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The main aim of the paper is a determination of the basic probabilistic charac-
teristics for the effective elasticity tensor of the periodic fiber-reinforced composites,
using the generalized stochastic perturbation technique. An evaluation of the genera-
lized stochastic perturbation method of the analytical formulas and the Monte-Carlo
simulation technique is provided for the 1D periodic structure with random material
parameters. The higher-order terms are determined using numerical determination of
the response functions between the effective tensor components and the given random
input variables. It is carried out with the use of the Least Squares Method (LSM),
applied for the series of computational experiments consisting of the Finite Element
Method (FEM) solutions to the cell problems for the randomized input parameters.
The key problem is the weighting LSM procedure worked out to speed up the prob-
abilistic convergence of the homogenization results.
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1. Introduction

Homogenization method including random material properties of the con-
stituents is still a very interesting and extensively studied mathematical and
computational problem [6, 7]. It is solved using various strategies – from the
classical Monte-Carlo simulation [4, 9], through various orders of stochastic per-
turbation methods (implemented as the Stochastic Finite Element Method –
SFEM) [8, 13], up to some spectral approaches based on the Karhunen–Loeve
expansions of the state variables and composite responses [16]. At the same time,
a variety of homogenization approaches is also developed, related also to the cou-
pled problems, multiscale heterogeneous structures as well as to the mixtures of
solids, fluids and gases [3]. The common point of those two essentially different
areas is the perturbation theory, which may serve for both expansion of the macro
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responses versus the micro ones in the cell problems (with deterministic coeffi-
cients). We engage it also to provide a representation of the input and output
random functions, using Taylor series around their expectations (with random
coefficients, however). This is the main reason to still develop and make the
stochastic perturbation based on the effective modules method more efficient in
homogenization of the periodic composites with random material characteristics.

It is known that the general random composite model is based on the as-
sumption that only the mean value of the composite response is the same in
each RVE. Usually it follows the fact that periodicity in such a composite is
considered as the periodicity of the expected values of some parameters only
(like material properties, for instance); higher order statistics are usually as-
sumed to be as unperiodic. More restrictive model is proposed and used below,
where the geometry is deterministic and perfectly periodic (fibers’ location, ra-
dius as well as fiber-matrix interface), while material characteristics are defined
as random variables having truncated Gaussian distributions with arbitrarily
given first two probabilistic moments. Those moments are identical in each cell
(containing a single fiber), so that computational probabilistic homogenization
of this cell returns a sufficient statistical information about the entire structure.
This approach follows directly some practical applications like the superconduct-
ing strands [10], where four components have perfectly periodic distribution in
the transversal cross-section and where statistical parameters of material char-
acteristics, as well as the ultimate strength, are provided by the manufacturers.
This approach also has an experimental and digital image analysis-based justi-
fication, at least for some specific composites [15]. The basic difference between
two perturbation-based expansions is also in the additional parameters – spatial
representation undergoes with perturbation parameter ζ → 0 (being a decisive
limitation of this theory for small number of the periodicity cells in one or even
two directions). The second expansion is carried out with the perturbation pa-
rameter in random expansion given as ε = 1; in both cases the expansions are
analytic with respect to ζ and ε.

The additional analytical forms are available thanks to the mathematical
model of 1D composite in the first case and, in the second case, thanks to the ap-
plication of the computer algebra system determining the probabilistic moments.
The probabilistic expansion is also non-standard, since partial derivatives of the
homogenized tensors demanded in the Taylor expansions are calculated analyti-
cally, using their least squares approximations with respect to material parame-
ters of the composite constituents. Validation of the generalized stochastic per-
turbation method with respect to the straightforward integral numerical determi-
nation of the probabilistic moments, as well as to the classical Monte-Carlo sim-
ulation method, is provided in the case of unidirectional multicomponent struc-
ture, where some algebraic expressions for the homogenized tensor are known.
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Since general analytical solution to the cell problem is not available in 2D,
computational analysis used to determine the probabilistic moments of the ho-
mogenized elasticity tensor has a hybrid character. First part is carried out
using the Finite Element Method and homogenization-oriented program, whose
results are transferred into the computer algebra system to combine several de-
terministic results into the analytical approximation of the homogenized tensor
components. It is done for all input random variables separately and enables final
determination of probabilistic characteristics for C(eff)

ijkl . Let us underline that this
methodology was applied previously with respect to this particular composite
case study, using the Unweighted Least Squares Method (ULSM) to compute the
higher order probabilistic perturbations. Probabilistic convergence of the com-
bined ULSM-SFEM is not fast enough, especially for larger random dispersions
of the input random parameters, where the differences between the neighboring
orders approach zero rather slowly. It may significantly affect the computational
cost of the entire simulation and makes it closer to the Monte-Carlo based esti-
mations. As it is known from the numerical analysis developments, the easiest
way to overcome this inaccuracy is to apply the Weighted version of the Least
Squares Method (WLSM), where various weights are applied to distinguish (in
computational aspect) between the trial points lying close enough and rather far
away from the additional expected values. Both ULSM and WLSM (in two dif-
ferent versions) are compared below to demonstrate how it is possible to increase
efficiency of this hybrid SFEM probabilistic homogenization method and to elim-
inate the well-known limitation on the stochastic perturbation technique to the
relatively small random dispersions. The main benefit of this new procedure is an
apparent stabilization of the higher-order perturbations by the user-dependent
weights distribution modification. This is also the right way to implement the
other than Gaussian probabilistic distributions, also in the context of discrete
sets of experimental data smoothened to some analytical probability density
functions.

