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Large bending deformations of pressurized curved tubes
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In this paper, the problem of large pure bending deformations of membrane is
considered. The membrane is a sector of torus with a closed cross-section. This mem-
brane is called a curved tube for short. We consider the homogenous, incompressible,
isotropic and hyperelastic material. The external load is a constant pressure and
bending couples acting at the edges. The equilibrium equations reduce to ordinary
differential equations. As an example, the membrane with a constant thickness and
with a circular cross-section is investigated.
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1. Introduction

In this paper, the problem of large pure bending deformations of a mem-
brane is considered. The membrane is a sector of torus with a closed cross-
section. This membrane is called a curved tube for short. The material of our
curved tube will be assumed to be homogenous, incompressible, isotropic and
hyperelastic. The external load is a constant pressure and pure couples at the
edges.

The first linear study of the bending of curved tube goes back to von Kármán
in 1911 [1]. The existing linear theory was extended by Clark [2], Reissner
[2, 3], Axelrad [4, 5] and others.

The nonlinear theory of the pure bending of cylindrical membrane was con-
sidered in [6–9]. In [6] it was assumed that the circular cylindrical membrane was
first inflated into another form of a circular cylinder, which was then subjected
to pure bending. It was also assumed that the displacements due to bending is
small. The large bending deformations of cylindrical membrane were considered
in [7–9].

In this paper, the bending problem of toroidal membrane is considered within
the framework of the nonlinear membrane theory. The approach to solving of
the problem is presented in [7, 8]. The approach allows us to decompose the
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deformation into two parts: an in-plane deformation of the meridional cross-
section, plus a rigid rotation of each of these meridional planes about a certain
axis by a linearly varying angle. In this case, the equilibrium equations reduce
to ordinary differential equations. These equations are derived for a membrane
of a constant thickness with arbitrary closed cross-section in Section 2.

As an example, in Section 3 we consider the membrane of a circular cross-
section. We investigate the dependence between the bending moment, the inter-
nal pressure and the curvature of deformed tube.

2. Equilibrium equations

Let o be the base surface corresponding to the reference configuration of
a membrane (Fig. 1). The position of a point on o is determined by the position
vector r(q1, q2) in the following form:

(2.1)
r = χ1(q

1)i1 + χ2(q
1)e2,

e2 = cosβq2i2 + sin βq2i3.

Here q1, q2 are Gaussian coordinates on o, vectors i1, i2, i3 are unit vectors of
the Cartesian coordinate system.

Let the membrane be loaded by uniformly distributed pressure ξ, and let the
deformed surface of membrane O be a sector of torus (Fig. 1). We refer to q1, q2
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Fig. 1. Reference and deformed configurations of curved tube.
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as Lagrangian coordinates of the membrane surface. The position of a point on
O is determined by the position vector R(q1, q2) in the form:

(2.2)
R = X1(q

1)i1 + X2(q
1)E2,

E2 = cos Bq2i2 + sin Bq2i3.

It is easy to see that the components of the metric and curvature tensors of
the reference and deformed surfaces are functions of q1 only. We have [9]:

(2.3)

g11 = χ′2
1 + χ′2

2 , g12 = 0, g22 = β2χ2
2,

G11 = X′2
1 + X′2

2 , G12 = 0, G22 = B2X2
2,

B11 =
X′′

1X
′
2 − X′′

2X
′
1

√

X′2
1 + X′2

2

, B12 = 0, B22 =
B2X2X

′
1

√

X′2
1 + X′2

2

.

In this case the equilibrium equations of membrane reduce to ordinary dif-
ferential equations [9]. It is easy to see that the resultant force and resultant
moment are independent of the coordinate q2 at the cross-section. In addition,
the resultant force is zero. The resultant moment with respect to center of mass
of the cross-section Y2C may be written in the form [9]:

(2.4) M = M i1 = i1

∮

√

G11G22L
22(Y2C − X2)dq

1.

Here, Lαβ (α, β = 1, 2) are the components of the Cauchy-type stress resultant
tensor. The constitutive equations for isotropic elastic membrane may be written
in the following form [10]:

(2.5) Lαβ =
2h

η

√

g11g22

G11G22

∂W

∂Gαβ
, η =

{

1, α = β,
2, α 6= β.

Here, h is the initial thickness of membrane, W is the strain energy density per
unit surface area of membrane.

Let us introduce the functions λ1(q
1), λ2(q

1) and ψ(q1):

(2.6)

λ1(q
1) =

√

G11

g11
,

λ2(q
1) =

√

G22

g22
,

tgψ(q1) =
X′

2

X′
1

.
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The equilibrium equations may be rewritten in the form [9]:

∂2W

∂λ2
1

λ′1 −
(

∂W

∂λ2
− λ1

∂2W

∂λ1∂λ2

)√

g11

g22
Bsinψ +

(

∂W

∂λ1
− λ2

∂2W

∂λ1∂λ2

)

g′22

2g22
= 0,

λ′2 − B

√

g11

g22
λ1 sinψ +

g′22

2g22
λ2 = 0,

(2.7)
∂W

∂λ1
ψ′ − B

√

g11

g22

∂W

∂λ2
cosψ − ξ

h

√
g11λ1λ2 = 0,

X′
1 =

√
g11λ1 cosψ, X′

2 =
√
g11λ1 sinψ.

We consider a closed cross-section. Hence the boundary conditions are the
periodicity requirements on the unknown functions. The functions λ1(q

1), λ2(q
1)

and ψ(q1) are independent. If q1 ∈ [q11 , q
1
2 ], then the boundary conditions may

be written in the following form:

λ1(q
1
1) = λ1(q

1
2), λ2(q

1
1) = λ2(q

1
2), ψ(q11) = ψ(q12).

