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Local model of plane acoustic waves propagation
in multilayered infinite sandwich structures
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A local model for computing the coincidence frequencies and the transmission
loss of multilayered infinite sandwich plates composed of isotropic layers is presented
in the paper. The model is derived within the local theory of linear elastodynamics
under assumption that only one component of the vector potential is equivalent to
zero and after application of the Pythagorean theorem. Any simplifications concern-
ing the structure have not been introduced. A passage from the acoustic model to
some plate benchmark models is shown. Numerical results predicted by the model
for homogeneous, three-layer sandwich and five-layer sandwich infinite-infinite plates
are obtained and compared with the results predicted by other models existing in
the literature. Both flexural and breathing waves are numerically analysed. Some
conclusions of practical importance have also been formulated.
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Notations

c sound velocity in the air,
cs phase velocity in the structure,

E, E(j) Young’s modulus and Young’s modulus of j-th layer, respectively,
fc = ωc/2π coincidence frequency,

fcr = ωcr/2π critical coincidence frequency,
h(j) thickness of j-th layer of the plate,

k wave number of the acoustic wave,
ks wave number of the wave propagating in the structure,

kx, ky wave number components in directions x and y, respectively,
ux, uy, uz displacements in directions x, y, z, respectively,

u1(j), u2(j), u3(j) displacements within j-th layer in directions 1, 2, 3, respectively,
t time,

x, y, z space variables,
Zair impedance of the air,
εqr strain tensor,

θ incident angle of the plane wave,
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λ, µ Lamé’s parameters,
µ, µ(j) shear modulus and shear modulus of j-th layer, respectively,
ν, ν(j) Poisson’s ratio and Poisson’s ratio of j-th layer, respectively,
ρ, ρ(j) density and density of j-th layer, respectively,

ρair density of the air,
σzz(j) normal stress in j-th layer,

σ33(j), σ31(j), σ23(j) normal and shear stresses in j-th layer, respectively,
ω frequency,

ωc = 2πfc coincidence frequency,
ωcr = 2πfcr critical coincidence frequency,

∇2 =
∂2

∂x2
1

+
∂2

∂x2
2

+
∂2

∂x2
3

.

1. Introduction

Nowadays a protection of people against noise and vibration is one of
the most important tasks for designers of machines and buildings [1, 2]. There are
many ways to do it and one of them is application of layered structural elements
as the sound-insulating members in engineering structures. In particular, multi-
layered panels composed of alternately arranged thin stiff layers and soft thick
layers are most promising for the insulation purposes. Therefore, among other
things, the three-layer sandwich panels are embedded in trains structures [3], in
ships hulls [4], in airplanes fuselages [5], while multi-layer boards are applied in
buildings engineering [6].

A reasonable application of the layered structural elements for sound insula-
tion in a particular case may require using both the experimental and simulation
methods to define design charts, that is to evaluate in the domain of frequency
such parameters as the sound transmission loss (TL) or the sound insertion loss
(IL) for the structure. One may say that evaluating of the TL and the IL in
domain of frequency are the main tasks of any sound insulation theory (model).

The plane layered and homogeneous sound insulationg structural elements
can be divided into three groups: (1) infinite-infinite (I-I) panels that is very large,
comparing with the acoustic wave(s) length(s), in two perpendicular directions
x, y – see Fig. 1, (2) finite-infinite (F-I) elements such as covers of ducts and
(3) finite-finite, in the directions x, y, (F-F) plates. The above division of the
structures is used in the further text to comment the references.

A Reader may find easily in the literature a detailed analysis of the sound
insulation problems mainly for the I-I homogeneous panels, and for multiple
homogeneous I-I panels, with gaps between them filled with the air or with porous
materials [6]. The analysis is obtained within the classical theory of homogeneous
plate based on the hypothesis of plane cross-sections, and for an assumed plane
incident wave(s) of infinite extent. The analysis is known as the one-dimensional
sound insulation theory.
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Fig. 1. Three groups of plane sound insulating elements, I-I panel, F-I element and F-F
plate, respectively.

In [7], combining of the one-dimensional theory for the homogeneous panel
with a single layer theory of sandwich panel was proposed to obtain a sound
insulation model for the sandwich I-I structure. More refined model which can
be applicable to the acoustic analysis of the sandwich structures was developed
in [8]. It was used by the Authors to obtain the dispersion curves and to define
the waves propagating and evanescent in the I-I sandwich structure. A refined
approach to modeling of acoustic phenomena occuring in sandwich I-I panels
was presented in [9, 10]. This model was derived by combining the equation
of motion of the classical plate theory, based on the plane cross-sections, and
the linear elastodynamics (Lamé) equations of motion, while the first one is
satisfied within the outer layers of the sandwich panel and the latter are satisfied
within the middle layer (core) of the structure. It is noted that the mixed model
[9, 10] predicts within the core both the flexural ’in-phase’ wave motions and
the breathing ’anti-phase’ wave motions – not predicted by models [7, 8]. The
compatibility equations of displacements and stresses in the interfaces have also
been fulfilled in the mixed model. The authors compared the mixed model with
some models existing in the literature by means of the dispersion curves and
investigated some properties of the I-I structure [9, 10].

The TL curves in domain of frequency for F-F sandwich three-layer plates,
as well as the mathematical model of sound insulation, were obtained in papers
[11, 12]. In particular, the explicit expression for the TL of the F-F plate is given
and an influence of the material coupling on the TL curve is analysed in [11, 12].

Another model for computations of the TL factor of the three-layer sand-
wich panel was presented in [13] and it also predicts both the ‘in-phase’ and
‘anti-phase’ wave motions in the core. The authors computed, according to the
model, the TL curves in the domain of frequency for four F-F sandwich panels
and compared the computational results with measured data published in [14]. It
is noted that to compute the TL curves for the F-F sandwich plates, considered
in [13], some formulas derived from a simpler model, printed in [15], were used.
Paper [16] contains similar information, obtained both numerically and exper-
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imentally, about the sound insulation properties of the F-F sandwich plate as
in [13]. Additionally, a comparison of the TL for sandwich I-I and F-F panels is
presented in [16]. Upon basis of the data one can say that for frequencies higher
than the lowest coincidence frequency, the TL of the I-I structure is much higher
than the parameter measured for one of the F-F simply supported sandwich
plates investigated in [16].