2. Homogenization metod

2.1. General model for a 2D structure

Let us introduce a geometrical scaling parameter ζ > 0 between the micro-
and macroscale of the composite (see Fig. 1), and introduce two coordinate
systems: y = (y1, y2, y3) on the microscale of the composite and x = (x1, x2, x3)
on the macroscale.

Let us denote the fiber region by Ω1, the matrix area by Ω2 and the inter-
face between them by Γ12 (continuous and smooth plane contour). Then, the
Representative Volume Element (RVE) denoted further by Ω, consists of the
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Fig. 1. Periodic composite structure Y .

single fiber with circular cross-section surrounded by the matrix and centrally
located in the square with the length l. The entire composite structure built
up with the net of periodically distributed parallel fibers is denoted here by Y .
As far as the randomness in the fibers’ position is taken into account, the Rep-
resentative Volume Element must contain the few fibers with the pattern or
random distribution representative for the entire composite cross-section. Mate-
rial characteristics of both components – Young’s moduli and Poisson’s ratios
– are defined as the Gaussian random variables truncated to the physically ad-
missible values E(y;ω) = {e1(ω), e2(ω)} and ν(y;ω) = {ν1(ω), ν2(ω)}, having
specified the first two probabilistic moments. Denoting by µα(b(y;ω)) the α-th
central probabilistic moment of the field b(y;ω), one may express the required
periodicity as

(2.1) µα(b(x;ω)) = µα(b(x + l;ω)),

where

(2.2) µα(b(y;ω)) = χ1(y)µα(b1(ω)) + (1 − χ1(y))µα(b2(ω)),

with χ1(y) being a characteristic function for the fiber

(2.3) χ1(y) =

{

1, y ∈ Ω1,

0, y ∈ Ω2.

The problem is to determine the probabilistic moments of the homogenized
tensor µα(C

(eff)
ijkl ), α ∈ N, and it is provided using the extension of the effective

modules method available for the deterministically defined periodic composites.
The homogenization method described below is not restricted neither to the RVE
with the single fiber nor the RVEs with the few fibers of perfectly deterministic
geometry. Let us express any state function G defined on Y as

(2.4) Gζ(x) = G

(

x

ζ

)

= G(y).
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The linear elasticity problem for the periodic composite structure is given as
follows [2, 14]:

(2.5)
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+ Fi = 0,

σζ
ijnj = pi, x ∈ ∂Yσ,

uζ
i = 0, x ∈ ∂Yu,

σζ
ij = Cζ

ijklε
ζ
kl,

εζ
kl =

1

2
(uζ

k,l + uζ
l,k),

i, j, k, l = 1, 2,

where Fi denotes the vector of the external loadings applied on the entire com-
posite structure Y (most frequently its weight). Assuming a perfect interface
between the matrix and the fibers as well as no cracks and other defects in these
constituents, we solve this problem by introducing the bilinear form aζ(u,v) in
the microscale of the composite

(2.6) aζ(u,v) =

∫

Ω

Cijkl

(

x

ζ

)

εij(u)εkl(v) dΩ

and the linear one

(2.7) L(v) =

∫

Ω

Fivi dΩ +

∫

∂Ωσ

pivid(∂Ω),

in the following Hilbert space of admissible displacements defined on Y :

(2.8) V = {v, v ∈ (H1(Y ))2, v|∂Ωu = 0}, ‖v‖2 =

∫

Ω

εij(v)εij(v)dΩ.

Then, the variational statement equivalent to the equilibrium problem (2.5) is
to find uζ ∈ V being a solution of the following equation:

(2.9) aζ(uζ ,v) = L(v), v ∈ V

for any u,v ∈ P (Ω), and for the additional space of the admissible displacement
functions P (Ω) = {v, v ∈ (H1(Ω))2}. The homogenization function χ(ij)k ∈
P (Ω) is a solution to the local problem

(2.10) aζ((χ(ij)k + yjδki)nk,w) = 0
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for any w ∈ P (Ω), where nk is the additional versor. Assuming further bound-
edness, ellipticity and symmetry of the elasticity tensor, one may recover the
effective elasticity tensor components from the following theorem [2, 14].

The solution uζ of problem (2.10) converges weakly in space V

(2.11) uζ → u as ζ → 0

for Ω-periodic tensor Cζ
ijkl(y), where the solution u is the unique one for the

problem

(2.12) u ∈ V, S(u,v) = L(v)

for any v ∈ V and

(2.13) S(u,v) =

∫

Ω

Sijklεij(u)εkl(v)dΩ,

where

(2.14) Sijkl =
1

|Ω|ay((χ(ij)p + yiδpj)np, (χ(kl)r + ylδrk)nr).

