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Notations

Ω0, Ω the Lagrangian and Eulerian volume elements, re-
spectively,

s, t the Lagrangian and Eulerian times, respectively,
y = (y1, y2)

∗, x = (x1, x2)
∗ = ϕ(y, s) the material and spatial position vectors, respec-

tively,

F := ∇yx =

 
∂x1

∂y1

∂x1

∂y2

∂x2

∂y1

∂x2

∂y2

!
=

�
x1,1 x1,2

x2,1 x2,2

�
the first-order transformation gradient, with Jaco-
bian J := det(F) = x1,1x2,2 − x1,2x2,1,

B = F.F∗ the left Cauchy–Green strain tensor (symmetrical),
v(x, t) = ∂ϕ(y,s)

∂s
= v(ϕ(y, s), s) the Eulerian velocity,

ρ the Eulerian density,
f0, f the referential and spatial body forces, respectively,
T the first Piola–Kirchhoff (nominal) stress,
σ = J−1T.F the Cauchy stress tensor (symmetrical).
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1. Introduction: Review of the one-dimensional situation
and preliminary discussion of the extension
to the two-dimensional situation

A major limitation in the application of symmetry methods to systems
of partial differential equations (PDEs) is the inability to find useful symme-
tries and/or conservation laws for a problem posed for a given PDE system.
Until recently, symmetry analysis was limited to the use and computation of
local symmetries (Lie point symmetries, higher-order symmetries) as well as the
calculation of local conservation laws. Local symmetries can be used to map so-
lutions to other solutions, to calculate the corresponding invariant solutions; to
determine whether a given PDE system can be mapped invertibly to some PDE
system, belonging to a target class of PDEs that is completely characterized by
its local symmetries as well as determine an explicit mapping when one exists.
But often for a given PDE system of physical interest, no local symmetry exists
and even if one exists, it may not be useful for a given posed problem.

In general, a symmetry of a PDE system is any transformation of its so-
lution manifold into itself, i.e., a symmetry transforms (maps) any solution of
a PDE system to another solution of the same PDE system. Hence the continuous
symmetry transformations (which are essentially deformations of solutions) are
defined topologically and thus are not restricted to local transformations acting
on the space of independent and dependent variables and their derivatives (even
if this space is infinite-dimensional as is the case for the global action of higher-
order symmetries). So, in principle, from this point of view any nontrivial PDE
system has symmetries. The problem is to develop systematic procedures to find
and use continuous symmetries beyond the local ones, obtained through a direct
application of Lie’s algorithm. In particular, a direct application of Lie’s algo-
rithm only allows one to calculate local symmetries whose infinitesimals depend
at most on a finite number of derivatives of the dependent variables. A natural
way to extend the calculation and use of continuous symmetries to include non-
local symmetries of a given PDE system, is to embed the given PDE system in an
augmented PDE system. In such an embedding, it is important that each solution
of the augmented system projects onto a solution of the given PDE system and,
conversely, that each solution of the given PDE system yields a solution of the
augmented system. Consequently, the solution of any boundary value problem
posed for the given PDE system is embedded in the solution of a boundary value
problem posed for the augmented system and the converse also holds. Moreover,
in order to be able to calculate further conservation laws and/or symmetries of
the given PDE system, it is necessary that the relationship between the given
PDE system and such an augmented PDE system is nonlocal, i.e., there is not
a 1:1 local transformation connecting the solutions of the given PDE system and
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the augmented system. Within such a relationship, it follows that a local symme-
try or local conservation law of the augmented system could yield, respectively,
a nonlocal symmetry or nonlocal conservation law of the given PDE system.
Conversely, a local symmetry or local conservation law of the given PDE sys-
tem could yield, respectively, a nonlocal symmetry or nonlocal conservation law
of the augmented system. More importantly, such nonlocal symmetries can be
found through a direct application of Lie’s algorithm to the calculation of local
symmetries of such augmented PDE systems and, similarly, nonlocal conserva-
tion laws of a given PDE system can be calculated through any local procedure
such as the direct method [2, 3, 18, 19] applied to such augmented PDE systems.

A natural way to find such nonlocally related augmented PDE systems is
through the use of local conservation laws of a given PDE system. In the case of
two independent variables, say x and t, a local conservation law of a given PDE
system directly yields an augmented system consisting of the given system and
a pair of PDEs with a potential variable w, arising from the conservation law.
Satisfaction of the integrability condition wxt = wtx leads to the relationship
between the solution sets of the given and augmented PDE systems.

Another natural way of obtaining nonlocal symmetries of a given PDE system
is to calculate local symmetries of a nonlocally related subsystem. An example
of such a nonlocally related subsystem is the system yielding a potential system,
i.e., the ‘given’ system is a nonlocally related subsystem of the potential system.

The situation for PDE systems with three or more independent variables is
more complex. Here, in order to obtain an interesting potential system (e.g., one
that yields nonlocal symmetries and/or nonlocal conservation laws) from a local
conservation law of a given PDE system, one must append gauge constraints that
relate the potential variables resulting from the local conservation law. To date
it is not obvious, a priori, which gauge constraint is of value for a particular ap-
plication. However, local symmetries of nonlocally related subsystems can yield
nonlocal symmetries of a given PDE system with three or more independent
variables.