In order to obtain, for a particular structure, a valuable TL curve in domain
of frequency, one should first evaluate the coincidence frequencies. For a purely
elastic I-I or F-F structure, that is for the structures with negligible internal
damping of the wave motions, the TL is equal to zero at the critical coincidence
frequency and it is very small in vicinity of the other coincindence frequen-
cies. Therefore, evaluation of the coincidence frequencies should be the first step
within the sound insulation procedure.

In [17] the Reader will find important considerations on the coincidence fre-
quencies of the F-F homogeneous plate. The authors have been formulated con-
ditions for existing of many coincidence frequencies in the F-F plate. It has also
been stated in [17] that the lowest coincidence frequency, called critical coinci-
dence frequency, of the F-F plate equals the critical coincidence frequency for
the I-I panel with the same cross-sectional parameters as the F-F plate. Since
the critical coincidence frequency is the only one at which the TL of a F-F plate
equals zero (see [17]), then its evaluation is the fundamental task within the
sound insualtion procedure. Let us note finally that due to the property stated
above, the critical coincidence frequency can be calculated either within mod-
els (theories) for the F-F plates or within the corresponding models for the I-I
panels.

In [18] the Reader will find considerations on the critical coincidence frequen-
cies of plane homogeneous and layered I-I panels. The analysis in [18] is done
by using equations of motion derived within the classical plate theory, Mindlin’s
type plate theory and within a thin plate theory by Jones [19]. Unfortunately, the
equations of motion for the thick structures, applied in paper [18], are unstable
since for the plane wave motion they imply imaginary angular frequency of the
wave. The problem is not discussed here more widely and the Reader interested
in its analysis is encouraged to aquaint with [20] Sections 4 and 6, where it is
discussed in an original way. The coincidence frequencies of the three-layer sand-
wich I-I structures are analysed numerically in [21]. It was shown in [21], among
other things, that the coincidence frequency increases when the shear modulus
of the middle layer of the sandwich panel decreases.

The short analysis of the recently published papers (see the references), shows
the following deficiences of the models and investigations: (1) all the models out-
lined above are not directly applicable to the acoustic analysis of the multilay-
ered (e.g., five-layers, seven-layers etc.) sandwich structures which are the most
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promising as the sound insulating members, (2) some of the published models are
not capable of predicting the breathing modes of the wave motions which may
occur in the sandwich structures with thick and soft layers and (3) some of the
existing models are not stable in the sense pointed out in [20]. The deficiences
(1)–(3) do not occur in the local model proposed in the present paper.

Details of the local model are presented in the subsequent sections of the
paper, however it is noted here that the model is applicable to layered structures
composed of any numbers of layers of different materials (phases), thicknesses
and stiffnesses. Therefore, this model is not similar to the family of continuum
models applicable to the slowly graded laminates (SGL) – see e.g. [22]. The con-
tinuum models, including [22], are based on many refined assumptions enabling
both inclusion of the cross-sectional inhomogeneity of the SGLs and a relative
simplicity of the the models, despite their applicability to the SGLs consisting
of a large number of layers.

This paper is structured as follows. In Section 2, a statement of the problem
is outlined. In Section 3, an exact solution to the wave equations of the local
theory of linear elastodynamics is derived under assumption that one function
of the vector potential is equivalent to zero. In Section 4 a transformation and
reduction of the solution to the well-known 2D form is shown. In Section 5,
some details on the boundary conditions and numerical aspects of the problem
are presented. In Section 6, numerical results predicted by the local model are
presented, compared and/or discussed. Section 7 contains some conclusions. In
Appendices A and B, some basic information on the coincidence phenomenon
and on the transmission loss are presented.

2. Statement of the problem

The structure considered here is composed of p isotropic layers. It is infinite
in directions x, y and its thickness h, being the sum of thicknesses of the layers,
extends in direction z – see Fig. 2.

It is well-known due to Lamé [23, 24] that the displacement field u (see
Notations) which is defined, for each j-th idividual layer separately, as follows:

(2.1)
u = gradφ+ rotψ ≡ uk = φ,k + eklmψm,l,

u = {u1 u2 u3}, k, l,m = 1, 2, 3,

satisfies the local equations of motion of the linear elastodynamics within the j-th
layer, provided that the functions φ and ψk satisfy the following wave equations

(2.2) [(λ+ 2µ)/ρ]∇2φ− ∂2φ

∂t2
= 0, (µ/ρ)∇2ψm − ∂2ψm

∂t2
= 0, m = 1, 2, 3,
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Fig. 2. Cross-section of the structure and pressures: pi – incident, pr – reflected, prad –
radiated, pt – transmitted.

and functions ψk satisy additionally

(2.3) ψk,k ≡ ψ1,1 + ψ2,2 + ψ3,3 = 0.

It is noted that displacements (2.1) satisfy both the wave equations (2.2)
and the well known Saint–Venant compatibility equations (originally expressed
in terms of the strains) within each j-th layer separately, j = 1, 2, . . . , p. For
a particular j-th layer, the Lamé parameters λ, µ and density ρ, appearing in
the wave equations (2.2), should be replaced with λ(j), µ(j) and ρ(j), respectively.

The following through-the-thickness boundary conditions for a plate have to
be satisfied,

(2.4)

σ33(x, y, z = zr) ≡ σzz(x, y, z = zr) = qr,

σ31(x, y, z = zr) ≡ σzx(x, y, z = zr) = 0,

σ32(x, y, z = zr) ≡ σyz(x, y, z = zr) = 0,

where qr denotes the normal acoustic loading acting on the surface, whereas
subscript r = 1, 2. If we assume that the substript r equals 1 (qr = q1) for
the top/left outisde surface of the plate, then r equals 2 (qr = q2) for the bot-
tom/right outside surface of the plate, respectively. Symbol zr in (2.4) denotes
coordinates of the outside surfaces of the multilayered panel – see Fig. 2.