It is well known, that the local problem for 2D and 3D structures consists
in numerical determination of the homogenization function χ(kl)i periodic on Ω,
satisfying the given equilibrium equations and the following boundary conditions:

(2.15) σij(χ(pq))nj = .[Cpqij ]|Γ12nj = C
(2)
pqij − C

(1)
pqij on Γ12.

Hence, the variational formulation necessary for the displacement version of the
Finite Element Method analysis of the local problem can be written out as

(2.16) C
(1)
ijkl

∫

Ω1

εkl(χ(pq))εij(v)dΩ + C
(2)
ijkl

∫

Ω2

εkl(χ(pq))εij(v)dΩ

= −
∫

Γ12

σij(χ(pq))njvidΓ .

Finally, one computes the effective elasticity tensor after solving for χ(pq)i as

(2.17) C
(eff)
ijpq =

1

|Ω|

∫

Ω

(Cijpq + Cijklεpq(χ(kl))) dΩ.

Further, it is clear that if the second component of the R.H.S. integrand func-
tion is omitted, well-known upper bounds for the effective elasticity tensor for
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the composite are returned. The experimental and computational analyses prove
that these bounds are easy to be calculated even in the case of random spaces
of composite constituents elastic characteristics, but their values significantly
overestimate the real effective properties. Let us finally note that since proba-
bilistic method uses the several deterministic solutions to complete the entire
homogenization of a random composite, this mathematical apparatus does not
need further improvement and the homogenization theorem remains valid.

2.2. 1D-periodic structure as the special case

We consider a special case of the multi-component unidirectional composite
beam with the prismatic cross-section constant along the beam length, which
has perfectly periodic structure [11] and material properties varying along the
spatial macro-coordinate x3 (constant with respect to the remaining axes). Now,
the RVE consists of the few layers with deterministically defined thicknesses cor-
responding to the composite constituents and having perfect interfaces perpen-
dicular to x3. The following system of partial differential equations is employed
to calculate the effective properties:

(2.18)
(

Cijkl

(

x3

ζ

)

uζ
k,l

)

,j = fi(x), uζ(x) = uo(x), x ∈ ∂Ω.

Similarly to the procedure displayed above, the periodic homogenization func-
tions χ(mn)(y) are employed and determined as the solution to the local problem
on the RVE

(2.19)
∂

∂yj

(

Cijkl(y3)
∂

∂yl
(χ(mn)k) + Cijmn(y3)

)

= 0.

Obviously, a solution is expected in the form χ(mn)(y) = χ(mn)(y3). It yields

(2.20)
∂

∂y3

(

Ci3k3(y3)
∂

∂y3
(χ(mn)k) + Ci3mn(y3)

)

= 0

for any periodic χ(mn)(y3). Therefore, Eq. (2.20) is transformed into the form

(2.21) Ci3k3(y3)χ(mn)k,3 + Ci3mn(y3) = Ai

and may be solved explicitly, so that

(2.22) χ(mn)k,3 = −{Ck3j3}−1Cj3mn + {Ck3j3}−1Aj .

One obtains from the periodicity condition 〈χ(mn),3〉Ω = 0 the result

(2.23) 0 = −〈{Ck3j3}−1Cj3mn〉Ω + 〈{Ck3j3}−1〉ΩAj .
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Therefore

(2.24) Ai = 〈{Ci3k3}−1〉−1
Ω 〈{Ck3j3}−1Cj3mn〉Ω,

and there holds

χ(mn)k,3 = −{Ck3j3}−1Cj3mn(2.25)

+ {Ck3j3}−1〈{Cj3q3}−1〉−1
Ω 〈{Cq3p3}−1Cp3mn〉Ω.

Taking into account that the state functions depend only on the y3 axis, there
holds

(2.26) C
(eff)
ijkl = 〈Cijkl + Cijm3χ(kl)m,3〉Ω.

Finally, the homogenized elasticity tensor components are given by

C
(eff)
ijkl = 〈Cijkl〉Ω − 〈Cijm3{Cm3p3}−1Cp3kl〉Ω(2.27)

+ 〈Cijm3{Cm3p3}−1〉Ω〈{Cp3n3}−1〉−1
Ω 〈{Cn3q3}−1Cq3kl〉Ω .

