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In the present paper, simulation results of stationary and propagating cracks in
piezoelectric test specimens are presented. The simulations have been carried out with
a self-developed adaptive finite element computer program. Two specimen configura-
tions are investigated, i.e. the compact tension and three-point bending specimens. In
the analysis of the propagating crack in the compact tension specimen, the fracture
toughness change due to the change of the electric field in the test domain is taken into
account. To prove the importance of the fracture toughness anisotropy assumption,
crack growth simulations for the three-point bending specimens are reported.
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1. Introduction

Piezoelectric ceramics can be easily found in many modern engineering
applications as mechatronics, microsystem technology or smart structures. Due
to the intrinsic coupling between mechanical and electrical energy, these materi-
als can serve as sensors, actuators or transducers. This ability is widely used in
various technical devices as ultrasonic medical equipment, fuel injection pistons
or smart composites with integrated piezoelectric layers. Lead zirconate titanate
PZT is the most prominent piezoelectric ceramics which possesses large actuating
strain, fast response time and high stiffness. Apart from these great advantages,
piezoelectric ceramics have also a considerable disadvantage, that is their inher-
ent brittleness and low fracture toughness. Consequently, piezoelectric ceramics
are susceptible to fracture and damage, especially under highly concentrated
stresses and electrical fields which may occur in piezoelectric structures due to
service loads. Fracture, damage and fatigue emerge as coupled electromechanical
phenomena.

To assure sufficient reliability of technical devices, their behaviour with re-
spect to fracture must be evaluated. This concerns both aspects, crack prop-
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agation resistance as well as consequences of a crack propagation. In the first
case, usually analyses of stationary cracks suffice. In the second case, full crack
propagation analyses are necessary. It is important to point out that consider-
ation of materials with internal electromechanical interaction makes necessary
investigation of the influence of not only mechanical, but also electrical external
loads on fracture.

An actual survey about fracture mechanics concepts for piezoelectric ceramics
can be found in [9] and the conference proceedings [10]. One of the most crucial
points is subcritical crack growth in multilayer actuators, even when exposed to
pure cyclic electric loading [16]. Contrary to this, only a few attempts have been
made to simulate crack propagation by numerical methods.

There is quite a lot of scientific literature which describes methods for station-
ary crack analyses in piezoelectric structures, on the one hand, and presents the
results of the analyses on the other hand. In [13], many of the analytical meth-
ods are summarized. Numerical algorithms, based on the finite element method,
are characterized, e.g in [5, 3] and [8]. In these algorithms, “handmade” finite
element meshes are used. Only in the paper [6], automatically refined meshes
are applied to the computation of dielectric and mechanical intensity factors.
However, according to the book [17], finite element adaptivity is the state of the
art of numerical analyses. Even though there are many works, e.g. [1, 14] and [4]
devoted to crack propagation simulations in elastic bodies, there is no literature
coping with this subject for piezoelectric structures.

Contrary to the impression that the piezoelectric finite element algorithm
is a straightforward extension of the corresponding elastic one, it is important
to point out that these two algorithms rely on two different weak formulations
belonging to two totally different classes. The piezoelectric weak formulation is
a saddle point problem but the classical elastic weak formulation is a minimiza-
tion problem. This results in systems of linear algebraic equations which also
belong to two different classes. In the piezoelectric case, the matrix of coeffi-
cients of the system of linear algebraic equations is indefinite. In the classical
elastic case, the corresponding matrix is positive definite. Consequently, not all
iterative algebraic solvers are reliable in the piezoelectric case.

In the present publication, simulation results of stationary and propagat-
ing cracks in piezoelectric specimens are presented. The simulations have been
carried out with a self-developed adaptive finite element computer program. In
the program, the system of linear algebraic equations is iteratively solved with
a variant of the method of conjugate gradients. This variant can be efficiently
applied to symmetric but indefinite algebraic systems. The finite element compu-
tations take into account monotonic, electromechanical, external loading condi-
tions. Since most of the used fracture mechanical background has been already
published in [6], only the untouched aspects are referred in the present work.
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Similarly, since the used computational and algorithmic knowhow has been al-
ready described in detail in the submitted paper [7], only information required
for understanding of the simulation results is recapitulated in the present work.