Between adjoining layers of the plate, with subscripts j and j+1, the following
local compatibility equations for the normal and shear stresses as well as for the
in-plane and out-of-plane displacements, are satisfied,

(2.5)
σ33(j) = σ33(j+1), σ31(j) = σ31(j+1), σ23(j) = σ23(j+1),

u1(j) = u1(j+1), u2(j) = u2(j+1), u3(j) = u3(j+1).
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It is finally summarized that statement of the problem contains the following
equations: the kinematic assumptions (2.1) – satisfied individually for each layer,
the wave equations (2.2) – satisfied individually for each layer, the Saint–Venant
compatibility equations – satisfied individually for each layer, the calibration
condition (2.3) – satisfied individually for each layer, the boundary conditions
(2.4) – for the (outside) surfaces of the structure, the compatibility equations
(2.5) between adjoining layers and the constitutive equation (the Hooke’s law)
– satisfied individually for each layer.

3. Derivation and analysis of a solution to the wave equations

In this section the solution, derived in an original way by the present au-
thor, is presented. The solution is obtained under assumption that one of the
functions ψk occurring in the general Lamé solution (2.1) is equivalent to zero.
In fourth section the solution is transformed to the well-known, frequently pre-
sented the literature, 2D solution applicable entirely to the I-I plates. Taking
into consideration (2.1) one may write the displacements in the extended form:

(3.1)

u1 ≡ ux = φ,x − ψ2,z + ψ3,y = ux1 + ux2,

u2 ≡ uy = φ,y − ψ3,x + ψ1,z = uy1 + uy2,

u3 ≡ uz = φ,z − ψ1,y + ψ2,x = uz1 + uz2.

The following nomenclature is applied in Eqs. (3.1):

(3.2)

ux1 = −ψ2,z + ψ3,y, ux2 = φ,x,

uy1 = −ψ3,x + ψ1,z, uy2 = φ,y,

uz1 = −ψ1,y + ψ2,x, uz2 = φ,z.

It is noticed that

(3.3) ux1,x + uy1,y + uz1,z ≡ 0, ux2,x + uy2,y + uz2,z = ∇2φ.

The problem considered here can be solved for the following, simplifying
assumption:

(3.4) ψ3 ≡ 0.

The displacements are now as follows,

(3.5)

ux1 = −ψ2,z, ux2 = φ,x,

uy1 = +ψ1,z, uy2 = φ,y,

uz1 = −ψ1,y + ψ2,x, uz2 = φ,z.
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We further assume that ψn are the plane waves, i.e.,

(3.6) ψn = Xn(x)Yn(y)Z̃n(z)T (t) = Z̃n(z)ei(ωt−kxx−kyy), i2 = −1, n = 1, 2,

where the functions of variable z are unknown, kx and ky denote the wave num-
bers in directions x and y, respectively, and ω stands for the wave frequency.

After substituting (3.6) into (2.3) one obtains

Z̃2(z) = −(kx/ky)Z̃1(z),(3.7)

ux1 = −ψ2,z = (kx/ky)Z̃1,ze
i(ωt−kxx−kyy),

uy1 = +ψ1,z = Z̃1,ze
i(ωt−kxx−kyy),

uz1 = −ψ1,y + ψ2,x = i[(k2
x + k2

y)/ky]Z̃1(z)e
i(ωt−kxx−kyy)).

(3.8)

If we introduce the following notation:

(3.9) Z1,z = Z̃1,z/ky,

the displacements (3.8) will be in the form:

(3.10)

ux1 = kxZ1,ze
i(ωt−kxx−kyy) = iZ1,z(−ikx)ei(ωt−kxx−kyy),

uy1 = kyZ1,ze
i(ωt−kxx−kyy) = iZ1,z(−iky)e

i(ωt−kxx−kyy),

uz1 = i(k2
x + k2

y)Z1(z)e
i(ωt−kxx−kyy)).

Taking into consideration (3.5) and (3.10) one obtains,

(3.11) ψ1 = +iZ1(−iky)e
i(ωt−kxx−kyy), ψ2 = −iZ1(−ikx)ei(ωt−kxx−kyy).

Let us note finally that the wave equations (2.2), containing functions ψn,
where now n = 1, 2, imply the following equation for the function Z1,

(3.12) (µ/ρ)∇2ψn +
∂2ψn

∂t2
= 0 ≡ Z1,zz − (k2

x + k2
y − ρω2/µ)Z1 = 0,

and the following expressions for the shear stresses:

(3.13)

σzx1 = µ[iZ1,zz + (k2
x + k2

y)iZ1](−ikx)ei(ωt−kxx−kyy)

= µ[2(k2
x + k2

y) − ρω2/µ]Z1kxe
i(ωt−kxx−kyy),

σyz1 = µ[iZ1,zz + (k2
x + k2

y)iZ1](−iky)e
i(ωt−kxx−kyy)

= µ[2(k2
x + k2

y) − ρω2/µ]Z1kye
i(ωt−kxx−kyy).
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The solution derived in this section is composed of two (not of three) Lamé’s
rotational functions. As far as the author knows it is not common in the liter-
ature. It is noted that to obtain the displacements ux2, uy2, uz2, appearing in
(3.1), (3.2), one needs to derive the function φ. Assuming that φ is in the form
expressed in (3.6), it can be derived from the left-hand side Eq. (2.2) .

φ = Xn(x)Yn(y)(z)T (t) = Φ̃(z)ei(ωt−kxx−kyy), i2 = −1,(3.14)

[(λ+ 2µ)/ρ]∇2φ− ∂2φ

∂t2
= 0 ≡ Φ̃,zz − [k2

x + k2
y − ρω2/(λ+ 2µ)]Φ̃ = 0,(3.15)

ux2 = φ,x = −ikxΦ̃(z)ei(ωt−kxx−kyy),

uy2 = φ,y = −ikyΦ̃(z)ei(ωt−kxx−kyy),

uz2 = φ,z = Φ̃,z(z)e
i(ωt−kxx−kyy)).

(3.16)

After obtaining the displacements ux2, uy2, uz2, the corresponding stresses
must be obtained following the standard way. The shear stresses are defined as
follows:

(3.17)
σzx2 = −2µikxΦ̃,ze

i(ωt−kxx−kyy),

σyz2 = −2µikyΦ̃,ze
i(ωt−kxx−kyy).

The total displacements are composed of (3.1), (3.10) and (3.16),
(3.18)

ux = [iZ1,z + Φ̃(z)](−ikx)ei(ωt−kxx−kyy) = [iZ1,z + Φ̃(z)]
∂ei(ωt−kxx−kyy)

∂x
,

uy = [iZ1,z + Φ̃(z)](−iky)e
i(ωt−kxx−kyy) = [iZ1,z + Φ̃(z)]

∂ei(ωt−kxx−kyy)

∂y
,

uz = [i(k2
x + k2

y)Z1(z) + Φ̃,z]e
i(ωt−kxx−kyy)).