Furthermore, for n local conservation laws of a given PDE system, one ob-
tains n sets of potential variables (each set contains one potential variable in
the case of two independent variables, up to 1

2k(k − 1) potential variables with
appended gauge constraints in the case of k independent variables). In turn, one
could obtain a tree of up to 2n nonlocally related PDE systems by considering
the obtained potential systems one-by-one (n singlets – each with one set of po-
tential variables), in pairs (1

2n(n− 1) couplets – each with two sets of potential
variables), . . . , and all together (one n-plet containing the n sets of potential
variables). Moreover, for any PDE system contained in such a tree of nonlocally
related systems, one can use its local conservation laws to obtain further potential
systems and their combinations. As a consequence, one can obtain an extended



366 G. Bluman, J. F. Ganghoffer

tree of nonlocally related PDE systems for a given PDE system. Note that the
given PDE system could be any PDE system within such an extended tree!

For details on the above, see [5, 9, 10, 16, 17] and the references therein.
Most importantly, for the situation of gas dynamics equations in 1 + 1 di-

mensions, one can construct a tree of nonlocally related systems (including sub-
systems) that have the Euler and Lagrange systems as two nonlocally related
subsystems, as well as other systems. Through the calculation of point symme-
tries of such a nonlocally related system, one systematically obtains nonlocal
symmetries for both the Lagrange and Euler systems (see [5] and the references
therein).

Dynamical PDE systems for one-dimensional nonlinear elasticity were consid-
ered in [6] within the framework of nonlocally related PDE systems. In particular,
the equations of the Euler system

(1.1) E1D{x, t; v, σ, ρ} :







ρt + (ρv)x = 0,
σx + ρf(x) = ρ(vt + vvx),
σ = K(ρ),

respectively, include conservation of mass, momentum and a constitutive law
relating stress and density. The independent variables in E1D (1.1) are the
absolute time t and spatial position x, while the dependent variables are the
density ρ = ρ(x, t), the Eulerian velocity v = v(x, t) := xt, and the Cauchy stress
σ = σ(x, t) in the Eulerian configuration. The body force field is described by the
forcing function f(x, t) ≡ f(x), assumed to be conservative (hence independent
of time). Since the first equation in E1D (1.1) is in the form of a conservation law,
one can introduce a corresponding potential variable w to obtain the nonlocally
related potential system:

(1.2) EW1D{x, t; v, σ, ρ, w} :







wt = −ρv,
wx = ρ,
σx + ρf(x) = ρ(vt + vvx),
σ = K(ρ).

In (1.1) and (1.2), the constitutive law is given in terms of a general scalar-valued
function K (ρ).

As shown in [6], a local 1:1 point transformation involving an interchange of
dependent and independent variables of the system EW1D (1.2), with w = y
and t = s treated as independent variables, and x, v, σ, q = 1/ρ treated as
dependent variables, yields the Lagrange system of equations given by

(1.3) L1D{y, s; v, σ, q, x} :







v = xs,
q = xy,
vs = σy + f(x),
σ = K(ρ).
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Observe that the same stress measure σ is involved in both L1D (1.3) and
E1D (1.1) in the 1D formulation. This point transformation relates Eulerian
and Lagrangian derivatives through the correspondence

(1.4) xt = −xy.ys.

The systems EW1D (1.2) and L1D (1.3) are locally related to each other
by this point transformation, but are nonlocally related to the Euler system
E1D (1.1).

Through Lie’s algorithm applied to such a nonlocally related system, one can
systematically construct further invariant and nonclassical solutions of a given
PDE system beyond those obtained through a direct application of Lie’s al-
gorithm to the given PDE system. Focusing on nonlinear elasticity, this is of
significant importance since it is well-known that very few closed-form solutions
of BVPs for compressible elasticity have been obtained in the literature (contrary
to incompressible elasticity), due to the absence of the kinematic incompressibil-
ity constraint [12].

In [6], conservation of mass and other conservation laws were used to con-
struct systematically potential systems for nonlinear elasticity in 1D. As dis-
cussed above, the conservation of mass equation was used to derive a potential
system locally related to the Lagrange system by a pointwise transformation
involving an interchange of independent and dependent variables. In particular,
this system is nonlocally related to the Euler system.

The main thrust of this paper is to extend the results in [6] to include non-
locally related systems of dynamical nonlinear elasticity in higher dimensions
(the 2D spatial case will be considered; results will be similar for the 3D case).
In particular, the eventual aim is to find a tree of nonlocally related systems
that includes the physically important Lagrange and Euler systems. As in the
1D case, through the calculation of point symmetries of such nonlocally related
systems, an aim is to find the nonlocal symmetries and the corresponding new
solutions for both the Lagrange and Euler systems.

