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Slip at the surface of a general axi-symmetric body
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The rotational motion of an arbitrary axi-symmetric body in a viscous fluid is
discussed using a combined analytical-numerical technique. A singularity method
based on a continuous distribution of a set of Sampson spherical singularities,
namely Sampsonlets, along the axis of symmetry within the body, is applied to find
the general solution for the fluid velocity that satisfies the general slip boundary
condition. Employing a constant and linear approximation for the density functions
and applying the collocation technique to satisfy the slip boundary condition on
the surface of the body, a system of linear algebraic equations is obtained to be
solved numerically. The couple exerted on a prolate and oblate spheroid and on
a prolate and oblate Cassini ovals is evaluated for various values of the aspect ratio
a/b and for different values of the slip parameter, where a and b are the major and
minor semi-axes of the particle respectively. The CPU time elapsed during numerical
calculations is measured and tabulated. Numerical work shows that convergence to
at least six decimal places is achieved.
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1. Introduction

The couple experienced by axi-symmetrical bodies rotating steadily in an
incompressible viscous fluid is of practical interest in many technological appli-
cations. It is required for designation and calibration of viscometers [1]. This
prompted many authors to discuss the rotational motion of axially symmetric
bodies in steady incompressible viscous fluid flows. Jeffery [2] has used the
curvilinear coordinates to solve the problem of slow steady rotation of spheroids
in an infinite viscous fluid. An elegant formula for evaluating the couple experi-
enced by an axially symmetric body rotating about its axis of revolution in an
incompressible viscous fluid flow is obtained by Kanwal [1]. Brenner [3] has
used the symbolic operator method to obtain the hydrodynamic resistance of



342 E. A. Ashmawy

a rigid particle of arbitrary shape, immersed in an arbitrary quasistatic Stokes
flow extending to infinity.

In the literature, an increasing number of authors have treated Stokes flow
problems using numerical methods. Yu et al. [4] have discussed the rotation
of a spheroid in a Couette flow numerically with the method of distributed
Lagrangian multiplier based on fictitious domain. The boundary integral method
has been utilized by many authors, e.g. [5]–[8]. One of the important numerical
methods available for solving Stokes flow problems is the singularity method
which is based on the choice of appropriate basic spherical singularities, namely
Sampsonlet singularities, distributed discretely or continuously along the axis of
symmetry of the body immersed in the fluid. Actually the singularity method
has been known since the pioneering work of Lorentz [9], Oseen [10] and
Burgers [11]. Later, the singularity method has been developed and applied
to a number of Stokes flows, e.g. [12–17]. Kohr and Pop, in their book [18],
discussed the implementation of the singularity method for Stokes flow past
or due to the motion of a solid sphere above a plane wall. Feng and Wu [19]
investigated the electrophoretic motion of an arbitrary prolate body of revolution
perpendicular to an infinite conducting planar wall using a combined analytical-
numerical method. Wan and Keh [20] investigated the problem of the rotation
of a prolate or oblate ellipsoidal particle about its axis of revolution in a viscous
fluid using the singularity method.

The Navier–Stokes equations of fluid flow are typically solved under no-slip
boundary conditions, i.e., assuming that the layer of liquid next to a solid sur-
face moves with the local velocity of the surface. The no-slip condition was
a characterized issue in the early development of fluid mechanics. Experimen-
tal observations appeared to confirm its validity over a vast array of differing
situations. However, in the last centaury several studies have shown that this
condition might not always hold, and that fluid slippage might occur at the
solid boundary [21–24]. There exist situations in which the no-slip boundary
condition leads to singular or unrealistic behavior; for example, the spreading
of a liquid on a solid substrate [25–28], corner flow [29, 30] and extrusion of
polymer melts from a capillary tube [31, 32]. O’Neill et al. [33] used a linear
slip, Basset-type [34], boundary condition to remove the contact-line singularity
that would otherwise prevent the movement of a half-submerged sphere normal
to a planner free surface bounding a semi-infinite viscous fluid. In fact, nearly
two hundred years ago Navier [35] proposed a general boundary condition that
permits the possibility of fluid slip at a solid boundary. This boundary condi-
tion assumes that the tangential velocity of the fluid relative to the solid at
a point on its surface is proportional to the tangential stress acting at that
point. The constant of proportionality between these two quantities may be
termed as a coefficient of sliding friction, it is assumed to depend only on the
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nature of the fluid and solid surface [35]. Basset [34] derived expressions for the
force and couple exerted by the fluid on a translating and rotating rigid sphere
with a slip boundary condition at its surface (e.g., a settling aerosol sphere).
Later, the quasisteady translation and steady rotation of a slip spherical par-
ticle in a slip spherical cavity are also theoretically studied in [36]. While the
solutions of the Stokesian flow equations with slip conditions are of substantial
interest for gases, recently it has been noted that slip conditions are of inter-
est for liquids as well, particularly with respect to microscopic sense. Barrat
and Bocquet [37] have used molecular dynamics to compute slip for liquids.
Pit et al. [38] has measured slip for hexadecane on several modified sapphire
surface using a rotating disk. Neto et al. [39] provide an excellent review of
experimental studies regarding the phenomenon of slip of Newtonian fluids at
solid interface. They give a particular attention to the factors that affect the
fluid slippage at the solid boundary such as surface roughness, wet ability and
the presence of gaseous layers might have on the measured interfacial slip. In
resent years, there has been an increased interest in using the slip boundary con-
dition for Newtonian fluids [40–46], and for micropolar and microstreach fluids
[47–49].