The total shear stresses in directions x, y are as follows:

(3.19)
σzx1 = µ[iZ1,zz + (k2

x + k2
y)iZ1 + 2Φ̃,z ](−ikx)ei(ωt−kxx−kyy),

σyz1 = µ[iZ1,zz + (k2
x + k2

y)iZ1 + 2Φ̃,z ](−iky)e
i(ωt−kxx−kyy).

The total normal stress perpendicular to the interfaces of the structure is

σzz = 2µ(k2
x + k2

y)iZ1, ze
i(ωt−kxx−kyy))(3.20)

+ [2µ(k2
x + k2

y) − ρω2]Φ̃(z)ei(ωt−kxx−kyy).
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The displacements can be expressed in the same form as the benchmark kine-
matic model applied in [25] and in many other papers. Namely, if the following
nomenclature is introduced,

(3.21) g(z) = −iZ1,z, f(z) = i(k2
x + k2

y)Z1(z),

one can transform displacements (3.10) to the form appearing in [25]:

(3.22)

ux1 = −g(z)Y (y)dX/dxeiωt,

uy1 = −g(z)dY/dyX(x)eiωt,

uz1 = f(z)Y (y)X(x)eiωt.

The same can be done for the displacements (3.16).

4. Reduction of ingredients of the in-plane displacements and
stresses for an I-I structure – transformation of the above
solution to a 2D form

It is seen from Eqs. (3.10), (3.13), (3.16) and (3.17) that

(4.1) ux1/uy1 = σzx1/σyz1 = ux2/uy2 = σzx2/σyz2 = kx/ky.

Due to (4.1) we can reduce the above solution to the wave equations (2.2) to
a 2D form. This means replacement of the displacements ux1, uy1 and ux2, uy2

as well as the shear stresses σzx1, σyz1 and σzx2, σyz2 by the following equivalent
counterparts:

ur1 =
√

u2
x1 + u2

y1 = −i
√

k2
x + k2

yiZ1,ze
i(ωt−kxx−kyy),

ur2 =
√

u2
x2 + u2

y2 = −i
√

k2
x + k2

yΦ̃(z)ei(ωt−kxx−kyy),

(4.2)

σzr1 =
√

σ2
zx1 + σ2

yz1

= −µi
√

k2
x + k2

y [iZ1,zz + (k2
x + k2

y)iZ1]e
i(ωt−kxx−kyy),

σzr2 =
√

σ2
zx2 + σ2

yz2 = −2µi
√

k2
x + k2

yΦ̃,ze
i(ωt−kxx−kyy).

(4.3)

Let the kx and ky be defined as follows:

(4.4) kx = k sin θ cosβ, ky = k sin θ sinβ, k2
x + k2

y = k2 sin2 θ,
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while θ denotes the incident angle of the wave and β is the angle between the
directions x, r defined as follows (see Fig. 1):

(4.5) cosβ = x/r = x/
√

x2 + y2, sinβ = y/r = y/
√

x2 + y2.

Due to (4.2)–(4.5), the in-plane displacements ur1, ur2, ur and the shear
stresses σzr1, σzr2 and σzrin the infinite plate are defined as follows:

ur1 = +k sin θZ1,ze
i(ωt−k sin θr),

ur2 = −ik sin θΦ̃(z)ei(ωt−k sin θr),
(4.6)

ur = ur1 + ur2 = −ik sin θ[iZ1,z + Φ̃(z)]ei(ωt−k sin θr),(4.7)

σzr1 = µk sin θ(2k2 sin2 θ − ρω2/µ)Z1e
i(ωt−k sin θr),

σzr2 = −2µik sin θΦ̃,ze
i(ωt−k sin θr),

(4.8)

σzr = σzr1 + σzr2(4.9)

= −µik sin θ[(2k2 sin2 θ − ρω2/µ)iZ1 + 2Φ̃,z]e
i(ωt−k sin θr).

It is seen from (4.7) and (4.9) that for θ = 0, the in-plane wave motions
and the corresponding shear stresses are equal to zero. Apart from the in-plane
displacement ur and the shear stress σzr in direction r, the acoustic plane wave
induces in the infinite plate the out-of-plane displacement uz and the stress σzz,
defined by (3.18) and (3.20), respectively. The relationships can be expressed
finally as follows:

(4.10)

uz = [ik2 sin2 θZ1(z) + Φ̃,z]e
i(ωt−k sin θr)),

σzz = 2µk2 sin2 θiZ1, ze
i(ωt−k sin θr))

+ [2µk2 sin2 θ − ρω2]Φ̃(z)ei(ωt−k sin θr).

The expressions (4.7), (4.9) and (4.10), useful for obtaining final forms of
the problems considered in the paper, have been derived under assumption that
one function of the vector potential is equivalent to zero after applying the
Pythagorean theorem. As far as the author knows, the approach is not common
in the literature.

To complete the analysis we should say that the 2D displacement field (4.7),
(4.10) can be obtained following another way, under the following assumptions:

(4.11) uy = uy1 + uy2 = 0, ψ1 = ψ3 ≡ 0, ψ2 = ψ2(x, z, t), φ = φ(x, z, t).

As a consequence of (4.11) we obtain directly from (3.2) the following rela-
tionships:

(4.12) ux1 = −ψ2,z, ux2 = φ,x, uz1 = +ψ2,x, uz2 = φ,z.
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The way to obtain the 2D solution starting from the assumptions (4.11) is
very popular in the literature, e.g., it is applied in [9, 10].

5. Some details on through-the-thickness boundary conditions

The surface pressures must be equated to the normal stresses on the outer
sides of the structure – see Eqs. (2.4). When the plate is composed of p layers,
the boundary conditions are as follows:

(5.1) σzz(1)(x, y, z = z1) = q1, σzz(p)(x, y, z = z1 + h) = q2, h =

p
∑

1

h(j).

