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Brief Note

Addendum to: Qualitative aspects of solutions in resonators

R. QUINTANILLA1), R. RACKE2)

1)Department of Applied Mathematics II

UPC Terrassa, Colom 11, 08222 Terrassa, Spain

e-mail: ramon.quintanilla@upc.edu

2)Department of Mathematics and Statistics

University of Konstanz

78457 Konstanz, Germany

e-mail: reinhard.racke@uni-konstanz.de

In correcting a small mistake in [10], we can prove a new result on non-
exponential stability for a coupled system arising in resonators. This also gives another
(surprising and simple) example for a thermoelastic system changing from exponential
stability to non-exponential stability, when changing from Fourier’s law to Cattaneo’s
law in modeling of the heat conduction.
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1. Introduction

In our paper [10], in particular, the thermoelastic system

a∆2u+ ∆θ + ü = 0,(1.1)

∆θ −mθ + d∆ ˙̂u = c
˙̂
θ,(1.2)

where

(1.3) f̂ = f + τ ḟ ,

(

ḟ = ft =
∂f

∂t

)

,

for the functions (u, θ) = (u, θ)(x, t) with x ∈ B ⊂ R
n, t ≥ 0, was studied,

where B is (smoothly) bounded, n ≥ 2, and a,m, d, c are positive constants.
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Additionally, one has the boundary conditions

(1.4) u(x, t) = ∆u(x, t) = θ(x, t) = 0, (x, t) ∈ ∂B × [0,∞),

and initial conditions for (u, ut, θ, θt) in t = 0. For the background of the inter-
pretation in micro-beam resonators, see [10].

The system is reformulated as a first-order system for

V := (û, ût, θ, θt)
′,

and we obtain

(1.5) Vt = AV, V (0) = V 0,

with the (yet formal) differential operator A given by the symbol:

Af :=









0 1 0 0

−a∆2 0 −∆ −τ∆
0 0 0 1

0
d

cτ
∆

1

cτ
(∆ −m) −1

τ









and the initial value
V0(x) := (û, ût, θ, θt)

′(x, 0),

with its components being given in terms of the originally prescribed initial data
by using the differential equations. As an underlying Hilbert space, we have

H := (H2(B) ∩H1
0 (B)) × (L2(B))n ×H1

0 (B) × L2(B)

with inner product

〈V,W 〉H := d〈V 2,W 2〉 + ad〈∆V 1,∆W 1〉
+ τ〈∇V 3,∇W 3〉 + τm〈V 3,W 3〉 + c〈V 3 + τV 4,W 3 + τW 4〉,

where 〈·, ·〉 denotes the usual L2(B)-inner product. The operator A is now given
as

A : D(A) ⊂ H 7→ H, AV := AfV,

with

D(A) := {V ∈ H | V 2 ∈ H2(B) ∩H1
0 (B), V 4 ∈ H1

0 (B), AfV ∈ H}.

A generates a contraction semigroup (cf. [10] for the boundary condition u ∈
H2

0 (B)), and A−1 is compact, hence the spectrum σ(A), of A equals the point
spectrum σp(A).
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Due to the boundary conditions, the following Ansatz is possible (cf. [10]):

V (t, x) =

∞∑

j=1

(αj(t), γj(t), δj(t), εj(t))
T wj(x),

for V = (V 1, V 2, V 3, V 4)T , where (wj)j denote the eigenfunctions of the Laplace
operator under Dirichlet boundary conditions corresponding to the eigenvalue λj,

(1.6) −∆wj = λjwj , wj = 0 on ∂B,

with
0 < λ1 ≤ · · · ≤ λj → ∞ (as j → ∞).

Then the coefficients αj , γj , δj , εj satisfy the same differential equation:

(1.7) cτz′′′′ + cz′′′ + (λj +m+ acτλ2
j + dτλ2

j )z
′′

+ (acλ2
j + dλ2

j)z
′ + aλ2

j(λj +m)z = 0.

The corresponding characteristic polynomial Pj is given by

(1.8) Pj(β) = β4 +
1

τ
β3 +

1

cτ
(λj +m+ τ(ac+ d)λ2

j )β
2

+
1

cτ
(ac+ d)λ2

jβ +
a

cτ
(λ3

j +mλ2
j).

The zeros of Pj are denoted by β1(j), . . . , β4(j). Let S denote the spectral
set of all zeros,

S := {βk(j) | j = 1, 2, 3 . . . ; k = 1, 2, 3, 4}.

Then it is easy to see ([10]) that

(1.9) σp(A) ⊂ S.

In [10, Theorem 4] it was claimed that

(1.10) ∃ω > 0 : sup {Re β | β ∈ S} ≤ −ω.

The final arguments in the proof of (1.10) are based on [10, (5.17)], saying

(1.11) Re β2(j) = Reβ1(j) −→ − 1

2τ
,

as j → ∞, which is claimed to follow from [10, (5.8)], saying that

(1.12) Reβ1(j) + Reβ3(j) = − 1

2τ
,
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and [10, (5.17)], saying that

(1.13) Re β4(j) = Reβ3(j) −→ − 1

2τ
.