As can be seen from the above discussion, for PDE systems with two
independent variables (e.g., the 1D case for dynamical nonlinear elasticity),
the construction, properties and uses of nonlocally related PDE systems are
relatively well understood. In the case of three or more independent variables,
a conservation law gives rise to a vector potential subject to gauge freedom
through the addition of an arbitrary gradient term. The corresponding
potential system is under-determined. As mentioned above, additional equa-
tions relating potential variables, i.e., gauge constraints, are needed to make
such potential systems determined. In [1], it was shown that only deter-
mined potential systems can yield nonlocal symmetries of a given PDE sys-
tem through Lie’s algorithm applied to a gauge-constrained potential system.
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Nonlocal symmetries have been obtained for time-dependent linear wave and
Maxwell’s equations (in two and three spatial dimensions), as well as nonlin-
ear MHD equilibrium equations in three spatial dimensions for particular gauge
constraints [1, 4, 8, 11]. For a comprehensive discussion and further examples,
see [9, 10].

As will be shown, unlike the situation for the Euler system of dynami-
cal nonlinear elasticity equations in one spatial dimension, that in two spa-
tial dimensional (2D) situation, the Euler potential system arising from conser-
vation of mass for the Euler system has more dependent variables than the
Lagrange system. It will be shown that this Euler potential system is also a po-
tential system for the Lagrange system. In particular, both the Euler and La-
grange systems are nonlocally related subsystems of the Euler potential system.
Consequently, a direct application of Lie’s algorithm to the Euler potential sys-
tem cannot yield nonlocal symmetries of either the Euler or Lagrange systems,
without appending appropriate gauge constraints to the underdetermined Euler
potential system. However, since a point symmetry of either the Euler or La-
grange systems could yield a nonlocal symmetry of the Euler potential system,
it follows that one might obtain a nonlocal symmetry of the Euler (Lagrange)
system from a point symmetry of the Lagrange (Euler) system through their re-
lationship within a tree of nonlocally related systems. As a consequence, one can
build a tree of nonlocally related systems for the dynamical nonlinear elasticity
equations in 2D that includes the Euler and Lagrange systems, as previously
shown in the one spatial dimensional (1D) situation.

The rest of this paper is organized as follows. In Sec. 2, for systems of non-
linear elasticity in two spatial dimensions, we establish the Euler system, the
Euler potential system arising from conservation of mass, and the Lagrange sys-
tem. The set of conservation laws is obtained for a Mooney–Rivlin material. In
Sec. 3, we show the relationship between the Euler potential system and the
Lagrange system, and illustrate the construction of the potential functions in
the case of simple shear of a Mooney–Rivlin material. It will be seen that the
one-dimensional situation arises as a subcase. In Sec. 4, an extended tree of non-
locally related systems is exhibited which shows an extension when the spatial
body force is constant. The presented work is summarized and future directions
are discussed in Sec. 5.

Regarding the notations, vectors and tensors are denoted by boldface sym-
bols. A comma or subscript denotes a derivative, so that for instance

g,x ≡ ∂g(x)

∂x

represents the derivative of the vector-valued function g with respect to x. The
transpose (adjoint) of any tensor A is written as A∗.
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2. Two-dimensional systems of nonlinear elasticity

In order to set the stage, a few words regarding the kinematics are in order.
We consider the point mapping from the reference (Lagrangian) configuration Ω0

with coordinates y = (y1, y2)
∗ and Lagrangian time s, to the actual (Eulerian)

configuration Ω with Eulerian coordinates x = (x1, x2)
∗ and time t, chosen equal

to the Lagrangian time, hence t = s. Let x = ϕ(y, s) denote the point mapping
relating both coordinate systems, with tangent mapping F = F(y, s) := ∇yx,
represented as a two-by-two matrix in Euclidean space. The Jacobian of this
transformation is the scalar J := det(F).

2.1. Lagrange, Euler and Euler potential systems for 2D elastodynamics

We now consider the (2+1)-dimensional Euler, Euler potential and Lagrange
systems for nonlinear elasticity.

Here the Euler system is given by

(2.1) E2D{x1, x2, t; v1, v2, σ11, σ22, σ12, ρ} :






ρt + ∇x.(ρv) = 0,
∇x.σ + ρf(x1, x2) = ρ(vt + (v.∇)v),
σ = σ(B).

The Eulerian velocity field is defined in terms of the point mapping ϕ (y, s) by
the vector

(2.2) v(x, t) :=
∂ϕ(y, s)

∂t

∣
∣
∣
∣
y

=
∂ϕ(y, s)

∂s
= v(ϕ(y, s), s).

The last equation in E2D (2.1), expressing the constitutive law with B = F.F∗

(the left Cauchy–Green strain tensor), involves (due to the symmetry of the
Cauchy stress) three independent constitutive functions for the three indepen-
dent stress components σ11, σ22, σ12 = σ21.