Symbol z1 in (5.1) denotes coordinate of the outside surface of the first layer of
the multilayered panel – see Fig. 2. The normal stresses appearing in (2.4) and
(5.1) contain both the component resulting from the wave motions ux1, uy1, uz1

and the ingredient resulting from the wave motions ux2, uy2, uz2 – appearing in
(3.1)–(3.3) and (3.5). The same refers to the shear stresses. Let us note that in
the case of I-I panel there are no other boundary conditions than (2.4) and (5.1).

The loadings q1, q2 are defined as follows:

(5.2) q1 = Zair
∂uz(z = −h/2)

∂t
, q2 = Zair

∂uz(z = +h/2)

∂t
, Zair = ρairc.

They result from the partial pressures shown in Fig. 2. For the I-I structure, the
partial pressures and the total loadings are defined as follows [7, 11],

(5.3)
pi = Aie

i(ωt−kxx−kyy+kzh/2), pr = Are
i(ωt−kxx−kyy−kzh/2),

prad = Arade
i(ωt−kxx−kyy−kzh/2), pt = Ate

i(ωt−kxx−kyy−kzh/2).

If the origin of the coordinate system is moved to the surface loaded by
the incident acoustic wave, the new space variable z1 = z + h/2 will appear in
(5.1)–(5.3) and the above pressures will be defined as follows:

(5.4)
pi = Aie

i(ωt−kxx−kyy), pr = Are
i(ωt−kxx−kyy),

prad = Arade
i(ωt−kxx−kyy), pt = Ate

i(ωt−kxx−kyy−kzh).

Due to (5.4) the total acoustic loadings of the structure can be expressed in
the way [13]:

(5.5)
q1 = pi + pr + prad = 2pi + prad = 2pi − Zair

∂uz(x, y, z1 = 0, t)

∂t
,

q2 = pt = +Zair
∂uz(x, y, z1 = +h, t)

∂t
.
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Relationship (5.5) for q1 is obtained under the assumption that Ai = Ar –
used in [7, 13]. Directly from (5.2) and (5.5) one obtains,

(5.6) prad = −Zairu̇z(x, y, z1 = 0, t), pt = +Zairu̇z(x, y, z1 = +h, t).

The total displacements and stresses resulting from the shear waves induced
and propagating in the structure consist of two parts, one symmetric with respect
to the space variable z and the latter antisymmetric with respect to z. Therefore,
we can write the following expressions:

(5.7)
∂uz

∂t
=
∂uzs

∂t
+
∂uza

∂t
, σzr = σzrs + σzra, σzz = σzza + σzzs.

The properties of the displacements and stresses expressed in (5.7) may be
explored to obtain the final (numerical) form of the boundary problem. In par-
ticular, for the structure symmetric about its middle plane, the problem can
be splited into two subproblems: the flexural problem and the breathing one.
Taking into consideration Eqs. (2.4), (2.5), (5.1)–(5.5) one can show that to
compute the coincidence frequencies one has to solve numerically an eigenvalue
transcendental problem, and to compute the TL one has to solve numerically
a nonhomogeneous problem.

The eigenvalue transcendental problem is of the form det(A) = F (ω, ks(ω))
= 0, where A denotes the square matrix of the boundary problem, here ob-
tainable after satisfying all through-the-thickness boundary and compatibility
conditions, i.e. Eqs (2.4), (2.5). The function ks(ω) denotes dependence of the
wavenumber on frequency for the structure considered. It is called ‘dispersion
curve’ in the literature and it is unknown.

In fact, the above transcendental eigenvalue problem splits into two subprob-
lems. When we assume ks = (ω/c) sin θ, then equation det(A) = 0 enables us to
compute the coincidence frequencies (see also the Appendix A). After assuming
that ω = ωg, where ωg is a given (assumed) value of frequency, the equation
det(A) = F (ωg, ks(ωg)) = 0, so-called dispersion equation, enables us to com-
pute the wavenumber(s) and finally, for a series of the assumed frequencies, to
obtain the dispersion curve(s).

For a particular boundary problem the transcendental equation implies infi-
nite number of the coincidence frequencies: ωc1, ωc2, ωc3, . . . as well as the disper-
sion curves ks1, ks2, ks3, . . . . Usually, a finite number of the coincidence frequen-
cies and dispersion curves is of practical importance and numerically obtainable.
For instance, in the problem considered in [26] the authors computed, for an as-
sumed frequency of 25 Hz, eight wavenumbers, implying eight dispersion curves.
When the acoustic boundary problems of sandwich, infinite panels are consid-
ered, within the frequency range 16–20000 Hz, we usually need to obtain much
less coincidence frequencies and dispersion curves.
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The analysis in [8], made within the simplified model for a three-layer sand-
wich panel, shows formally the existence of three dispersion curves, i.e., three
kinds of waves appearing in the structure. Since one of the waves is the evanes-
cent one whereas the other may be propagating or evanescent (depending on
frequency), hence only one kind of the waves and one dispersion curve is of
practical importance. This is the so-called in-phase flexural wave. The facts es-
tablished in [8] are convergent with results in [27], obtained from investigation
of a more advanced model for the three-layer, thick sandwich plate.

It is seen from [27] that for the acoustic problems of the three-layer
symmetric, thick sandwich plates, two kinds of propagating waves are primar-
ily important; that is, the in-phase waves (considered in [8]) and the anti-
phase, out-of-plane (so-called breathing) waves. The opinion is confirmed in [9]
where the Author, considering only the in-phase and anti-phase waves, came
to the following conclusion: when a sandwich plate has a set of parameters
typical for the naval and aerospace applications, then the elementary theories
predict wave motions of the plate in the whole frequency range of practical
interest.

In the present paper, the coincidence frequencies have been obtained for the
in-phase and anti-phase waves propagating in three-layer and five-layer panels,
whereas the dispersion curve for the in-phase waves propagating in the three-
layer panel.

Computations of the coincidence frequencies or the wavenumbers, in a general
case, consist of two steps. First, the algorithms based on the residue theorem (so-
called winding integral techniques) are usually applied to compute the number
of zeros of the function F (ωg, ks(ωg)) within an assumed (sub)domain. Then the
iteration algorithms are used to obtain the zeros. Some details on the advanced
computations of the roots are given, e.g. in [26]. For the sandwich structures one
can apply a less refined way to find out zeros of the function, depending on the
available software. In particular, the first step can be modified due to prompts
from the literature as for instance [8].