In case of isotropic and linear elastic constituent materials of this composite,
it is obtained after some algebraic manipulation [11]:

C
(eff)
1111 = C

(eff)
2222(2.28)

=

〈

(1 − ν)e

(1 + ν)(1 − 2ν)

〉

Ω

−
〈

e(1 − 2ν)

1 − ν2

〉

Ω

+
〈1−2ν

1−ν 〉2Ω
〈 (1+ν)(1−2ν)

(1−ν)e 〉Ω
,

C
(eff)
3333 =

〈

(1 + ν)(1 − 2ν)

(1 − ν)e

〉−1

Ω

,(2.29)

C
(eff)
1133 = C

(eff)
3311 = C

(eff)
2233 = C

(eff)
3322 =

〈1−2ν
1−ν 〉Ω

〈 (1+ν)(1−2ν)
(1−ν)e 〉Ω

,(2.30)

C
(eff)
1122 = C

(eff)
2211 =

〈

e

1 − ν

〉

Ω

−
〈

e(1 − 2ν)

1 − ν2

〉

Ω

+
〈1−2ν

1−ν 〉Ω
〈 (1+ν)(1−2ν)

(1−ν)e 〉Ω
,(2.31)

C
(eff)
1212 = C

(eff)
2121 =

〈

e

1 + ν

〉

Ω

,(2.32)

C
(eff)
1313 = C

(eff)
3131 = C

(eff)
2323 = C

(eff)
3232 =

〈

1
1+ν

e

〉

Ω

,(2.33)

with the remaining components of the effective elasticity tensor equal to 0. The
equations given above enable both the analytical derivations of the probabilistic
moments for the given random variable in the system, the Monte-Carlo sim-
ulation of the homogenized tensor and the generalized stochastic-perturbation
based computational analysis; all those techniques are discussed in Section 5.1.
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3. Generalized stochastic perturbation technique in homogenization

The probabilistic perturbation methodology is proposed to calculate the mo-
ments of the homogenized elasticity tensor discussed above. It is based on an
expansion via the Taylor series about the spatial expectations using a small pa-
rameter ε > 0 and the following expression is employed for the effective tensor
components [8]:

C
(eff)
ijkl (b) = C

(eff)0

ijkl + ε
∂C

(eff)
ijkl

∂b
∆b+ 1

2ε
2 ∂2C

(eff)
ijkl

∂b2
(∆b)2 + · · ·(3.1)

+
1

n!
εn
∂nC

(eff)
ijkl

∂bn
(∆b)n,

where b stands for the random input, ∆b denotes the variation of this variable
around its expected value; the accuracy of this expansion strongly depends on
the perturbation order n. The recursive formula for the central m-th order prob-
abilistic moment in the 10-th order approximation, can be determined as [1, 7]

(3.2) µm(C
(eff)
ijkl (b))

=

+∞
∫

−∞

(

C
(eff)0

ijkl (b) +
n

∑

i=1

εi

i!
∆bi

∂iC
(eff)
ijkl (b)

∂bi
−E[C

(eff)
ijkl (b)]

)m

p(b)db

=

+∞
∫

−∞

(

ε
∂C

(eff)
ijkl (b)

∂b
∆b+ · · · + ε10

10!

∂10C
(eff)
ijkl (b)

∂b10
(∆b)10

)m

p(b)db.

Then, the expected value and the variance of the resulting homogenized tensor
C

(eff)
ijkl (b) can be obtained for the Gaussian input parameter b as

E[C
(eff)
ijkl ] = C

(eff)0

ijkl (b) +
1

2

∂2C
(eff)
ijkl (b)

∂b2
Var(b)(3.3)

+
1

4!

∂4C
(eff)
ijkl (b)

∂b4
µ4(b) +

1

6!

∂6C
(eff)
ijkl (b)

∂b6
µ6(b) + · · ·

+
1

2m!

∂2mC
(eff)
ijkl (b)

∂b2m
µ2m(b)

= C
(eff)0

ijkl (b) +
1

2
C

(eff)(2)
ijkl (b) +

1

4!
C

(eff)(4)
ijkl (b) +

1

6!
C

(eff)(6)
ijkl (b) + · · ·

+
1

2m!
C

(eff)(2m)
ijkl (b)
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and, furthermore,

Var(C
(eff)
ijkl ) = Var(b)

∂C
(eff)
ijkl

∂b

∂C
(eff)
ijkl

∂b
(3.4)

+ µ4(b)

(

1

4

∂2C
(eff)
ijkl

∂b2

∂2C
(eff)
ijkl

∂b2
+

2

3!

∂C
(eff)
ijkl

∂b

∂3C
(eff)
ijkl

∂b3

)

+ µ6(b)

((

1

3!

)2∂3C
(eff)
ijkl

∂b3

∂3C
(eff)
ijkl

∂b3
+

1

4!

∂4C
(eff)
ijkl

∂b4

∂2C
(eff)
ijkl

∂b2

+
2

5!

∂5C
(eff)
ijkl

∂b5

∂C
(eff)
ijkl

∂b

)

+ · · · ,

where µk(b) is the k-th central probabilistic moment of the variable b. The per-
turbation parameter is adopted as ε = 1 and only the first few perturbations
are included, especially in the last relation. Quite similarly, using the first and
the second order terms only, it is possible to derive the third order probabilistic
moments as

µ3(C
(eff)
ijkl (b)) =

+∞
∫

−∞

(C
(eff)0
ijkl +

∂C
(eff)
ijkl

∂b
∆b+ 1

2

∂2C
(eff)
ijkl

∂b2
(∆b)2 + · · ·(3.5)

− E[C
(eff)
ijkl (b)])3p(b)db

∼= 3

2
µ4(b)

(

∂C
(eff)
ijkl

∂b

)2∂2C
(eff)
ijkl

∂b2
+

1

8
µ6(b)