Each conservation law of E2D (2.1) yields a potential system. In partic-
ular, since the first equation of E2D (2.1) is written as a conservation law
(conservation of mass), in terms of the curl of the vector potential function
w = (w0, w1, w2) one obtains the Euler potential system given by

(2.3) EW2D{x1, x2, t; v1, v2, σ11, σ22, σ12 = σ21, ρ, w0, w1, w2} :






v1 =

(
w0,2 − w2,0

w2,1 − w1,2

)

; v2 =

(
w1,0 − w0,1

w2,1 − w1,2

)

,

ρ = w2,1 − w1,2,
∇x.σ + ρf = ρ(vt + v.∇xv),
σ = σ(B),
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where w1,0 = ∂w1/∂t and w2,0 = ∂w2/∂t. The Euler potential system EW2D
(2.3) is nonlocally related and equivalent to the Euler system E2D (2.1). In
particular, it is easy to see that each solution of EW2D (2.3) projects onto
a solution of E2D (2.1); conversely, each solution of E2D (2.1) yields a so-
lution of EW2D (2.3) with the gauge freedom w → w + (Φ,0 , Φ,1 , Φ,2 ) for
any differentiable function Φ(x1, x2, t). This gauge freedom is intrinsic to the
chosen representation of the kinematic variables in EW2D (2.3). Consequently,
gauge fixing conditions (i.e., gauge constraints) for the potential variables can
be additionally imposed.

On the other hand, the (2 + 1)-dimensional Lagrange system is given by

(2.4) L2D{y1, y2, s; v1, v2, T11, T22, T12, T21, q, x1, x2} :






v1 = x1,s, v2 = x2,s,

q = x1,1x2,2 − x2,1x1,2,

v1,s = T1,y1 + f01(y), v2,s = T2,y2 + f02(y),

T.F∗ = F.T∗,

with material variables y1, y2 and time s as independent variables. Recalling
that q = 1/ρ in (2.4), the Lagrangian stress is the first Piola-Kirchhoff stress T

which is a solution of the static equilibrium equation ∇y.T+f0 = vs (initial mass
density can be set to unity), written in index form in L2D (2.4). The Lagrangian
body force vector in L2D (2.4) is given by f0(y) = (f01(y1, y2), f02(y1, y2))

∗, such
that f0(y) = f(x), due to the equalities

∀Ω0,

∫

Ω0

ρfJdΩ0 =

∫

Ω0

ρ0f0dΩ0 and J = 1/ρ

which are valid for an arbitrary initial density and hold for all regions Ω0. The
last equation in L2D (2.4) results from the Cauchy stress being symmetrical in
E2D (2.1). It expresses the coaxiality of T and F [15].

The conservation of momentum in E2D (2.1) is obtained from its Lagrangian
counterpart in L2D (2.4), using the derivative rule

∂

∂s
=

∂

∂t
+ v · ∇x.

In particular, from the third set of equations in (2.4), one obtains

∇y.T + f0 = vs ⇒ ∇x.T.F + f0 = (vt + v.∇xv) ⇒
J−1∇x.T.F + ρf = ρ(vt + v.∇xv) ⇒ ∇x(J

−1T.F) + ρf = ρ(vt + v.∇xv),

using the classical identity ∇y.(J
−1.F) = 0. Next, since the Cauchy stress is

related to the Lagrangian stress by σ = J−1T.F, one obtains the second set
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of equations (conservation of momentum) in the Euler system E2D (2.1). Con-
versely, starting from the conservation of mass and momentum in the Eulerian
framework as expressed in EW2D (2.2) or E2D (2.1), yields the Lagrangian
counterpart of these conservation laws, using the same relationships in reversed
order.

The Lagrangian stress T may be expressed from the setting up of a strain
energy density functionW (F) in the framework of hyperelasticity [15], depending
upon the transformation gradient, the variable F (omitting here, for the sake of
simplicity and as representative of homogeneous media, the possible explicit
dependence of W upon the Lagrangian variable), as T := ∂W (F)/∂(F).

Further conservation laws can be constructed from specific conservation law
multipliers, either for an arbitrary constitutive law or for specific choices of the
constitutive function. Conservation laws are of particular interest in fracture
mechanics, since they lead to path-independent contour integrals that charac-
terize the singularity of the stress field around the crack tip. Conservation laws
have been expressed in the 1D case for specific constitutive functions W (F)
in [7]. Mathematically, conservation laws can be systematically calculated, both
for variational problems (Noether’s theorem) and, more generally, for non-varia-
tional problems (see [2, 3] and references therein). If a field equation is already in
the form of a conservation law, the introduction of potential variables is straight-
forward. One can obtain a tree of nonlocally related systems of nonlinear elastic-
ity equations through finding additional conservation laws and considering po-
tential systems of the related PDE systems. Since the resulting potential systems
have additional dependent variables, in principle one can find further conserva-
tion law multipliers that yield additional conservation laws. These additional
conservation laws in turn yield further potential variables and consequently, ad-
ditional potential systems in an extended tree of nonlocally related systems.
But as mentioned in the Introduction, in the case of three or more independent
variables, in order to find further symmetries of the Euler system or Lagrange
system through the computation of local symmetries of such a nonlocally related
system, one must append gauge constraints relating the potential variables (or
consider the subsystems).

As an example, conservation laws of system L2D (2.4) are computed, adopt-
ing a Mooney–Rivlin constitutive behavior given by the strain energy density
function

(2.5) W = a(I1 − 3) + b(I2 − 3).