6. Numerical results

In order to show a broad applicability of the local model proposed in the
paper, both the critical coincidence frequencies and the TL for homogeneous
(one-layer) and for layered I-I panels were computed. The results have been
compared, whenever it was possible, with their counterparts calculated accord-
ing to another models existing in the literature. All the numerical results are
presented in the Figs. 3–6, 8–11 and in the Tables 1–4.

Results presented in and Table 1 and Fig. 3 were obtained for a homogeneous
I-I panel and the following input data: h(1) = 6.63 mm, E(1) = 0.689 · 1011 Pa,
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Table 1. The flexural coincidence frequencis (Hz) of the homogeneous
aluminium I-I plate.

θ 12 18 24 30 36 42 48 54

(fc)SK 53921 21169 11692 7587.5 5433.7 4167.2 3365.4 2832.3

(fc)M 52049 20812 11577 7537.5 5407.8 4151.9 3355.3 2825.1

∆ 3.60 1.72 0.99 0.66 0.48 0.37 0.30 0.25

θ 60 66 72 78 84 90

(fc)SK 2467.3 2214.5 2041.6 1929.0 1865.4 1844.8

(fc)M 2461.8 2210.1 2037.8 1925.6 1862.3 1841.8

∆ 0.22 0.20 0.19 0.18 0.17 0.16

ν(1) = 0.33, ρ(1) = 2700 kg/m3. Apart from h(1), these data are the mate-
rial parameters of aluminium. It is noted that the (shear modulus)/density ≡
(µ(1)/ρ(1)) ratio in the case equals 9.59 · 106.

It is seen from the data in Table 1 that the coincidence frequencies predicted
by the present local model (fc)SK are higher than the corresponding coincidence
frequencies (fc)M predicted by the Mindlin theory, and the percentage difference
∆ = 100[(fc)SK− (fc)M]/(fc)M is dependent on θ and it is higher for the smaller
values of the incident angle θ.

The coincidence curves, ωc/ωcr ≡ fc/fcr, for the flexural waves in domain
of the incident angle θ ≡ eta are presented in Fig. 3. The curve denoted SK

Fig. 3. The coincidence curves for the flexural waves in homogeneous aluminium panel.
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results from the present local model, the curve denoted Mind. refers to the results
predicted by the Mindlin type theory and the curve denoted Kirch refers to the
results obtained according to the Kirchhoff theory.

It is interesting to note that the curves obtained according to the present
local model and the Mindlin model are almost identical for the incident angle
between 12 and 90 degrees, while the curve resulting from the Kirchhoff theory
does not match with the SK and Mind curves for the incident angle between
12 and 24 degrees. It is noted however that the good agreement between the
SK and Mind. curves in Fig. 3 does not imply a perfect agreement between the
coincidence frequencies (fc)SK and (fc)M within the whole range of the incident
angle – see Table 1.

Table 2. The flexural coincidence frequences (Hz) of the homogeneous I-I
plaster board.

θ 42 48 54 60 66 72 78 84 90

(fc)SK 19465 10496 7450.4 5897.4 4987.9 4426.9 4084.7 3898.8 3839.7

(fc)M 17801 9437.9 6771.8 5416.3 4617.7 4121.6 3817.5 3651.6 3598.8

∆ 9.35 11.21 10.02 8.88 8.02 7.41 7.00 6.77 6.69

Fig. 4. The coincidence curves for the flexural waves in homogeneous gypsum board panel.

In Table 2 and Fig. 4 some results similar to those presented above are given.
They were computed for a homogeneous I-I panel of the following parameters:
h(1) = 25 mm, E(1) = 0.1 · 1010 Pa, ν(1) = 0.16, ρ(1) = 1200 kg/m3. These input
data are approximately parameters of the gypsum board. Let us note that the
(shear modulus)/density ≡ (µ(1)/ρ(1)) ratio in the case equals 3.59 · 105. The
ratio is 26.7 times lower than its counterpart in the previous example.



Local model of plane acoustic waves propagation. . . 589

It is seen from the data in Table 2 that the coincidence frequencies predicted
by the present local model (fc)SK are higher than the corresponding coincidence
frequencies (fc)M predicted by the Mindlin-type theory and the percentage dif-
ference ∆ = 100[(fc)SK − (fc)M]/(fc)M is dependent on θ. Comparing the per-
centage differences ∆ = 100[(fc)SK − (fc)M]/(fc)M from the Tables 1 and 2
one can see that accuracy of the Mindlin theory decreases with decreasing of the
(shear modulus)/density ratio. Actually, for the aluminium panel the ∆ does not
exceed 0.4% within the range of the incident angle between 42 and 90 degrees,
while for the plasterboard panel it is higher than 6.69%.

The coincidence curves, ωc/ωcr ≡ fc/fcr, in domain of the incident angle
θ ≡ eta are shown in Fig. 4. It is seen that the curve resulting from the Kirchhoff
theory is much below the other curves within the range of the incident angle
between 42 and 72 degrees.

To complete discussion of the example, it is noted that the numerical anal-
ysis showed lack (absence) of the coincidence phenomenon in the panel for the
incident angle less than 39 degrees. Within the range of the incident angle be-
tween 0 and 39 degrees solutions of the characteristic equation, of the eigenvalue
problem, within the local model have not been detected, whereas frequencies
resulting from the Mindlin wave equation have been imaginary numbers.

In Table 3 and Fig. 5 some numerical results for the classical three-layer
sandwich I-I panel are presented for the following input data, given in [8]: h(1) =
0.5 mm, E(1) = 0.321011 Pa, ν(1) = 0.3, ρ(1) = 1264 kg/m3, h(2) = 10 mm,
E(2) = 0.5032 · 109 Pa, ν(2) = 0.85, ρ(2) = 137.6 kg/m3, h(1) = h(3), E(1) = E(3),
ν(1) = ν(3), ρ(1) = ρ(3). It is explained that the isotropic middle layer with the
Poisson ratio equal to 0.85 (ν(2) = 0.85) is an approximation of the honeycomb
core considered in paper [8]. The Young’s modulus E(2) = 2(1 + ν(2))Ge, where
Ge denotes the shear modulus given in [8]. The approximation, with Poisson’s
ratio of the honeycomb layer close to 1, has not been applied in [8] but it is well
justified. It has been applied e.g. in [28]. The coincidence curve in Fig. 5 denoted
by the abbreviation Mind.([8]) was obtained the same way as the corresponding
curves in Figs. 3, 4 that is by applying the model called in [18] the Mindlin-type
theory. The curve denoted by SK([8]) was obtained according to the local model
presented in Sections 2–5.