The goal of the present work is to discuss the slow steady rotational motion
of a general axi-symmetric slip particle in an incompressible viscous fluid, in the
limit of small Reynolds number, about its axis of revolution. The general slip
boundary condition is applied at the surface of the body. A singularity method
based on a continuous distribution of a set of Sampsonlet singularities along the
axis of symmetry of the body is used to obtain the solution of the problem at
hand. The total couple acting on the surface of the body is calculated for various
values of the slip parameter and the aspect ratio of the body. Numerical results
are obtained for the special cases of prolate spheroid, prolate Cassini oval, oblate
spheroid and oblate Cassini oval particles.

2. Mathematical formulation

The slow steady rotational motion of a general axi-symmetric slip particle in
an incompressible viscous fluid along its axis of revolution is considered as shown
in Fig. 1. It is convenient to use both the circular cylindrical coordinates (ρ, φ, z)
and the spherical coordinates (r, θ, φ), with the center of the solid particle at the
origin of the coordinates. Due to symmetry of the fluid flow and the solid particle,
the fluid velocity vector has components (0, 0, qφ) in the spherical coordinate
system. The relations between the two coordinate systems are:

(2.1) r =
√

ρ2 + z2, θ = cos−1

(
z

√

ρ2 + z2

)

.
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Fig. 1. Geometrical sketch for the solid particle Sp.

The velocity field of the fluid flow at low Reynolds number satisfies the dif-
ferential equation

(2.2) E2(ρqφ) = 0,

where

(2.3) E2 = ρ
∂

∂ρ

(
1

ρ

∂

∂ρ

)

+
∂2

∂z2
.

The slip boundary condition states that the relative tangential velocity of the
fluid at the surface of the body is proportional to the local tangential stress.
So, assuming that the solid particle rotates along positive z-direction with a con-
stant angular speed Ω, the slip boundary condition, in the cylindrical coordinate
system, is taking the form

(2.4) β(qφ − ρΩ) = nρtρφ + nztzφ on Sp,

where nρ and nz are the local ρ and z components of the unit vector n normal to
the solid particle Sp and β (0 ≤ β ≤ 1) is termed the slip parameter. Moreover,
the fluid is at rest at infinity.

The general bounded solution for the differential equation (2.2) has the form

(2.5) qφ(ρ, z) =
∞∑

n=1

AnA1n(ρ, z).
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Also, the shear stress components of the flow field are of the form

tρφ(ρ, z) =
∞∑

n=1

AnA2n(ρ, z),(2.6)

tzφ(ρ, z) =

∞∑

n=1

AnA3n(ρ, z),(2.7)

where An are unknown constants to be determined from the imposed boundary
conditions, and the functions Akn(ρ, z), k = 1, 2, 3 are listed in the Appendix.

The total couple, Ceφ, exerted by the fluid on the surface of the solid particle
Sp can be obtained using the following simple formula [1]:

(2.8) C = 8πµ lim
r→∞

(
r3qφ
ρ

)

,

where µ is the fluid viscosity.
For the purpose of comparison, we note that the expression for the total

couple acting on the surface of a slightly deformed colloidal sphere experiencing
slip correct to the second order in the small parameter ε characterising the
deformation, has been obtained by Chang and Keh [50] as

(2.9) C = 8πµb3Ω

{
βb

βb+ 3µ
− ε

3βb(βb + µ)

5(βb + 3µ)2
+ ε2

3(βb)4δ

175(βb + 3µ)3(βb+ 5µ)

}

,

where

ε = (1 − a/b) < 0, δ =

{

1 + 3
µ

βb
+ 36

(
µ

βb

)2

+ 150

(
µ

βb

)3}

.

