinear behavior in elastic range. For certain skeleton struc-
tures a linear analysis may be unacceptable, since the difference between linear
and nonlinear behaviors is significant. The aim of this work is to prove that
hyperelasticity of cellular solid stems from reorientation of struts, originating in
rigid motion of structural nodes.

First-order FE2 approach [19] is used to identify the microscopic deforma-
tion modes and the stress response of the skeleton. FEM analysis performed for
Timoshenko beams is geometrically nonlinear (assumption of material linearity
of skeleton material is adopted for simplicity and concentration upon geometric
effects only). Detailed studies of numerical solution of the considered types of
structures show that the main reason of nonlinearity lies in reorientation and
other geometric effects are neglegibly small. Structural topology and structural
element stiffnesses influence the nonlinear path. Type of skeleton material and
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type of microstructure determine the elastic range by the ratio σs
f/Es. The non-

linear effect depends also on the type of loading. The analytical and numerical
strain-stress relations for cellular materials based on studies of mechanical re-
sponse on a microscale constitute the objective of the present study. The theo-
retical model based on micromechanics requires experimental verification before
application.

The work presented applies the first order homogenization technique. The al-
ternative approach is based on formulation of consistent stiffness matrix [22–24].
This formulation gives direct evaluation of micro-macro transition and allows to
model the mechanical response at large deformations.

Appendix A. Micro-macro transition

a) Kinematics

The essential feature of uniform deformation of solids with repetitive mi-
crostructure is the node displacement affinity. The individual beams deform an-
tisymmetrically about their midpoints, so there is no resultant moment across
the section at the beam midpoints. An example of such deformation is shown in
the figure below:

Fig. 9. The example of uniform deformation.

The kinematics of the unit cell is described by the relative displacements of
the beam midpoints i = 1, 2, . . . , n, with respect to a rigid motion of the junction
point (vertex 0). This rigid motion is described by the translation component ∆0

and spatial rotation ψ. As a result, relative midpoint displacement with respect
to node is given by the following formula:

(A.1) ∆i−0 = ∆i −∆0 − ψ × b0, i = 1, . . . , n;

only this relative deformation produces forces in microstructure skeleton.
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The uniform axial deformation εα in the α direction α = x, y, results in the
following midpoints displacements:

(A.2) ∆i(εα) = εα · (b0
i · eα)eα i = 1, . . . , n.

For pure shearing deformation in the αβ plane α 6= β, the displacements are
given as follows:

(A.3) ∆i(γαβ/2) = (γαβ/2) · ((b0
i · eα)eβ + (b0

i · eβ)eα), i = 1, . . . , n,

where: eα – unit vector in α direction.
The location and rotation of the junction point is determined by cell equilib-

rium:

(A.4)
n
∑

i=1

Fi = 0,
n
∑

i=1

Fi × b
0
i = 0.

Relative displacements may be represented by the components normal and tan-
gent to the individual strut direction:

(A.5) ∆0−i = ∆0−i,n + ∆0−i,τ .

b) Displacement-force relations

Timoshenko beam model is adopted as the most appropriate model for short
beams of the typical microstructure skeleton. The elastic behaviour of cantilever
beam subject to axial and transverse loads is known from classical solutions.

For axial load Fin and transversal load Fiτ , applied at the end of cantilevered
beam, its free end axial displacement ∆i−0,n and transversal displacement ∆i−0,τ

may be described by linear relations with respect to the fixed end:

(A.6) ∆0−i,n = Fincin, ∆0−i,τ = Fiτciτ ,

where: cin is defined as beam axial elastic compliance of strut i, ciτ is defined as
bending elastic compliance of strut i having the length L0−i/2.

For a uniform beam cross-section, the solutions are as follows:

(A.7) cin =
L0−i

2EsA
, ciτ =

L3
0−i

24EsJ
+

L0−i

2GsAτ
,

where: A – cross-sectional area, Es, Gs – Young’s and shear modulus for the
skeleton material.

Axial and bending stiffnesses of beams are given by reciprocals of compli-
ances:

(A.8) sin = (cin)−1, siτ = (ciτ )−1.
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Fig. 10. Cantilevered beam representing microstructural element.

When the stiffnesses are determined, one may calculate the normal and transver-
sal forces as functions of unknown nodal rigid motions using the force-displace-
ment relations. The displacement and rotation components may be obtained
from equilibrium equations (A.4). The solution supplies full description of the
deformation mechanism.

c) Equivalent continuum based on averaging of the strain potential

The approach adopted here is based on equivalence of the strain potential for
a discrete structure and the strain potential of an effective continuum. It refers
to averaging the strain energy density [11] as written below:

(A.9) ΦE = 〈sΦE〉V =
1

V

∫

Vs

(sΦE)dVs.

Strain potential of beam skeleton in linear case may be obtained using the fol-
lowing formula [18]:

U =

∫

Vs

(sΦE)dVs(A.10)

=
3
∑

i=1





li
∫

0

(Fni)
2dξi

2EsAs
+ µ

li
∫

0

(Fτi)
2dξi

2GsAs
+

li
∫

0

(Fτi(li − ξi))
2dξi

2EsJ





where: Es, Gs – Young’s and shear modulus for the skeleton material, As, J –
beam cross-sectional area and moment of inertia, µ – energy cross-sectional co-
efficient (for rectangular cross-section µ = 1.2).

This strain potential (A.6) obtained as a function of subsequent uniform
deformations is used for determination of initial stiffness matrix components.
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Appendix B. Macroscopic material properties for cellular materials of

the given structures

a) Material of square cubic symmetry – square cell structure
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b) Isotropic material – honeycomb structure
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c) Isotropic material – equilateral triangular cell structure
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