Table 3. The flexural coincidence frequencis (Hz) of the three-layer I-I sandwich
plate.

θ 30 36 42 48 54 60 66 72 78 84 90

(fc)SK 7903.8 4046.0 2730.9 2063.1 1668.5 1416.8 1250.4 1139.8 1069.2 1029.8 1017.2

(fc)M 9141.4 4327.9 2882.9 2167.3 1748.6 1482.9 1307.6 1191.4 1117.2 1075.9 1062.6

∆ 13.54 6.51 5.27 4.81 4.58 4.46 4.37 4.33 4.30 4.28 4.27
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Fig. 5. The coincidence curves for the flexural waves in the three-layer sandwich panel
investigated in [8].

Comparison of the percentage differences ∆ = 100[(fc)SK − (fc)M]/(fc)M
listed in Table 3 enables us to conclude that accuracy of the coincidence fre-
quency predicted by the Mindlin-type theory [18] decreases with decreasing the
incident angle (it is also seen in Fig. 5.). The numerical analysis in this case
showed lack of the the coincidence phenomenon in the three-layer sandwich panel
for the incident angle less than 27 degrees. Within the range of the incident angle
between 0 and 27 degrees, solutions of the characteristic equation, of the eigen-
value problem, within the local model have not been detected, whereas frequen-
cies resulting from the Mindlin-type wave equation are found to be imaginary
numbers.

In Figure 6 and Table 4 some nummerical results for a five-layer sandwich
I-I panel are presented. Parameters of the structure are as follows: h(1) = 1 mm,
E(1) = 0.6891011 Pa, ν(1) = 0.276, ρ(1) = 2680 kg/m3, h(2) = 0.75 mm, E(2) =
0.39 · 1010 Pa, ν(2) = 0.08, ρ(2) = 1175 kg/m3, h(3) = 61.5 mm, E(3) = 0.3059 ·
109 Pa, ν(3) = 0.85, ρ(3) = 32.8 kg/m3, h(2) = h(4), E(2) = E(4), ν(2) = ν(4),

Table 4. The flexural and breathing coincidence frequencies (Hz) of the
five-layer I-I sandwich plate.

θ 12 18 24 30 36 42 48 54

(fcF)SK 52063 11083 3141.2 997.3 561.6 388.0 296.1 240.7

(fcB)SK 25379 20566 17477

θ 60 66 72 78 84 90

(fcF)SK 205.1 181.3 165.5 155.4 149.7 147.9

(fcB)SK 15421 14026 13085 12479 12139 12029
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Fig. 6. The coincidence curves for the flexural and breathing waves in the five-layer
sandwich panel.

ρ(2) = ρ(4), h(1) = h(5), E(1) = E(5), ν(1) = ν(5), ρ(1) = ρ(5). The layers 2, 4 may
be for instance of the glue necessary to connect the outer aluminium layers and
the middle honeycomb core. Thicknesses of the layers 2 and 4 are 50% higher
than the values given in [4]. (As in the previous example, the isotropic middle
layer with the Poisson ratio equal to 0.85 (ν(3) = 0.85) is an approximation of
the honeycomb core). Unfortunately, the results, presented in Fig. 6 and Table 4,
are not compared since the author did not find in the literature experimental or
numerical data being appropriate for the comparison.

The curve SK(F) in Fig. 6 denotes the coincidence curve, ωc/ωcr ≡ fc/fcr, in
domain of the incident angle θ ≡ eta for the flexural waves and the curve SK(B)
is the ratio in domain of the incident angle for the breathing waves propagating
in the five-layer structure.

In Table 4 the symbol with subscript F denotes coincidence frequencies for the
flexural waves, whereas symbol with subscript B denotes coincidence frequencies
for the breathing waves.

It is explained that the breathing coincidence frequencies for the incident an-
gle less than 42 degrees have not been detected. Looking at the results in Table 4
one can see that the sound insulation by means of the five-layer structure would
be inefficient in the range of low frequencies, because of the ‘flexural’ coincidence
phenomenon, and in the range of very high frequencies because of the breath-
ing waves propagating in the core and the associated ‘breathing’ coincidence
phenomenon.

In order to show a versatility of the local model, a second, non-classical, three-
layer sandwich panel has been investigated. The structure is composed of two
thick outer layers (gypsum boards) and of thin, more compliant middle layer.
The computations were made for the following input data: h(1) = 12.5 mm,
E(1) = 0.2 · 1010 Pa, ν(1) = 0.2, ρ(1) = 1200 kg/m3, h(2) = 2 mm, E(2) =
0.925·107 Pa, ν(2) = 0.25, ρ(2) = 92.5 kg/m3, h(1) = h(3), E(1) = E(3), ν(1) = ν(3),
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ρ(1) = ρ(3). Cross-section of the structure is shown in Fig. 7. The parameter
E(2) = 0.925 ·107 Pa is the Young’s modulus for cork, however the computations
presented below were done for different values of the parameter.

An influence of the Young’s modulus of the middle layer on the critical
coincidence frequency of the structure shown in Fig. 7 has been investigated.
The results are presented in Fig. 8. On the vertical axis the values fcr/1000
= ωcr/(2π · 1000) are marked, where fcr = ωcr/2π denotes the critical
coincidence frequencies (Hz). On the horizontal axis the values E(2)/10

7 (Pa)
are denoted.

Fig. 7. Cross-section of the non-classical, sandwich panel composed of gypsum boards and
cork.

It is seen in Fig. 8 that decreasing of the Young’s modulus of the struc-
ture shown in Fig. 7 implies increasing of the critical coincidence frequency. For
example, coordinates of the left-hand side point of the curve are (0.925, 4.342),
while coordinates of the right-hand side point of the curve are (200, 2.106). The
latter point refers to the homogeneous plate 27 mm thick.

Fig. 8. Influence of the Young’s modulus of the middle layer on the critical coincidence
frequencies of the non-classical sandwich panel.