(

∂2C
(eff)
ijkl

∂b2

)3

,

and also the fourth order probabilistic moment

µ4(C
(eff)
ijkl (b)) =

+∞
∫

−∞

(C
(eff)0
ijkl +

∂C
(eff)
ijkl

∂b
∆b+

1

2

∂2C
(eff)
ijkl

∂b2
(∆b)2 + · · ·(3.6)

− E[C
(eff)
ijkl (b)])4p(b)db

∼= µ4(b)

(

∂C
(eff)
ijkl

∂b

)4

+
3

2
µ6(b)

(

∂C
(eff)
ijkl

∂b

∂2C
(eff)
ijkl

∂b2

)2

+
1

16
µ8(b)

(

∂2C
(eff)
ijkl

∂b2

)4

.

Then, one defines the coefficients of variation, asymmetry and concentra-
tion as
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(3.7)

α(C
(eff)
ijkl (b)) =

√

Var(C
(eff)
ijkl )

E(C
(eff)
ijkl )

;

β(C
(eff)
ijkl (b)) =

µ3(C
(eff)
ijkl )

(
√

Var(C
(eff)
ijkl ))3

;

γ(C
(eff)
ijkl (b)) =

µ4(C
(eff)
ijkl )

(Var(C
(eff)
ijkl ))2

.

As it can be seen in these equations, the symbolic approach perfectly reflects
the needs of higher-order perturbation approaches, where the perturbation pa-
rameter ε with increasing powers can be inserted directly in the Taylor series
expansion; this is implemented in numerical experiments to compute symboli-
cally up to the 10-th order expression. It should be clearly undelined that these
equations are still independent from the probability distribution type, except
that it must be symmetric. The Gaussian and lognormal distributions are deci-
sively preferred here since recursive formulas for all probabilistic moments may
be easily implemented into the symbolic computer programs; otherwise, some
extra mathematical transforms or a priori assumptions need to be done – only
the distributions having the analytical function generating probabilistic moments
are applicable here.

4. Computational implementation

4.1. Finite element discretization of the homogenization problem

Let us introduce the following approximation of homogenization functions
χδ

(uv)i at any point of the considered continuum Ω in terms of a finite number

of generalized coordinates qδ
(uv)α and shape functions ϕiα [7–9]:

(4.1) χδ
(uv)i = ϕiαq

δ
(uv)α, i, u, v = 1, 2, α = 1, . . . , N, δ = 1, . . . ,M.

The variables i, u, v stand for the spatial coordinates, α denotes the degree
of freedom, where N is the total number of degrees of freedom, δ denotes the
current least squares method test number, where M is the a priori chosen total
number of those tests. We discretize the strain εij(χ

δ
(uv)k) as well as stress tensors

σij(χ
δ
(uv)k) analogously

εij(χ
δ
(uv)) = Bijαq

δ
(uv)α,(4.2)

σδ
ij(uv) = σij(χ

δ
(uv)) = Cδ

ijklεkl(χ
δ
(uv)) = Cδ

ijklBklαq
δ
(uv)α,(4.3)
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where Bklα is the shape functions derivatives matrix, which does not vary on
the least squares approximation test. Therefore, the virtual work equation is
obtained as

(4.4)
∫

Ω

δχδ
(uv)i,jC

δ
ijklχ

δ
(uv)k,ldΩ

= −
∫

Γ12

δχδ
(uv)i[F

δ
(uv)i]|Γ12dΓ (no summation on u, v).

The Finite Element Method formulation continues with a definition of the
global stiffness matrix given as follows:

(4.5) Kδ
αβ =

E
∑

e=1

K
(e)δ
αβ =

E
∑

e=1

∫

Ωe

C
(e)δ
ijklBijαBklβdΩ.

Introduction of this matrix into Eq. (4.4) and minimization of this statement
with respect to the generalized coordinates enables to write that

(4.6) Kδ
αβq

δ
(uv)β = Qδ

(uv)α,

where the R.H.S. vector consists of the stress interface conditions varying also
together with the least squares test. The symmetry conditions on the periodi-
city cell quarter are assumed, so that the orthogonal displacements for every
nodal point belonging to the external boundaries of Ω are fixed to compute 3M
homogenization functions (χδ

(uv)i for δ = 1, . . . ,M) and the resulting homoge-
nizing stress fields. Finally, they are spatially averaged into all finite elements
constituting the RVE and combined with the original additional elasticity tensor
components according to Eq. (2.17)

(4.7) C
(eff)δ
ijpq =

1

|Ω|

∫

Ω

(Cδ
ijpq + Cδ

ijklεpq(χ
δ
(kl)))dΩ.