3. Rotation of a general axi-symmetric prolate particle

In this section we consider the axi-symmetric fluid flow generated by the ro-
tational motion of an arbitrary prolate spheroid or Cassini oval prolate particle.
The particle rotates about its axis of revolution assuming slip boundary condi-
tion. A line segment AB is taken on the axis of revolution inside the particle,
where the coordinates of the end points A and B are (ρ = 0, z = −c1) and
(ρ = 0, z = c2), respectively, in which c1 and c2 are positive constants. The
general solution of the flow field outside the prolate particle can be constructed
by a continuous distribution of a set of Sampsonlet singularities over the line
segment AB [15–19]. Then, the Eqs. (2.5)–(2.7) can be represented as follows:

(3.1)





qφ
tρφ

tzφ



 =
∞∑

n=1

c2∫

−c1






An(t)





A1n(ρ, z − t)
A2n(ρ, z − t)
A3n(ρ, z − t)










dt.



346 E. A. Ashmawy

One can obtain the non-dimensional couple exerted by the fluid on the body
from direct substitution of (2.5) into (2.8) to be

(3.2) C∗ =
C

8πµb3Ω
=

1

b3Ω

c2∫

−c1

A1(t)dt.

The interval AB is divided into M segments; the length of each segment is
the same. The density distribution functions on each segment are assumed to
be constants. The coordinates of the two end points of the m-th segment are
considered to be (0, tm−1) and (0, tm), where tj = −c1 + j(c1 + c2)/M , j =
1, 2, . . . ,M − 1 and t0 = −c1, tM = c2. The density distribution functions in the
m-th segment are given by the following linear relations:

(3.3) An(t) =
t− tm−1

tm − tm−1
Anm +

tm − t

tm − tm−1
An(m−1) for tm−1 ≤ t ≤ tm,

where An(m−1) and Anm are the values of density distribution constants at the
points tm−1 and tm, respectively.

If the boundary Sp is approximated by satisfying condition (2.4) at N discrete
points, thus the infinite series is truncated after N terms. Substituting relations
(3.3) into (3.1), we get

(3.4)






qφ

tρφ

tzφ




 =

N∑

n=1

M∑

m=1













U
(11)
nm (ρ, z)

U
(21)
nm (ρ, z))

U
(31)
nm (ρ, z)






An(m−1) +







U
(12)
nm (ρ, z)

U
(22)
nm (ρ, z))

U
(32)
nm (ρ, z)






Anm







,

where the functions U (ij)
nm (ρ, z), i = 1, 2, 3 and j = 1, 2, are given in the Appendix.

Substituting relations (3.4) into the boundary condition (2.4) we arrive at

(3.5)
M∑

m=1

N∑

n=1

{[

U (11)
nm (ρ, z) − nρ

β
U (21)

nm (ρ, z) − nz

β
U (31)

nm (ρ, z)

]

An(m−1)

+

[

U (12)
nm (ρ, z) − nρ

β
U (22)

nm (ρ, z) − nz

β
U (32)

nm (ρ, z)

]

Anm

}

= ρΩ on Sp.

The collocation method approximates the boundary conditions on Sp by satis-
fying Eq. (3.5) at N(M + 1) discrete values of z (rings) on its surface. This
generates a set of N(M + 1) simultaneous linear algebraic equations, which can
be solved numerically to give the N(M + 1) required density constants.

The non-dimensional couple can be evaluated from (3.2) to be

(3.6) C∗ =
1

2b3Ω

M∑

m=1

(A1(m−1) +A1m)(tm − tm−1).
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The exact formula for the couple acting on a prolate spheroid, rotating
with angular velocity Ω about its axis of revolution in an unbounded viscous
fluid flow assuming no-slip boundary conditions, is obtained by Happel and
Brenner [21] as

(3.7) Cs = 8πµb3Ω

[
3

2

√

λ2 − 1{λ− (λ2 − 1) coth−1(λ)}
]−1

,

where
λ =

a√
a2 − b2

.

3.1. Rotation of a prolate spheroid particle

The above-mentioned method is employed to obtain the solution of the prob-
lem of the rotational motion of a prolate spheroid in a viscous fluid, which is
otherwise at rest. Wan and Keh [20] have obtained the couple exerted on the sur-
face of a spheroidal prolate particle correct to five decimal places with M = 60.
Here, we have obtained the total couple acting on the surface of the spheroidal
prolate particle correct to six decimal places, using N = 16, and evaluated the
CPU time (T in seconds) elapsed in the numerical computations. All numeri-
cal results are performed on a Pentium 4 personal computer with processor of
3.0 GHz. The numerical integrations are performed using Romberg’s integration
formula with variable step. It is found that the results obtained are in a very
good agreement with that of Wan and Keh [20].