W is dependent on the two strain invariants, the scalar-valued functions of the
two-dimensional right Cauchy Green tensor B = F.Ft, given by

(2.6) I1 = Tr(B) = F i
.KF

i
.K ; I2 :=

1

2
(Tr(B)2 − Tr(B2)) =

1

2
(I2

1 −BikBki).
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The nominal two-dimensional stress is then evaluated as

(2.7) T :=
∂W

∂F
= 2(a+ b)F + 2bJC.

We seek conservation law multipliers of the form Λi = Λi(t,y,x,xt,F),
i = 1, 2 and the corresponding conservation laws involving fluxes Ψ[x], Φ1[x],
Φ2[x] (see [5, 11]) that satisfy

∂Ψ [x]

∂t
+
∂Φ1[x]

∂y1
+
∂Φ2[x]

∂y2
= 0.

The fluxes depend on the variables (t,y,x,xt,xy).
From the obtained multipliers

{

Λ1 = C1t− C2x2 + C3x1,t + C4,

Λ2 = C5t+ C2x1 + C3x2,t + C6,

with {Ci}, i = 1, . . . , 6 arbitrary constants, the following six conservation laws
are obtained using the GeM software [12].

1. Conservation of momentum: The equilibrium equations in absence of the
body forces are conservation laws as they stand, corresponding to the two mul-
tiplier pairs (Λ1, Λ2) = (1, 0) and (Λ1, Λ2) = (0, 1):

{

v1,s = T11,y1 + T12,y2 ,

v2,s = T21,y1 + T22,y2 .

2. Conservation of energy arises from the multiplier pair (Λ1, Λ2) = (x1
t , x

2
t )

with conserved flux density

Ψ [x] =
1

2
((x1

t )
2 + (x2

t )
2).

3. Conservation of angular momentum arises from the multiplier pair (Λ1, Λ2)
= (−x2, x1), with conserved flux density Ψ [x] = x1x2

t − x2x1
t , corresponding to

the projection on the y3 axis of the conservation of angular momentum vector
M = x ∧ xt.

4. Conservation of average velocity: For the two multiplier pairs (Λ1, Λ2) =
(t, 0) and (Λ1, Λ2) = (0, t), a kind of time-translation invariance of x involving
an average velocity is obtained. This yields the fluxes successively given by

Ψ [x] = tx1
t − x1; Φ1[x] = −2x1y1t(a+ b); Φ2[x] = −2x1y2t(a+ b),(2.8)

Ψ [x] = tx2
t − x2; Φ1[x] = −2x2y1t(a+ b); Φ2[x] = −2x2y2t(a+ b).(2.9)

Next, an analytical solution of a problem for L2D (2.4) is constructed.
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2.2. Example: analytical solution for the Lagrange system L2D (2.4)

Consider a solid body occupying the square domain y1 ∈ [0, 1], y2 ∈ [0, 1]
in the reference configuration. We adopt a neo-Hookean constitutive behavior
given by the strain energy density function

(2.10) W =
1

2
(I1 − 3).

This is a specific case for the Mooney–Rivlin function in (2.5) with the choice
b = 0, a = 1/2. The nominal two-dimensional stress is then evaluated as

(2.11) T :=
∂W

∂F
= F.

The initial conditions for the particle positions and velocities are selected as
follows:

(IC) :







x1(y1, y2, 0) = y1,

v1(y1, y2, 0) =
√
C2 sin(

√
C2y2), C2 > 0,

x2(y1, y2, 0) = y2,

v2(y1, y2, 0) =
√
C2 sin(

√
C2y1).

Conservation of momentum is written in terms of the following set of decoupled
PDEs for the displacement functions x1(y1, y2, t), x2(y1, y2, t):

(S) :

{

x1,tt − (x1,y1y1 + x1,y2y2) = 0,

x2,tt − (x2,y1y1 + x2,y2y2) = 0.

We seek a displacement field solution of (S) of the form
{

u1(y1, y2, t) := x1(y1, y2, t) − y1 = h1(y2)p1(t),

u2(y1, y2, t) := x2(y1, y2, t) − y2 = h2(y1)p2(t).

A specific solution of system (S) satisfying the given set of initial conditions (IC)
is obtained as

(2.12)

{

x1(y1, y2, t) = y1 + sin(
√
C2y2) sin(

√
C2t),

x2(y1, y2, t) = y2 + sin(
√
C2y1) sin(

√
C2t).

The transformation gradient is evaluated as

(2.13) F(y1, y2, t)

=

(

1
√
C2 cos(

√
C2y2) sin(

√
C2t)√

C2 cos(
√
C2y1) sin(

√
C2t) 1

)

.
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For this specific constitutive law, the nomimal stress is simply given by T(y1, y2, t)
= F(y1, y2, t), and the Cauchy stress by

(2.14) σ(x1, x2, t) = J−1F2

with the Jacobian of the transformation given by

(2.15) J(y1, y2, t) = C2 cos(
√

C2y2) cos(
√

C2y1) sin2(
√

C2t).