Moreover, we use the following polynomial representation of the homogenized
elasticity tensor and its s-th order partial derivatives:

C
(eff)
ijkl =

n
∑

r=1

A
(r)
ijklb

r +A
(0)
ijkl,(4.8)

∂sC
(eff)
ijkl

∂bs
=











s
∑

r=1

A
(r)
ijklP (r − s+ 1, s)br−s, r ≤ s,

0, r > s,

(4.9)
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as long as n ≤ δ, where the coefficients A(r)
ijkl are found using the least squares

approximation procedure, and where P (r − s + 1, s) denotes the Porchhammer
symbol introduced usually as

(4.10) P (z, n) = z(z + 1)(z + 2) . . . (z + n− 1) =
Γ (z + n)

Γ (z)
.

The polynomial representation (4.8), as the entire homogenization method,
is convenient only for the linear elastic transverse isotropy, but corresponds
to any random variables because of its purely numerical character. Compu-
tational implementation of the nonlinear constitutive models like the elasto-
plastic for instance, neglecting the necessary modifications in the homogenization
method itself, may not be so straightforward. The expected values are extracted
here as

E[C
(eff)
ijkl ] = C

(eff)0
ijkl +

1

2!
ε2µ2(b)

n
∑

p=1

p(p− 1)A
(p)
ijklb

p−2(4.11)

+
1

4!
ε4µ4(b)

n
∑

p=1

p(p− 1)(p− 2)(p− 3)A
(p)
ijklb

p−4

+
1

6!
ε6µ6(b)

n
∑

p=1

p . . . (p− 5)A
(p)
ijklb

p−6

+
1

8!
ε8µ8(b)

n
∑

p=1

p . . . (p− 7)A
(p)
ijklb

p−8

+
1

10!
ε10µ10(b)

n
∑

p=1

p . . . (p− 9)A
(p)
ijklb

p−10,

and higher order moments determination proceeds similarly. Finally, we notice
that for the randomized material parameters we can apply a semi-analytical
approach, where the classical definition

C
(eff)
ijpq =

〈

δijδpq
eν

(1 + ν)(1 + 2ν)
+ (δipδjq + δiqδjp)

e

2(1 + ν)

〉

Ω

(4.12)

+ 〈Cijklεpq(χ(kl))〉Ω

leads to some further simplifications. The partial derivatives of the first compo-
nent with respect to the given parameter b are determined from direct analytical
differentiations and the second component needs some least square method ap-
proximations.
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4.2. Weighted least squares technique for the response functions

Consider a set of m data points (b(i), C
(eff)(i)
αβγδ ) for α, β, γ, δ = 1, 2, 3, the

nonlinear continuous function C(eff)
αβγδ = f(b, x) and a curve (approximating func-

tion) C(eff)
αβγδ = f(b,Aαβγδ), which additionally depends on n parameters A(j)

αβγδ,
j = 1, . . . , n, where m ≥ n. The basic difference from the traditional least
squares technique is the presence of the fourth order tensors, which are the main
goal of this approximation procedure. We define the additional residuals (rests)
ri(C

(eff)
αβγδ) as

(4.13) rαβγδ(i) = ri(C
(eff)
αβγδ) = C

(eff)(i)
αβγδ − f(b(i), A

(i)
αβγδ),

to determine the components of the tensor Aαβγδ from the minimization of the
following sum:

(4.14) Sαβγδ =

m
∑

i=1

wiir
2
αβγδ(i), α, β, γ, δ = 1, 2.

It proceeds using the gradient method, so that

(4.15)
∂Sαβγδ

∂A
(j)
αβγδ

= −2
n

∑

i=1

wiirαβγδ(i)

∂f(b(i), A
(i)
αβγδ)

∂A
(j)
αβγδ

= 0;

j = 1, . . . , n; α, β, γ, δ = 1, 2.

Further, we adopt the following notation:

(4.16) Dαβγδ
ij =

∂f(b(i), A
(i)
αβγδ)

∂A
(j)
αβγδ

; j = 1, . . . , n; α, β, γ, δ = 1, 2,

and we form the modified equations as

(4.17)
n

∑

i=1

m
∑

k=1

Dαβγδ
ij wiiD

αβγδ
ik Â

(k)
αβγδ =

n
∑

i=1

Dαβγδ
ij wiiC

(eff)(i)
αβγδ ,

j = 1, . . . , n, α, β, γ, δ = 1, 2,

having the matrix form

(4.18) ((Dαβγδ)Tw Dαβγδ) Aαβγδ = (Aαβγδ)Tw C
(eff)
αβγδ.
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After numerical solution to this equation for Aαβγδ, the final polynomial approx-
imation given by Eq. (4.8) is obtained; this form of the approximating function
is well justified by the numerical experiments performed in the next section. The
main aim of the weighting procedure inserted into the least squares approxima-
tion for the homogenized tensor components with respect to the input random
variable is to speed up the probabilistic convergence for basic random moments
and characteristics of this tensor components.