In Table 1, numerical results of the non-dimensional couple, C∗, acting on
the surface of the prolate spheroid, are listed for representative values of the
aspect ratio a/b = 1.1, 1.5, 3.0, 5.0 with various values of the slip parameter
bβ/µ. Also the CPU time, T in seconds, elapsed in the numerical computations,
is measured and presented. When the slip parameter bβ/µ → ∞, we return
to the classical case of no-slip boundary condition. The numerical results are
compared with the approximate solutions given by (2.9) while for bβ/µ → ∞,
the results are compared with the exact solution given by (3.7). To achieve rapid
convergence, the values of C∗ are computed using the linear density distribution
given by Eq. (3.3) at each sub-segment for different values of M with N = 16.
As expected, the values of the couple increase monotonically with the increase of
the slip parameter bβ/µ. Also, it can be observed that the increase of the aspect
ratio a/b increases the total couple monotonically.

In Fig. 2, the non-dimensional couple C∗ exerted by the fluid on the prolate
spheroid is represented graphically against the non-dimensional slip parameter
bβ/µ for various aspect ratios. It can be observed that the couple tends to be
constant as the slip parameter bβ/µ exceeds a fixed value, namely 40.
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Table 1. Numerical results for the non-dimensional couple acting on the surface
of a spheroid prolate particle, for various values of its aspect ratio a/b and some

values of the slip coefficient bβ/µ and the CPU time cost.

bβ/µ M
a/b = 1.1 a/b = 1.5 a/b = 3.0 a/b = 5.0

C∗ T C∗ T C∗ T C∗ T

0.1

2 0.034834 5.05 0.045381 7.68 0.050199 22.31 −3.443321 10.80

3 0.034834 9.16 0.045381 12.51 0.086405 28.31 −0.035900 27.91

4 0.086405 42.75 0.160016 43.93

5 0.167201 57.25

6 0.142358 70.05

7 0.142131 89.00

8 0.142145 102.63

9 0.142145 107.35

Approx 0.034835 0.045491 0.090388 0.162386

1.0

2 0.268829 4.60 0.345338 15.75 0.415208 10.58 −5.157177 21.00

3 0.268829 7.86 0.345338 19.35 0.639932 15.88 −0.598224 24.90

4 0.639931 29.48 1.069979 31.30

5 0.639931 36.96 1.047460 38.55

6 1.039521 46.21

7 1.039373 62.56

8 1.039371 72.71

9 1.039371 89.81

Approx 0.268835 0.345871 0.658929 1.135714

10.0

2 0.819027 5.96 1.019899 5.10 1.503489 7.86 −3.167952 17.80

3 0.819027 10.76 1.019899 17.15 1.790063 11.95 −1.254604 22.46

4 1.790047 17.28 2.668784 26.60

5 1.790047 35.68 2.779308 35.08

6 2.837533 54.80

7 2.839079 68.73

8 2.839079 62.31

Approx. 0.819029 1.020105 1.800975 2.908043

∞

2 1.060167 5.91 1.303749 15.50 2.201895 14.91 −7.571114 30.03

3 1.060167 19.93 1.303749 35.68 2.243937 32.68 −4.813517 36.68

4 2.243937 41.25 3.518275 53.18

5 3.530917 60.05

6 3.530283 63.91

7 3.530404 72.70

8 3.530404 78.80

Exact 1.060167 1.303749 2.243937 3.530404
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Fig. 2. Non-dimensional couple acting on the surface of a prolate spheroid.

3.2. Rotation of a Cassini oval prolate particle

Here, the presented method is applied to Cassini oval prolate particle of
different shapes. When the parameter characterizing Cassini oval shape takes
different values, the Cassini oval will have different forms, from convex contour
to partial convex and partial concave contour. The surface of the Cassini oval
prolate is represented by the polar equation

(3.8) r2 =
1

2

{

(a2 − b2) cos 2θ +

√

(a2 + b2)2 − (a2 − b2)2 sin2 2θ

}

,

where a and b are the semi-major and semi-minor axes of the Cassini oval.
In Figure 3, we illustrate geometrical sketches for the Cassini ovals for differ-

ent values of the aspect ratio a/b.