In order to test better the local model, the TL for homogeneous, aluminium,
the purely elastic I-I plate of thickness 6.63 mm is presented. The computations
were made following the idea outlined in the Appendix B for both the local
model and the Kirchhoff model. Results in Fig. 9 are predicted by the Kirchhoff
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Fig. 9. The TL curve in vicinity of the coincidence frequencies for homogeneous plate,
predicted by the Kirchhoff (Kirch.) model.

model. The curve has been obtained for the incident angle θ = 30◦ in vicinity of
the coincidence frequency for the model.

It was found from the curve (for the Kirchhoff model) that log10(fc) ≈ 3.8641
and fc ≈ 7312.8 Hz. For the exact local model, the corresponding values obtained
from the TL computations are as follows: log10(fc) ≈ 3.8801 and fc ≈ 7587.5 Hz.
These results, obtained from the TL computations, confirm the results presented
in Table 1 and in Figs. 3, 4.

Finally, to make more extended analysis of the local model another two curves
are presented for the three-layer sandwich structure discussed above. Dependence
of the wavenumber ks for the “in-phase” (flexural) waves on the frequency f (Hz)
is shown in Fig. 10 within a wide range of frequency, i.e. from 10 untill 315000 Hz.

Fig. 10. Dependence of the wavenumber ks on frequency f for the “in-phase” waves
propagating in the three-layer sandwich structure.

In Fig. 11 the phase velocity cs of the “in-phase” wave in domain of the
wavenumber ks for the three-layer sandwich infinite panel is shown.
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Fig. 11. Phase velocity cs of the “in-phase” wave in domain of the wavenumber ks, for the
three-layer sandwich structure.

Let us note that shapes of the curves presented in Figs. 10 and 11 agree with
expectations and with predictions existing in the literature. In particular, one
may expect that the local model is stable in the sense pointed out in [20].

7. Conclusions

Local model of the plane acoustic waves propagation in multilayered infinite
plate has been derived within the theory of linear elastodynamics. It is composed
of two Lamé’s rotational functions and of the volumetric function and finally,
obtained with application of the Pythagorean theorem. It has been shown that
the model corresponds to the benchmark plate model of Levinson [25].

The present local model is derived without any simplifications concerning
the structure and therefore it predicts accurate results for homogeneous and
multilayered plates including the sandwich structures composed of alternately
arranged thin/thick stiff and thick/thin soft layers. In particular, both the flex-
ural and breathing waves occurring in the sandwich structures are included. For
the infinite-infinite (I-I) structures, forced by the plane waves, the model reduces
to the 2D counterpart existing in the literature.

The numerical analysis shows that the Kirchhoff model and the Mindlin-
type model do not predict the coincidence frequencies accurately, however the
coincidence curves, defined in the Appendix A, predicted by the Mindlin-type
model, are very close to the coincidence curves predicted by the local model.
When a homogeneous plate is considered, accuracy of the Mindlin-type theory
decreases with decreasing of the (shear modulus)/density ratio.

Numerical results show that the five-layer sandwich panels may not be good
for the insulation purposes within the range of high frequencies because of the
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breathing waves and the associated breathing coincidence phenomenon. The
analysis of non-classical sandwich structure shows that a thin compliant layer
placed between stiff thick layers increases significantly the critical coincidence
frequency of the structure.

The TL computations in vicinity of the coincidence frequency confirm the
conclusions resulting from the analysis of the coincidence phenomenon.

The curves ks(f) and cs(ks) enable us to conclude that the local model is
stable in the sense pointed out in [20].

Appendix A. Fundamental knowledge on the coincidence frequencies

The coincidence phenomenon in a structure is commented by means of
Fig. 12. Symbols λA, λS denote length of the incident wave (in the air) and
wave propagating in the structure, respectively.

Fig. 12. The coincidence phenomenon.

Occurrence of the coincidence phenomenon in I-I structure can shortly be
noted as follows [17]

(A.1) (λA/sin θ = λs ≡ c/sin θ = cs) ⇔ ω = ωc.

Symbols ω and ωc in (A.1) denote frequency of the incident wave and the
coincidence frequency of the structure, respectively. Symbols λs, cs in the above
relationship denote the length and velocity of the sound wave propagating in
the structure, respectively. The velocities of the incident wave and the wave
propagating in the structure can be expressed as follows [21],

(A.2)
c = λA/T = λAf = λAω/2π = ω/k,

cs = ω/ks, k = 2π/λA, ks = 2π/λs,
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Directly from (A.1) one can write the following relationships

(A.3) ωc = η(θ), θ → 0 ⇒ cs → ∞∧ ωc → ∞.

The lowest coincidence frequency is called (in the literature) critical coinci-
dence frequency and it occurs when the incident angle is equal to 90◦, i.e.

(A.4) ωcr = η(θ = 90◦) = ωc(θ = 90◦).

For a homogeneous panel, the left-hand side relationship in (A.3) can be
expressed as follows [7],

(A.5) ωc/ωcr = 1/ sin2 θ.

In this paper the ratio ωc/ωcr is called ‘coincidence curve’. The critical coinci-
dence frequency ωcr is of special importance because of the following reasons [17].
First, the critical coincidence frequency is the only coincidence frequency at
which the TL of a F-F purely elastic plate equals zero. Second, the critical coin-
cidence frequency of the F-F plate is independent of the incident angle θ. Third,
the critical coincidence frequency of the F-F plate equals the critical coincidence
frequency of the I-I panel, with the same cross-sectional parameters as the F-F
plate. The third property can be noted in the following form:

(A.6) (ωcr)I−I = (ωcr)F−F .

Due to the third property, the critical coincidence frequency can be calculated
either within models (theories) for the F-F plates or within the corresponding
models for the I-I panels.

Appendix B. Details on computation of the TL

Definition of the TL for an assumed incident angle θ is as follows:

(B.1) TLθ = 10 log10(1/τθ) = 10 log10 |pi/pt|2.

Directly from (B.1) one obtains the following relationship:

(B.2) pt = ±pi ⇔ TLθ = 10 log10 |pi/pt|2 = 0.

In order to obtain the average value of the TL, the following formula is given
in the literature,

(B.3) TL = 10 log10

(

θ1
∫

0

cos θ sin θdθ
/

θ1
∫

0

τθ cos θ sin θdθ

)

= 0.

The θ1 is usually assumed as equal 78◦.
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