5. Computational experiments

5.1. Validation of the perturbation method for 1D composite

Computational illustration is provided for the two-component composite with
the mean values of elastic parameters e1 = 84 GPa, ν1 = 0.22 (for the reinforce-
ment) and for the matrix taken as e2 = 4 GPa, ν2 = 0.34 (both having the same
volume fractions). Now, Young’s modulus of the stronger material is taken as the
input random variable in numerical simulation, where the standard deviation cor-
responds to its 10% random dispersion – theoretical probability density function
and the simulated counterpart (total number of the random trials equals 105)
are shown in Fig. 2. The entire analysis is provided using the symbolic envi-
ronment of the system MAPLE, v. 13, using the relations (2.28)–(2.33), where:

Fig. 2. Initial histogram and theoretical PDF of the reinforcement’s Young modulus.
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(a) direct numerical integration following classical definitions of the probability
theory, (b) Monte-Carlo simulation and statistical estimation together with (c),
the response functions and the generalized stochastic perturbation technique
equations are implemented. First strategy needs some attention since general
integration in the system MAPLE is unavailable in this case for the unbounded
real domain, so that bounded numerical integration is provided within the limits
0 and double expectation. They are found after some a posteriori error-based
analysis, where minimization of the computational domain width is carried out
with respect to some a priori given error level. The results for all homogenized
tensor components are collected in Table 1 below in the form of the expected
values (Pa), variances (Pa2), standard deviations (Pa), fourth central proba-
bilistic moments (Pa4), as well as of the coefficients of variation, skewness and
concentration (dimensionless).

The general conclusion is that all the methods return almost the same results
– agreement in the expected values as well as in the coefficients of concentration
is perfect, some extremely small differences appear for the second-order char-
acteristics, while the largest differences are noticed in case of the skewnesses.
The agreement of those techniques mainly follows the fact that the effective ten-
sor components come from the algebraic transformations during smearing of the
original materials within the RVE, but the homogenization function has ana-
lytical form unlike in most of the 2D problems, where some small differences
caused by the SFEM itself are observed. Quite naturally, the largest variations
in between those methods are noticed for the homogenized tensor components
indexed with ‘3’ since random variable is smeared in this direction together
with the deterministic quantity – Young’s modulus of the weaker material. This
tensor shows also some probabilistic damping since output coefficients of vari-
ations are generally smaller than for the input random variable. Also generally
one can conclude that quite independently from the numerical strategy, the ef-
fective tensor appears to be Gaussian, since its components have higher order
characteristics typical for this distribution. The generalized stochastic pertur-
bation method seems to be efficient, but some further implementation needs to
be provided to eliminate the errors in the third order characteristics numerical
determination.

5.2. Homogenization of the fiber-reinforced structure

Numerical analysis of the periodic random fiber-reinforced composite homog-
enization is performed using the FEM homogenization-oriented program MCC-
EFF and the computer algebra system MAPLE, v. 13. Internal automatic gen-
erator in the first program meshes itself the square RVE with centrally located
round fiber occupying 34% of the RVE – the mesh consists of 144 4-noded plane
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strain finite elements and 153 nodes [7]. Elastic parameters of the fiber material
are taken as in the previous computational example; since the Poisson ratio for
the matrix has been detected for this composite as the most influential parameter
before [7, 8], it is treated now as the truncated Gaussian random variable, where
the value given above is its expectation and input coefficient of variation α is
the additional parameter in this study. A discretization of the random variable
consists of 11 trial equidistant points, which are symmetrically located around
the expectation (the basic length of this subdivision equals 0.01 – about 3% of
the mean value); each time the first component of the homogenized elasticity
tensor C(eff)

1111 is observed. The importance of all the results in the ULSM tech-
nique is the same and equals 1, the triangular weights distribution is defined
uniquely by the following set wi = [1, 2, 3, 4, 5, 6, 5, 4, 3, 2, 1], while the Dirac-
type weights distribution is defined as wi = [1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1]. One can
guess that some intermediate nonlinear weights distributions over the trial set
have no clear justification, so that those three capabilities are contrasted here.
Numerical results from this analysis are shown as the response functions ob-
tained using ULSM technique in Fig. 3 (the entire variability interval of ν2), in

Fig. 3. The ULSM response function C
(eff)
1111 = C

(eff)
1111(ν2), wide neighborhood.
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Fig. 4 (in the close neighborhood of the expectation), in Fig. 5 – thanks to the
WLSM approach for the triangular weights distribution (left-hand diagram) and
for the Dirac type distribution (at the right). They are all shown for various
response polynomium orders, from 1 to 9, to demonstrate the optimum order of
this approximant.

Fig. 4. The ULSM response function C
(eff)
1111 = C

(eff)
1111(ν2) , close neighborhood.

It is apparent that all order approximations (except for the first one), exhibit
really very small differences and it is almost impossible to distinguish between
higher-order functions in all approaches (the trial points are marked in Fig. 3
using diamonds – they fit the ULSM approximation perfectly). One may notice
that the distance between the first-order approximation and the final function
taken at the expectation of input variable, is the largest for the unweighted tech-
nique and significantly smaller for the weighted methods. The next set of figures,
cf. Figs. 6–7, show essentially different expectations computed and presented as
the functions of the input coefficient of variation.