Since the Cauchy stress is an Eulerian field, it has to be expressed in terms
of the spatial coordinates (x1, x2, t). Hence one has to substitute the inverse
kinematic relations y1(x1, x2, t), y2(x1, x2, t), obtained by inverting the solution
from (2.12), into the right-hand side of (2.14).

3. Relationship between the Euler potential system EW2D (2.3)
and the Lagrange system L2D (2.4)

Solutions of a boundary value problem (BVP) in nonlinear elasticity exist for
suitable boundary conditions (uniqueness is not always ensured). The Lagrange
system L2D (2.4) and the Euler potential system EW2D (2.3), for suitable
boundary conditions, have solutions of the same BVP, but expressed in terms
of different independent variables (s, y1, y2 and t, x1, x2, respectively). However,
the Euler potential system EW2D (2.3) has one more dependent variable than
the Lagrange system L2D (2.4), unlike the situation in the 1D case, where both
systems have the same number of dependent variables.

3.1. Relationship between systems EW2D and L2D

Now consider an invertible point transformation (hodograph-type) transfor-
mation of the Lagrange system L2D (2.4) that interchanges its independent
variables y1, y2 with its dependent variables x1, x2. The transformed Lagrange
system L2D (2.4) now has s, x1, x2 as its independent variables with y1, y2,
playing the role of two of its dependent variables.

In order to relate the Euler potential system EW2D and the Lagrange system
L2D, we now show that the Euler potential system is also a potential system
for the transformed Lagrange system L2D (2.4). In particular, first note that

(3.1) dxi = vidt +
∂xi

∂yj
dyj = vidt+

∂xi

∂yj

[
∂yj

∂t
dt+

∂yj

∂xk
dxk

]

.

From (3.1), it follows that, in terms of the Kronecker symbol δik, one obtains

(3.2)
∂xi

∂yj

∂yj

∂xk
= xi,jyj,k = δik,
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and

(3.3) vi = −∂xi

∂yj

∂yj

∂t
= −xi,jyj,0.

From (3.2) and (3.3), it follows that each solution of the Lagrange system L2D
(2.4) yields a solution of the Euler potential system EW2D (2.3) provided that
the three potential variables w0, w1, w2 of EW2D solve the system

(3.4)







w2,1 − w1,2 = y1,1y2,2 − y2,1y1,2,

w0,2 − w2,0 = y2,0y1,2 − y1,0y2,2,

w1,0 − w0,1 = y1,0y2,1 − y2,0y1,1.

It is easy to check that the identity

(3.5) (y1,1y2,2 − y2,1y1,2),0 + (y2,0y1,2 − y1,0y2,2),1 + (y1,0y2,1 − y2,0y1,1),2 ≡ 0

holds for any functions y1(x1, x2, t), y2(x1, x2, t). Consequently, it follows that:
1. Each solution of the Lagrange system L2D (2.4) yields a solution of the Euler

potential system EW2D (2.3).
2. Conversely, the Euler potential system EW2D (2.3) is a potential system for

the (transformed) Lagrange system L2D (2.4). In particular, the potential
system arises from the conservation law (3.5) satisfied by two of its dependent
variables y1, y2.

Remark. In the one-dimensional context, one can set w0 = 0 = w2 so that
w := w1 is the sole potential variable. With the identification 2 ↔ x; 0 ↔ t,
system (3.4) yields the system

{

wx = 1/ρ,

wt = −wx.xt.

Consequently, system EW2D (2.3) directly projects to the 1D system EW1D
(1.2).

3.2. Construction of the potential functions: example

The general strategy for expressing the partial derivatives of the potential
functions in terms of the Lagrangian coordinates consists of two steps:
1. Find a specific solution of this problem denoted by wp, for instance by im-

posing some gauge constraint on the potentials.
2. Consider another arbitrary solution for the same gauge constraint, denoted

by wg. The right-hand side of the gauge system GC is a given vector, called Y,
such that curlwp = Y and curlwg = Y. Taking the difference of these two
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equalities gives curl(wp − wg) = 0, from which it follows, using the Helmholtz
decomposition theorem, that the difference wp − wg is the gradient of an
arbitrary scalar-valued function of the Eulerian coordinates, say L(t, x1, x2).
This results in the general solution of (3.4) expressed as

wg = wp(y1,0, y2,0, y1,1, y2,2, y2,1, y1,2) + grad(t,y1,y2)L(t, x1, x2).

Mass conservation in the Eulerian configuration can be satisfied by a representa-
tion involving only two potential functions w1, w2, acting as independent degrees
of freedom. A specific solution is first found after setting w0 = 0. A general so-
lution of the potential functions satisfying these constraints is constructed as
follows after introducing the quantities

(3.6)

A := − y1,0y2,2/(y1,1y2,2 − y2,1y1,2),

B := y2,0y1,2/(y1,1y2,2 − y2,1y1,2),

C := y1,0y2,1/(y1,1y2,2 − y2,1y1,2),

D := − y2,0y1,1/(y1,1y2,2 − y2,1y1,2).