But (1.12) and (1.13) do not imply (1.11), but instead

(1.14) Re β2(j) = Re β1(j) −→ 0.

This way, the assertion (1.10) (expressing [10, Theorem 4]) is seen to be wrong.
But now, the correct relation (1.14) allows us first to prove that the semigroup
is not exponentially stable (Theorem 1 below).

Since the considerations allow us to take the parameter m in the Eq. (1.2)
for θ to be zero without changing the conclusions, we can conclude another new
result that gives a new, simple, somehow surprising example for a thermoelastic
system, the corresponding semigroup of which changes from exponentially de-
caying type to non-exponential decaying type, if the model for heat conduction
is changed from Fourier’s law to Cattaneo’s law (Theorem 2 below). This kind
of behavior was observed for the rather special Timoshenko system with heat
conduction in [2]; now we have another, simpler and even more convincing ex-
ample that the change from Fourier’s law to Cattaneo’s law – the modification
of a partially parabolic system with infinite propagation speed of signals to a hy-
perbolic model with finite propagation speed – may change basic properties of
the system and hence suggests to think about the modeling character of each
system.

2. The non-exponential stability of the semigroup

Theorem 1.

(i) sup {Re β | β ∈ S} = 0.

(ii) S = σ(A) = σp(A).

(iii) {etA}t≥0 is not exponentially stable.

P r o o f. Since (i) follows from (1.14), and since (iii) is an easy consequence
of (i) and (ii), it remains to show, in view of (1.9), that

(2.1) S ⊂ σp(A).

To prove Eq. (2.1), let β ∈ S, i.e. β = βk(j) for some fixed j ∈ N and some fixed
k ∈ {1, 2, 3, 4}, in particular

(2.2) Pj(β) = 0.
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Let −∆wj = λwj , as given in Eq. (1.6). Let V 1 ∈ H2(B)∩H1
0 (B) be the solution

of

(2.3)

(
dβ

cτ
∆

)

V 1 =

(

β2 +
β

τ

)

wj −
1

cτ
(∆ −m)wj ,

and let
V := (V 1, βV 1, wj , βwj)

T .

Then we have V ∈ D(A) and we claim:

(2.4) AV = βV,

which would finish the proof. Now, the following equivalences hold: in view of
the definition of V 1 in (2.3), the claim (2.4) is equivalent to

(2.5) −a∆2V 1 − ∆wj − τβ∆wj = β2V 1.

Applying
(dβ

cτ ∆
)

to both sides of (2.5), this is equivalent to

(2.6) −a∆2

(
dβ

cτ
∆

)

V 1 −
(
dβ

cτ
∆

)

∆wj − τβ

(
dβ

cτ
∆

)

∆wj = β2

(
dβ

cτ
∆

)

V 1,

which, using Eqs. (2.3) and (1.6), is equivalent to

(

β4+
1

τ
β3+

1

cτ
(λj +m+τ(ac+d)λ2

j )β
2+

1

cτ
(ac+d)λ2

jβ+
a

cτ
(λ3

j +mλ2
j )

)

wj = 0,

which is equivalent to Pj(β) = 0, and hence it finishes the proof.

3. Fourier versus Cattaneo law – from exponential
to non-exponential stability

As a corollary to the previous Section, we are able to present a new example,
where the change from the Fourier law to the Cattaneo law in modeling of the
heat conduction, changes the system from an exponentially stable system to
a non-exponentially stable one.

This effect was known for a special Timoshenko-type system with heat con-
duction, and presented in [2]. Here, we give a simpler and even more convincing
example for this partially surprising effect that asks for a discussion of the models
and their range of validity – even for very simple systems.

In the resonator system discussed above, we may assume m = 0 and are
still led to the same conclusions. The system – for m = 0 from now on – can
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be rewritten as follows: introducing a heat flux vector q, a solution (u, θ, q)
to

utt + a∆2u+ ∆θ = 0,(3.1)

cθt + div q − d∆ut = 0,(3.2)

τqt + q + ∇θ = 0(3.3)

(plus initial and boundary conditions), gives a solution (u, θ) to the resonator
Eqs. (1.1), (1.2) by eliminating q again. The Eq. (3.3) represents the Cattaneo
law for heat conduction. As we have seen in the previous section, the solutions
do not tend to zero exponentially (and uniformly in the data).

On the other hand, if we take τ = 0 in (3.3) – corresponding to Fourier’s law
for heat conduction – we obtain, after eliminating the heat flux q, the classical
system for the thermoelastic plate equation:

utt + a∆2u+ ∆θ = 0,(3.4)

cθt − ∆θ − d∆ut = 0,(3.5)

which is known to be represented by an exponentially stable semigroup, see
papers [3, 9, 8, 1, 4, 5, 6, 7]. Hence we have the following

Theorem 2. The systems (3.1)–(3.3) and (3.4), (3.5), respectively, give an
example where the change from Fourier’s law to Cattaneo’s law in modeling of
the heat conduction part, changes the system from an exponentially stable one to
a non-exponentially stable one.

The just presented example for the effect described in the last theorem is
simpler than the one presented in [2] which relied on special relations of coef-
ficients, the advantages of which are destroyed by the change from Fourier to
Cattaneo.
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