Fig. 3. Sketch for different prolate Cassini ovals.
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The numerical solutions for the non-dimensional couple C∗ of the axi-sym-
metric rotational motion of the prolate Cassini oval are listed in Table 2 for
different values of the aspect ratio a/b = 1.1, 1.5, 3.0, 5.0. The CPU time elapsed
in the numerical computations is also presented. The choices of the end points of
the line segment for this case are somewhat indefinite. Here we have found that
slightly different but reasonable choices of the end points of the line segment
lead to almost the same solution for a given aspect ratio. The numerical results
are compared with the approximate solutions given by (2.9).

Table 2. Numerical results for the non-dimensional couple acting on the surface
of a Cassini oval prolate particle for various values of its aspect ratio a/b and

some values of the slip coefficient bβ/µ and the CPU time cost.

bβ/µ M
a/b = 1.1 a/b = 1.5 a/b = 3.0 a/b = 5.0

C∗ T C∗ T C∗ T C∗ T

0.1

2 0.034985 1.33 0.049692 0.88 0.199570 1.16 0.950316 1.83

3 0.034985 2.10 0.049692 2.18 0.199761 2.05 0.950619 2.16

4 0.199761 3.28 0.950656 3.16

5 0.950656 4.60

Approx 0.034835 0.045491 0.090388 0.162386

1.0

2 0.269931 1.00 0.376237 0.53 1.402014 1.73 5.980632 1.48

3 0.269931 0.75 0.376237 1.05 1.403061 2.18 5.982143 1.33

4 1.403061 2.26 5.982087 2.53

5 5.982087 3.53

Approx 0.268835 0.345871 0.658929 1.135714

10.0

2 0.821927 1.15 1.099039 1.00 3.540820 1.41 12.726739 0.93

3 0.821927 0.80 1.099039 1.46 3.541827 1.60 12.727736 1.78

4 3.541827 3.25 12.727848 1.83

5 12.727848 3.08

Approx. 0.819029 1.020105 1.800975 2.908043

∞

2 1.063665 0.50 1.398664 1.00 4.269669 1.28 14.556165 1.03

3 1.063665 0.91 1.398664 1.88 4.270179 1.65 14.556860 1.73

4 4.270180 2.36 14.556866 2.45

5 4.270180 3.41 14.556866 3.50

Approx. 1.060167 1.303749 2.243937 3.530404

In Figure 4, the non-dimensional couple C∗on the prolate Cassini oval is
plotted against the slip parameter bβ/µ for several values of its aspect ratio.
Similar to the results obtained for the motion of a prolate spheroid presented in
the previous section, the values of C∗ increases monotonically as the ratio a/b
increases for fixed bβ/µ. Again, C∗ increases monotonically as bβ/µ increases for
a fixed aspect ratio. As the slip parameter bβ/µ exceeds a fixed value, namely 20,
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Fig. 4. Non-dimensional couple acting on the surface of a prolate Cassini ovals.

the couple tends to be constant. Also we observe that the values of the couple
acting on Cassini ovals are greater than that on a prolate spheroid; this means
that the couple depends strongly on dimensions and shape of the body.

4. Rotation of a general axi-symmetric oblate particle

In this section, the method presented in the above sections is used to solve the
Stokes’ flow of an axi-symmetric oblate body, rotating about its axis of revolution
in an incompressible viscous fluid. Here, the singularities should be distributed
on the fundamental plane within the particle Sp. Since the particle and the
fluid flow are axi-symmetric, then the fundamental plane should be a circular
disk perpendicular to z-axis with its centre at the origin of the coordinates. Let
Q(R,ψ, 0) to be an arbitrary point on Sp. Thus, the velocity at another point
P (ρ, 0, z) generated by the spherical singularity at Q can be obtained in the
form

q̂φ(ρ, z) =
(ρ−R cosψ)

ρ∗

∞∑

n=1

BnA1n(ρ∗, z),(4.1)

q̂ρ(ρ, z) =
R sinψ

ρ∗

∞∑

n=1

BnA1n(ρ∗, z),(4.2)

where ρ∗is the distance from Q to the projection of P on the z-plane and is given
by

(4.3) ρ∗ =
√

ρ2 +R2 − 2ρR cosψ.
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Since the motion is axi-symmetric, then the singularities must be distributed
uniformly on the circles in Sp with their centers at the origin of coordinates.
Hence, the unknown density distribution coefficients Bn appearing in Eqs. (4.1)
and (4.2) are functions of R only. The total velocity of the flow field produced
by the rotation of the oblate particle can be approximated by the superposition
of the individual velocities in Eqs. (4.1) and (4.2), induced by the whole set of
singularities on the fundamental disk Sp. Therefore, at an arbitrary point in the
flow field, we have