Integration of the second and third equations of (3.4) gives

(3.7) w1 = −
∫

dtj(C +D) + ϕ1(x1, x2); w2 =

∫

t

dtj(A+B) + ϕ2(x1, x2)

with j=1/J and in which the otherwise arbitrary functions ϕ1(x1, x2), ϕ2(x1, x2)
have to satisfy the constraint resulting from the first equation in (3.4), i.e.,

ϕ2,1(x1, x2) − ϕ1,2(x1, x2) = y1,1y2,2 − y1,2y2,1.

Any pair of functions ϕ1(x1, x2), ϕ2(x1, x2) satisfying the previous equation pro-
vides a solution for the potentials. For example, one may select the specific
solution

(3.8)

ϕ1(x1, x2) = 0 ⇒ w1 =

∫

t

(−y1,0y2,1 + y2,0y1,1)ds,

w2 =

∫

t

(y2,0y1,2 − y1,0y2,2)ds+

∫

x1

(y1,1y2,2 − y1,2y2,1)dx1.

Note that one has the freedom to add to the components w1, w2, the gradient
of an arbitrary function of the Eulerian coordinates.
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The general expression for the gauge constrained potentials involving an ar-
bitrary function L(t, x1, x2), is then given by

(3.9)







w0 =
∂L(t, x1, x2)

∂t
,

w1 =

∫

t

(−y1,0y2,1 + y2,0y1,1)ds+
∂L(t, x1, x2)

∂x1
,

w2 =

∫

t

(y2,0y1,2 − y1,0y2,2)ds +

∫

x1

(y1,1y2,2 − y1,2y2,1)dx1 +
∂L(t, x1, x2)

∂x2
.

This can be further transformed, expressing the right-hand side of (3.9)
fully in terms of Lagrangian coordinates. For this purpose, one differentiates
L(t, x1, x2), accounting for the mapping between the Lagrangian and Eulerian
coordinates. Since the gradient transforms as a contravariant vector under the
change of basis, system (3.9) becomes

(3.10)







w0 =
∂G(s, y1, y2)

∂s
,

w1 =

∫

s

(−y1,0y2,1 + y2,0y1,1)ds,

+
∂G(s, y1, y2)

∂y1

∂y1

∂x1
+
∂G(s, y1, y2)

∂y2

∂y2

∂x1
,

w2 =

∫

s

(y2,0y1,2 − y1,0y2,2)ds +

∫

x1

(y1,1y2,2 − y1,2y2,1)dx1

+
∂G(s, y1, y2)

∂y1

∂y1

∂x2
+
∂G(s, y1, y2)

∂y2

∂y2

∂x2
,

with G(s, y1, y2) being an arbitrary function of the Lagrangian coordinates. The
multiplicative factors of the partial derivatives of G(s, y1, y2) yield an inverse
Jacobian matrix. This specific solution for the potential function provides a one-
to-one mapping between the potential functions w1, w2 and the Lagrangian co-
ordinates y1, y2.

In order to exemplify the construction of the potential functions from the
partial derivatives of the Lagrangian functions y1(x1, x2, t), y2(x1, x2, t), relying
on system (3.4), a second model problem is considered. Here the initial square
domain in the (y1, y2)-plane with unit edge lengths has the following imposed
displacements on its boundary:

(3.11)







y1 = 0 : u = 0,
y2 = 0 : u = 0,
y1 = 1, y2 ∈ [0, 1] : u = k(t)y2e1,
y2 = 1, y1 ∈ [0, 1] : u = 0,
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with k(t) being a given function of time, and e1 a unit basis vector along the
y1 axis. Consider a Mooney–Rivlin constitutive behavior given by the strain
energy density function in (2.5). It is straightforward to obtain the solution of
system L2D (2.4) satisfying the initial conditions (3.11) as the following mapping
relating the Lagrangian and Eulerian coordinates:

(3.12)

{
x1 = y1 + k(t)y2,
x2 = y2.

This mapping results in the transformation gradients

(3.13) F = F(t) =

(
1 k(t)
0 1

)

⇒ C = Ft.F =

(
1 k(t)
k(t) 1 + k2(t)

)

.

The Jacobian is evaluated as J = 1, corresponding to an incompressible simple
shear motion. The Lagrangian stress is then obtained as

(3.14) T := 2(a+ 3b)





1 k(t)

k(t) 1 +

(
2b

a+ 3b

)

k2(t)



 .

The inverse transformation gradient is given by

(3.15) F−1(t) =

(
1 −k(t)
0 1

)

⇒ ∂y1

∂x1
= 1;

∂y1

∂x2
= −k(t); ∂y2

∂x1
= 0;

∂y2

∂x2
= 1.

The construction of the potentials w1, w2 through (3.10) yields the inverse ve-
locity with components y1,0, y2,0, obtained from the following lemma.

Lemma 1. The Lagrangian (inverse) velocity

V(y, t) :=
∂ϕ−1

∂t |x
= V(ϕ−1(x, t), t),

obtained from the inverse mapping ϕ−1(x, t), with components (ϕ−1)1 = V1 =
y1,t; (ϕ−1)2 = V2 = y2,t and the Eulerian velocity v(x, t) are related by the
kinematic constraint

v + F.V = 0.