The functions X1(q
1) and X2(q

1) may be obtained, after calculation of λ1(q
1),

λ2(q
1) and ψ(q1), by solving the Eqs. (2.3) and (2.6) or the last equations (2.7).

The nonlinear boundary problem (2.7) is solved by a numerical method. We
use the shooting method. This method was applied to study the large bending
deformations of a cylindrical membrane [9].

3. Results

We consider the membrane made of a neo-Hookean material. The strain en-
ergy function has the form

(3.1) W =
µ

2
(λ2

1 + λ2
2 + λ−2

1 λ−2
2 − 3).

Let the cross-section be a circle in the reference configuration. The functions
χ1(q

1) and χ2(q
1) are given as

(3.2) χ1(q
1) = r0 sin q1, χ2(q

1) = β−1 − r0 cos q1, q1 ∈ [0; 2π].

We assume that

(3.3) r0 = 1, h = 0.001, µ = 1, β = 0.1, q2 ∈ [−2π; 2π].

Our aim is to study the dependence of the resultant moment at the cross-
section (bending moment), on the internal pressure and curvature of the de-
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formed curved tube. Let us introduce the dimensionless parameters

(3.4)

M∗ = − M

hµr20
, p∗ =

ξr0
hµ

, B∗ =
B

β
,

L∗
1 =

G2
11L

11r0
µh

, L∗
2 =

G2
22L

22r0
µh

.

Here, L∗
1, L

∗
2 are the dimensionless resultant stresses.

If B∗ ≥ 1 (B ≥ β) for p∗ > 0, we call the deformation (2.2) a direct bending.
If B∗ < 1 (B < β) for p∗ > 0, we call the deformation (2.2) the inverse bending.
The deformation (2.2) with 0 ≤ B∗ < 1 is called the unbending of a curved tube.

The inflation of curved tube (p∗>0) accompany the unbending (0≤B∗<1)
without application of the bending moments (M∗ = 0) at the ends [11]. Straight-
ening of curved tube (B∗ = 0) does not occur only by the internal pressure
(p∗ > 0) for the neo-Hookean material. The dependence of pressure p∗ on the
parameter B∗ is shown in Fig. 2 for different initial parameters β = 0.05, 0.1, 0.2.

0.7

p
*

B
*

0.6

0.5

0.4

0.3

0.2

0.1

0
10.90.80.7

Fig. 2. The internal pressure p∗ as a function of parameter B∗ (M∗ = 0).

We consider the cases in which B∗ is a fixed. The dependencies of the bending
moment M∗ on the pressure p∗ are shown in Fig. 3 for B∗ = −2,−1, 1, 2. These
dependencies have the maximum pressures. They are greatly different for positive
and negative curvatures. But first an increase in the pressure p∗ lead to an
increase of the absolute value of the bending moment M∗ in both cases. This
part of the dependence of the bending moment M∗ on the pressure p∗ will be
called the first part. The rest part of the dependence M∗ on p∗ will be called the
second part.
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Fig. 3. Bending moment M∗ as a function of internal pressure p∗.
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Fig. 4. The superficial and cross-sectional views of the deformed curved tube (p∗ = 0.7).
The dotted line corresponds the reference configuration.
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In the second part an increase of the bending moment M∗ is accompanied
by a decrease in the pressure p∗ for B∗ ≥ 1. From Fig. 3, we see that there are
the two equilibrium states. For example, the states A1

2 and A2
2 (Fig. 3) have the

two different bending moments for p∗ = 0.7 and B∗ = 2. These states differ in
the shape of deformed tube (Fig. 4) and the stresses (Fig. 5).
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Fig. 5. The stresses (B∗ = 2).
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For B∗ < 0 the dependence of the bending moment M∗ on the pressure p∗

is more complex in the second part (Fig. 3). In the case B∗ < 0 there are the
two equilibrium states. For example, the states A1

5 and A2
5 (Fig. 3) have the

two different bending moments for p∗ = 0.7 and B∗ = −2. These states differ
in the shape of deformed tube (Fig. 4) and the stresses (Fig. 5). Moreover, for
B∗ < 0 the dependence of M∗ on p∗ has self-intersection point, i.e., there are
the two equilibrium states with the same pressure p∗, bending moment M∗ and
parameter B∗.

Let us now consider the cases in which the pressure p∗ is fixed. The depen-
dence between the parameter B∗ and the bending moment M∗ is shown in Fig. 6.

The solid lines correspond to the case, when the pressure and bending mo-
ment are given from the first part of the dependence of M∗ on p∗. The dashed
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Fig. 7. The stresses L∗
1 (p∗ = 0.7).
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line corresponds to the second part of the dependence M∗ on p∗. The depen-
dence of M∗ on B∗ is similar for different pressures. They have maximum and
minimum of the bending moments. The planform and cross-sectional views of
the deformed curved tube are shown in Fig. 4 for p∗ = 0.7.

The true stresses in the membrane are shown for pressure p∗ = 0.7 in Fig. 7
and Fig. 8. The stresses L∗

1 are positive. The longitudinal stresses L∗
2 can be

compressive. We note that the compressive stresses arise before the extreme
bending moments.

4. Conclusions

The pure bending of the curved tube subjected to an internal pressure and
bending couples at the edges has been considered. The problem was investigated
using the nonlinear membrane theory. The equilibrium equations were derived for
a curved tube with an arbitrary cross-section, made of incompressible isotropic
hyperelastic material.

We studied the deformation of the curved tube with a circular cross-section
made of a neo-Hookean material. The dependence (pressure–bending moment)
is presented for different fixed curvatures. The dependence (curvature–bending
moment) is presented for different fixed pressures. It was obtained from numerical
results that there are two equilibrium states in some cases and there are the limits
of the external loads (the pressure and the bending moment).
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