(4.4) qφ(ρ, z) =

∞∑

n=1

2π∫

0

d∫

0

(ρ−R cosψ)

ρ∗
Bn(R)A1n(ρ∗, z)RdR dψ,

where d is the radius of the fundamental disk Sp. The corresponding integral for
q̂ρ becomes identically zero. The unknown density distribution functions Bn(R)
must be determined from the boundary conditions (2.4) together with the col-
location technique. Also, the non-vanishing stress components are given by

tρφ(ρ, z) =

∞∑

n=1

2π∫

0

d∫

0

Bn(R)A∗
2n(ρ∗, z)RdRdψ,(4.5)

tzφ(ρ, z) =
∞∑

n=1

2π∫

0

d∫

0

(ρ−R cosψ)

ρ∗
Bn(R)A3n(ρ∗, z)RdRdψ,(4.6)

where the functions A∗
2n(ρ, z) are listed in the Appendix.

Substituting from (4.4) into (2.8), we obtain the total couple acting on the
surface of the axi-symmetric oblate particle in the non-dimensional form

(4.7) C∗ =
C

8πµb3Ω
=

1

b3Ω

2π∫

0

d∫

0

B1(R)RdRdψ.

This can be simplified to the form

(4.8) C∗ =
2π

b3Ω

d∫

0

B1(R)RdR.

The radius of the fundamental disk Sp is divided into equal M segments.
The inner and outer radii of the j-th segment are, respectively, Rj−1 and Rj,
where Rj = jd/M , j = 0, 1, . . . ,M . To satisfy the boundary conditions (2.4),
we use the multipole collocation technique. In the constant density distribution,
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the density functions Bn(R) in each segment are assumed to be constant and
the infinite series can be truncated after N terms, from which we can represent
Eqs. (4.4)–(4.6) in the form

(4.9)






qφ

tρφ

tzφ




 =

N∑

n=1

M∑

m=1







Bnm







B
(11)
nm (ρ, z)

B
(21)
nm (ρ, z))

B
(31)
nm (ρ, z)













,

where the functions B(i1)
nm (ρ, z), i = 1, 2, 3, are given in the Appendix and Bnm

are unknown constants to be determined form the boundary conditions.
Thus, the relation (4.8) reduces to the form

(4.10) C∗ =
π

b3Ω

M∑

m=1

B1m(R2
m −R2

m−1).

Applying the boundary condition (2.4), we get

(4.11)
M∑

m=1

N∑

n=1

Bnm

{

B(11)
nm (ρ, z) − nρ

β
B(21)

nm (ρ, z) − nz

β
B(31)

nm (ρ, z)

}

=ρΩ on Sp.

Thus, the collocation technique can be applied to satisfy the Eq. (4.11) and
to determine the MN density constants Bnm required for the fluid velocity field.
Once these constants are determined, the resultant couple exerted on the particle
can be obtained from Eq. (4.10).

The exact solution for the couple acting on an oblate spheroid rotating with
angular velocity Ω about its axis of revolution in an unbounded viscous fluid flow
assuming no-slip boundary conditions, is obtained by Happel and Brenner [21]
as

(4.12) Cs = 8πµb3Ω

[
3

2

√

λ2 + 1{(λ2 + 1) cot−1(λ) − λ}
]−1

,

where
λ =

a√
b2 − a2

.

4.1. Rotation of an oblate spheroid particle

Analogous to Sec. 3, we apply the above-mentioned technique to obtain the
total couple exerted by the fluid on the surface of an oblate spheroid particle.
Table 3 shows the resultant couple exerted on the surface of an oblate spheroid
for different aspect ratios and some values of the dimensionless slip parameter.
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The results obtained are correct to six decimal places and the CPU time is
measured and tabulated. Similar results are obtained by Wan and Keh [20]
correct to five decimal places. They have used the value of M = 60. Here, we
have used the value of M = 16 while for the aspect ratio a/b = 0.2, the value
M = 32 is used. All results obtained are correct to six decimal places. The
numerical results are compared with the approximate solutions given by (2.9)
while for bβ/µ → ∞, the results are compared with the exact solution given
by (4.12).