P r o o f. Apply the differentiation rule

dxi =
∂ϕi

∂t |y
dt+

∂ϕi

∂yk

[
∂(ϕ−1)k

∂t |x
dt+

∂(ϕ−1)k

∂xj |t
dxj

]
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and use the relation
∂

∂t |y
=

∂

∂t |x
+ v.∇x,

which is the tensorial generalization of the 1D derivative rule ∂s = ∂t + v.∂x,
from the mapping s = s(x, t). Hence, we get

dxi =
∂ϕi

∂t |x
dt+ (v.∇ϕ)dt +

∂ϕi

∂yk

[
∂(ϕ−1)k

∂t |x
dt+

∂(ϕ−1)k

∂xj |t
dxj

]

= vidt+ F i
.K [V Kdt + (F−1).jKdx

j ].

Cancellation of the factor of the differential dt gives vi + F i
.KV

K = 0, i.e.,
v + F.V = 0 in tensorial format (the cancellation of the factor of the differ-
ential dxj has not been used).

Using (3.12) and (3.15), the inverse velocity is calculated as

V =

(
y1,t

y2,t

)

= −F−1.v = −
(

1 −k(t)
0 1

)

·
(
x1,t

x2,t

)

=

(
k(t)x2,t − x1,t

−x2,t

)

=

(
k(t)v2 − v1

−v2

)

≡
(
−k′(t)y2

0

)

.

Hence, the potentials are finally expressed in terms of Lagrangian coordinates by

(3.16)







w0 = 0,

w1 =
∂G(s, y1, y2)

∂y1
,

w2 =

∫

s

−k′(u)y2du+

∫

x1

dx1 − k(s)
∂G(s, y1, y2)

∂y1
+
∂G(s, y1, y2)

∂y2

= −k(s)y2 + x1 − k(s)
∂G(s, y1, y2)

∂y1
+
∂G(s, y1, y2)

∂y2
.

4. An extended tree of nonlocally related systems arising
for a constant spatial body force

Suppose that the spatial body force f = (f1, f2) is constant. Then one obtains
a second conservation law for the Euler system E2D (2.1):

(4.1) (ρf1v2 − ρf2v1),0 + (ρf1v1v2 − ρf2v
2
1 + f2σ11 − f1σ12),1

+ (ρf1v
2
2 − ρf2v1v2 + f2σ12 − f1σ22),2 = 0.
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Consequently, in terms of the curl of the vector potential function α=(α0, α1, α2),
one obtains another Euler potential system given by

(4.2) Eα2D{x1, x2, t; v1, v2, σ11, σ22, σ12 = σ21, ρ, α0, α1, α2} :






ρt + ∇x · (ρv) = 0,

α2,1 − α1,2 = ρ(f1v2 − f2v1),

α0,2 − α2,0 = v1(α2,1 − α1,2) + f2σ11 − f1σ12,

α1,0 − α0,1 = v2(α2,1 − α1,2) + f2σ12 − f1σ22,

σ = σ(B).

Furthermore, by combining the potential systems EW2D (2.2) and Eα2D (4.2),
one obtains the additional nonlocally related couplet system EαW2D. The re-
sulting tree of nonlocally related systems is presented in Fig. 1. A tree that
includes the Lagrange, Euler and Euler potential systems is included within this
tree. The importance of such trees is discussed in Sec. 1.

Fig. 1. Tree of nonlocally related systems when the spatial body force is constant. Note that
the tree would consist of the three nonlocally related systems E2D, L2D and EW2D when

the spatial body force is not constant.

5. Summary and future directions

Nonlocally related systems of equations of two-dimensional dynamical nonlin-
ear elasticity, including the Euler and Lagrange systems, have been constructed
in the present contribution, using conservation of mass to represent the physical
density and the Eulerian velocity components as the curl of a vector of three po-
tential functions for the Euler system. The corresponding Euler potential system
of differential equations has the same set of solutions as the Lagrange and Euler
systems. After a point transformation that interchanges the two Lagrangian
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material (independent) variables with the two Lagrangian (dependent) spatial
position variables to obtain the transformed Lagrange system, one sees that the
Euler potential system is also a potential system for the transformed Lagrange
system. Hence the Euler potential and Lagrange systems are nonlocally related
to the Euler system of equations.

Additional conservation laws may arise in two spatial dimensions for specific
constitutive functions, as has been shown in the one-dimensional case in [7].
For each conservation law, three potential variables can be introduced, allowing
a rewriting of a posed BVP in terms of a BVP for a potential system. As shown
in Sec. 4, an additional conservation law arises in the case of a constant spatial
body force.

In nonlinear elasticity, the finding of closed-form solutions for new BVPs and
additional conservation laws is of great importance, especially for compressible
materials. Very few closed-form solutions have been obtained in the literature
(contrary to incompressible elasticity), due to the absence of the kinematic in-
compressibility constraint [14].

The search for extended trees of nonlocally related systems for 2D and 3D
dynamical nonlinear elasticity and for useful gauge conditions connecting poten-
tial variables to yield nonlocal symmetries and useful invariant solutions for the
Lagrange and Euler systems, requires further investigation.
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