It should be mentioned that determination of those interrelations without the
usage of some computer algebra system would be extremely difficult. First of all,
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Fig. 5. The WLSM response function C
(eff)
1111 = C

(eff)
1111(ν2) , triangular vs. Dirac weights.
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Fig. 6. The ULSM expected values E[C
(eff)
1111(ν2)].

the expectations computed even for the first order response polynomial are dif-
ferent for the three models compared, but each time they are quite insensitive to
input random dispersion. Obviously, the higher order response functions result
each time in the nonlinear, fully convex interrelations between E[C

(eff)
1111] and ν2;

apparently, the ULSM appears to be almost divergent for maximum value of the
parameter α, whereas both WLSM approaches show good convergence together
with both additional increases of the approximating polynomial and input ran-
dom dispersion. Comparing carefully left- and right-hand diagrams in Fig. 7,
one can see that the application of the Dirac weights definitely eliminates some
numerical discrepancies that can be obtained for the middle-order approximants
(like the 5-th-order here) – some subtle differences in the response functions
weighted using those two types of distributions are found. Finally, the maximum
expected values obtained for α(ν2) = 0.10 are also different – the largest are
computed for ULSM, then for triangular WLSM, and the minimum is detected
for Dirac WLSM, so that the conclusion is that the last approach guarantee the
most stable results for the expectations.
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Fig. 7. The WLSM expected values E[C
(eff)
1111(ν2)], triangular vs. Dirac weights.
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Fig. 8. The ULSM coefficients of variation α(C
(eff)
1111(ν2)).

Figures 8 and 9 contain the coefficient of variation α(C
(eff)
1111) shown as the

function of α(ν2), but now the second parameter varies in the interval [0.0,0.15] –
far beyond the second-order second moment limitations. The tendency of ULSM
approach to overestimate the output characteristics is quite clear also in Fig. 8,
where output maximum coefficient is almost three times larger than the input
one. This method returns the stable and convergent result for smaller values
of the input random variable rather, like from 0.0 up to 0.1. The additional
interrelations between the input and output coefficient of variation presented in
both parts of Fig. 9 as the function of the response polynomium order, show
that we need to exclude the first two orders from the WLSM approach results,
while the remaining higher orders return the very stable values, which are very
close to each other.

6. Concluding remarks

1. The validation test of the 1D composite structure homogenization with
randomized Young’s modulus of the reinforcement, where analytical solution
exists, shows a perfect agreement between probabilistic analytical determina-
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Fig. 9. The WLSM coefficients of variation α(C
(eff)
1111(ν2)), triangular vs. Dirac weights.
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tion for the moments, the statistical Monte-Carlo simulation method as well
as non-statistical generalized stochastic perturbation technique, applied further
to homogenize the fiber-reinforced structure. The direct integration method is
available thanks to the application of the computer algebra system only and, at
the same time, only for the truncated Gaussian random variables. Some small
numerical discrepancies are noticed for the third probabilistic moments and char-
acteristics and they may need longer expansions than that provided in the present
perturbation-based model. All computational techniques applied uniquely show
that the homogenized elastic characteristics have Gaussian distributions, and
that the overall computational cost of probabilistic homogenization for analyti-
cal and perturbation methods are the same.

2. The weighting procedure applied here to increase computational efficiency
of the traditional Least Squares Method (LSM) appears to be very efficient,
especially when the Dirac type function represents the importance of the par-
ticular trial points with the peak corresponding to the expectation of the in-
put random variable. It essentially speeds up the probabilistic convergence of
central moments of the homogenized elasticity tensor for the entire considered
variability interval of the input coefficient of variation. Triangular distribution
of the weights is less effective than the Dirac function in stabilization of the
final probabilistic moments – we notice larger variations in the first case, es-
pecially for maximum random deviation of the input. Thanks to the applica-
tion of the WLSM–SFEM with the Dirac weights, it is possible to significantly
decrease the required response polynomial order from 9-th to almost the sec-
ond. It should be mentioned that the computational analysis supporting those
conclusions has been provided by randomization of the matrix Poisson’s’ ratio,
where previously the Least Squares Method in the unweighted version shown the
worst efficiency, the response polynomial needed to be of a very high order and
the sensitivity gradients of homogenized tensor components were apparently the
largest.

3. Further developments of this methodology may progress in quite dif-
ferent directions – one may try to increase the order of the primary determin-
istic perturbation included into the initial homogenization equation to calcu-
late higher-order correctors than the first one [5]. Further comparison with the
Monte-Carlo simulations, also for other types of constituents compositions (in
the context of various contrasts between the expected values of material param-
eters), may be very helpful to calibrate the Dirac weight peaks for the expecta-
tions to have the probabilistic moments in WLSM-SFEM technique very close
to the statistical estimators. Nevertheless, an extension towards inclusion of the
stochastic ageing phenomena may be provided thanks to the experimentally ver-
ified time variations of the expectations and standard deviations of materials
characteristics of the particular components. A certain open question is further
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application of this homogenization procedure to the practical reliability assess-
ment for various frequently exploited engineering composites. Computational
implementation of the nonlinear constitutive relations and, especially, the cor-
responding homogenization method, would not be a straightforward extension
of the approach presented in the paper, although the presence of stochastic in-
terface defects [7, 9] or some cohesion at the interface [12] would be decisively
simpler.
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