Table 3. Numerical results for the dimensionless couple exerted on the surface
of an oblate spheroid for different aspect ratios and different values of the slip

parameter and the CPU time cost.

bβ/µ N
a/b = 0.2 a/b = 0.5 a/b = 0.7 a/b = 0.9

C∗ T C∗ T C∗ T C∗ T

0.1

2 0.014185 51.03 0.020112 48.56 0.024775 23.05 0.029717 19.78

3 0.014183 216.41 0.020112 196.41 0.024775 91.75 0.029717 55.48

4 0.014183 426.43

Approx 0.012889 0.019892 0.024735 0.029716

1.0

2 0.112846 37.92 0.159535 21.90 0.194717 5.75 0.231341 4.96

3 0.112844 132.31 0.159534 81.18 0.194717 26.05 0.231341 15.13

4 0.112844 286.34 0.159534 133.36

Approx 0.105429 0.158371 0.194513 0.231335

10.0

2 0.380142 16.52 0.523348 9.66 0.621018 3.30 0.719623 3.03

3 0.380141 96.23 0.523348 34.71 0.621018 10.06 0.719623 10.86

4 0.380141 165.34

Approx. 0.377624 0.523064 0.620966 0.719621

∞

2 0.534366 10.95 0.705020 7.43 0.821690 3.45 0.940177 4.10

3 0.534368 30.61 0.705020 12.95 0.821690 7.81 0.940177 9.91

4 0.534368 112.76

Exact 0.534368 0.705020 0.821690 0.940177

Figure 5 shows the variation of the total dimensionless couple acting on
the surface of an oblate spheroid particle of different aspect ratios against the
non-dimensional slip parameter bβ/µ. It can be observed that the values of the
couple tend to be constants as the slip coefficient exceeds certain values, de-
pending also on the value of the corresponding aspect ratio. Also we see that
the value of the couple increases monotonically as the value of the aspect ratio
increases.
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Fig. 5. Non-dimensional couple acting on the surface of an oblate spheroid particle.

4.2. Rotation of an oblate Cassini oval

Here, we utilize the singularity method together with the collocation tech-
nique to obtain the total couple exerted by the fluid on the surface of an oblate
Cassini oval of different shapes. The oblate Cassini oval will have different forms,
from convex contour to partial convex and partial concave contour. The surface
of the oblate Cassini oval is represented by the polar Eq. (3.8) with aspect ratio
a/b < 1, as shown in Fig. 6.

Fig. 6. Geometrical sketch for different oblate Cassini ovals.

In Table 4, we present the non-dimensional couple acting on the surface
of an oblate Cassini oval for different values of the slip parameter bβ/µ and
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the aspect ratio a/b. Also, the CPU time (T in seconds) elapsed in each itera-
tion throughout the numerical computations is represented in Table 4. Here, we
have taken M = 16. The results obtained are compared with the approximate
solutions given by (2.9). It can be observed that for small aspect ratios, the
approximate solution is poor while the numerical solution presented is more ac-
curate. Also, comparing the results of Table 4 with that of Table 3 we conclude
that the convergence achieved for Cassini ovals are much faster than that for
spheroid.

Table 4. Numerical results for the dimensionless couple exerted on the surface
of an oblate Cassini oval for different aspect ratios and different values of the slip

parameter and the CPU time cost.

bβ/µ N
a/b = 0.2 a/b = 0.5 a/b = 0.7 a/b = 0.9

C∗ T C∗ T C∗ T C∗ T

0.1

2 0.020956 8.63 0.023194 22.10 0.025966 13.00 0.029858 18.91

3 0.020955 45.75 0.023194 86.90 0.025966 56.63 0.029858 58.86

4 0.020955 171.81

Approx. 0.012889 0.019892 0.024735 0.029716

1.0

2 0.165443 3.41 0.182788 11.26 0.203592 15.23 0.232383 6.61

3 0.165445 13.96 0.182780 74.21 0.203592 34.93 0.232383 22.55

4 0.165445 72.25 0.182780 38.08

Approx. 0.105429 0.158371 0.194513 0.231335

10.0

2 0.538931 6.91 0.588287 4.78 0.645167 4.98 0.722407 4.01

3 0.538929 58.36 0.588287 16.51 0.645167 11.86 0.722407 19.45

4 0.538929 110.00

Approx. 0.377624 0.523064 0.620966 0.719621

∞

2 0.724729 4.63 0.783029 4.08 0.850802 11.06 0.943538 4.45

3 0.724730 22.75 0.783029 11.66 0.850802 22.00 0.943538 10.15

4 0.724729 98.25

5 0.724729 105.25

Approx. 0.530971 0.704286 0.821543 0.940171

Figure 7 shows the graphical representation of the dimensionless couple ex-
erted by the fluid on the surface of an oblate Cassini oval of different aspect
ratios against the dimensionless slip coefficient. As previous, it can be observed
that the increase of the aspect ratio values increases the values of the total cou-
ple. The maximum value of the couple occurs when the particle becomes nearly
a sphere.
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Fig. 7. Non-dimensional couple acting on the surface of an oblate Cassini oval.

5. Conclusion

In the present work, the slow steady rotational motion of a general axi-
symmetric body about its axis of symmetry with slip boundary condition has
been investigated. The solution has been found by distributing a continuous
set of Sampsonlets along the axis of symmetry of the prolate body and on the
fundamental disk of the oblate body. The boundary collocation technique is
then used. We have obtained numerical results for the couple exerted by the
fluid on the body correct to six decimal places. We have also measured and
tabulated the CPU time elapsed during numerical computations. For compar-
ison, the exact solution for the rotation of a no-slip prolate and oblate spher-
oid about its axis of symmetry in an incompressible viscous fluid flow obtained
by Happel and Brenner [21] is given by Eqs. (3.7) and (4.12), respectively.
Also, the second-order approximate solutions for the axi-symmetric rotation of
a slip spheroid whose shape deviates slightly from that of a sphere obtained by
Chang and Keh [50], given by Eq. (2.9), are listed in the presented tables for
comparison.

The results of the total couple exerted by the fluid on the body show that the
method used converges rapidly, especially for Cassini ovals. Accurate solutions
are obtained for the cases of spheroid prolate (or oblate) particle and Cassini
oval prolate (or oblate) particle. It is observed that the couple experienced by
a spheroid particle is smaller than that of Cassini ovals of the same aspect ratio.
These results indicate that the value of the resultant couple acting on the solid
particle depends greatly on dimensions and shape of the particle. Although the



358 E. A. Ashmawy

analytical approximate solutions are somewhat accurate for prolate and oblate
spheroids, it can be seen from the results listed in Table 2 and Table 4 that
the approximate analytical solutions become poor for large aspect ratios of the
prolate Cassini ovals and for small aspect ratios of the oblate Cassini ovals. To
achieve convergence for the couple coefficient for values of aspect ratio greater
than that listed in Table 1 and 2 or less than that in Table 3 and 4, large
numbers of N and M are to be used. We note also that the convergence of the
results obtained for the Cassini ovals are much faster than that of the spheroid
particles. The solution of the problem of the rotational motion of axi-symmetric
solid particle in a viscous fluid flow with no-slip boundary condition is simply
recovered as a special case when the slip parameter bβ/µ tends to infinity, while
the case of perfect slip can be also obtained when bβ/µ becomes zero.

Appendix

A1n(ρ, z) = (ρ2 + z2)−(n+1)/2 P 1
n(ζ),(A.1)

A2n(ρ, z) = µρ−1(ρ2 + z2)−(n+1)/2(A.2)

×
[
{(2n + 1)ζ2 − (n+ 2)}P 1

n(ζ) − (n+ 1)ζP 1
n−1(ζ)

]
,

A3n(ρ, z) = µ(ρ2 + z2)−(n+2)/2
[
(n+ 1)P 1

n−1(ζ) − (2n+ 1)ζP 1
n(ζ)

]
,(A.3)

A∗
2n(ρ, z) = µ

[{
R2 sin2 ψ

ρ∗3
− (ρ−R cosψ)

ρρ∗

}

A1n(ρ∗, z)(A.4)

+
(ρ−R cosψ)2

ρ∗3
(ρ∗2 + z2)−(n+1)/2

×
{
(n + 1)ζ∗P 1

n−1(ζ
∗) + [(n + 1) − (2n+ 1)ζ∗2]P 1

n(ζ∗)
}
]

,

where ζ = cos θ and P 1
n(ζ) is the associated Legendre function.

U (ik)
nm =

(−1)k−1

tm − tm−1

{

δ1ktmA
(i1)
nm + δ2ktm−1A

(i1)
nm −A(i2)

nm

}

,(A.5)

A(i2)
nm =

tm∫

tm−1

Ain(ρ, z − t)t dt, i = 1, 2, 3,(A.6)

where i = 1, 2, 3, k = 1, 2 and δij is the Kronecker delta.

B(11)
nm =

2π∫

0

Rm∫

Rm−1

(ρ−R cosψ)

ρ∗
A1n(ρ∗, z)RdRdψ,(A.7)
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B(21)
nm =

2π∫

0

Rm∫

Rm−1

A∗
2n(ρ∗, z)RdRdψ,(A.8)

B(31)
nm =

2π∫

0

Rm∫

Rm−1

(ρ−R cosψ)

ρ∗
A3n(ρ∗, z)RdRdψ.(A.9)
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