The structure of the present paper is as follows. In the second section, the
governing equations of the piezoelectric boundary value problem are described.
The third, fourth and fifth sections are devoted to: the most important features
as well as the overall algorithm of the self-developed adaptive finite element com-
puter program, the crack propagation strategy which does not involve remeshing
of the whole domain after each crack propagation step and the implemented frac-
ture criterion, respectively. In the sixth section, numerical results obtained for
stationary and propagating cracks are presented. Experimental setup described
in [15] constitutes the basis for the numerical examples. Thereby, two test con-
figurations are investigated, i.e. the compact tension and the three point bending
specimens.

2. Piezoelectric boundary value problem

Let the piezoelectric domain and its boundary be denoted by Ω ⊂ R
2 and

∂Ω, respectively. The mechanical Cauchy’s equilibrium equations

(2.1) σαβ ,β +f̄α = 0 in Ω

and the Gauss’s law of electrostatics

(2.2) Dα,α = q̄ in Ω

are the fundamental partial differential equations of the analysed electromechan-
ical field problem. In the present publication, Einstein’s summation convention
is used throughout. Thereby, the subscripts in small Greek letters take values 1
or 2. The comma in a subscript means the partial derivative with respect to the
coordinate xα of the position vector. σαβ, f̄α, Dα and q̄ are the stress tensor,
body force vector, electric displacement vector and free electric volume charge
density, respectively. To obtain the complete piezoelectric boundary value prob-
lem, the differential equations (2.1) and (2.2) are complemented with the natural
mechanical

(2.3) σαβ nβ = T̃α on ΓT ⊂ ∂Ω,

natural electrical

(2.4) Dα nα = −q̃ on Γq ⊂ ∂Ω,

essential mechanical

(2.5) uα = ũα on Γu ⊂ ∂Ω
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as well as essential electrical

(2.6) ϕ = ϕ̃ on Γϕ ⊂ ∂Ω

boundary conditions. T̃α, q̃, nα, ũα and ϕ̃ are the traction vector, surface charge
density, outer vector normal to the appropriate part of the boundary ∂Ω, pre-
scribed mechanical displacement and prescribed electrical potential, respectively.
The mechanical displacement vector uα is the primary variable of elasticity. The
symmetric part of its gradient defines the strain tensor

(2.7) ǫαβ =
1

2
(uα,β +uβ,α ) .

Similarly, the primary variable of electrostatics, the electrical potential ϕ, allows
for the definition of the vector of electrical field

(2.8) Eα = −ϕ,α .

Piezoelectric materials exhibit the direct and inverse piezoelectric effect. The
first of these effects is identified with electric charges generated during deforma-
tion. The second effect can be observed when the applied voltage causes defor-
mation. The constitutive equations

(2.9)
σαβ = cαβγδ ǫγδ − eωαβ Eω,

Dα = eαδω ǫδω + καδ Eδ,

reflect the above-mentioned effects in the linearized form. cαβγδ, καβ and eαβδ

are the elastic, dielectric and piezoelectric material tensors, respectively.
In the manufacturing process, piezoelectric ceramics are usually poled

through the application of a high voltage. After this procedure, the material
under consideration is characterized by the poling direction. Existence of this
favored direction results in the transversal isotropy. For this special material
symmetry type as well as for the plane strain condition, the general constitutive
equations (2.9) can be written in the matrix form:

(2.10)
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The relationship (2.10) characterizes a transversely isotropic piezoelectric mate-
rial with the poling direction parallel to the x2-axis.



FE modeling of cracks in piezoelectrics 603

The partial differential equations (2.1) and (2.2) with the associated natural
(2.3) and (2.4) as well as essential (2.5) and (2.6) boundary conditions have been
solved with the finite element method.

3. Computer program description

The main feature of the self-developed finite element computer program
πCRACK for crack propagation analyses in piezoelectric structures is the ap-
plication of the finite element adaptivity. This strategy provides the numerical
solution whose accuracy, defined with an error estimator, is exactly equal to
a certain user-specified error distribution. Thanks to adaptivity, no special finite
elements, e.g. singular elements, are necessary to model high gradients of the
electromechanical fields in the vicinity of crack tips. This is especially advanta-
geous in case of crack propagation simulations. No extraordinary treatment is
necessary for the finite elements in the vicinity of crack tips in each propagation
step. Another important feature of the computer program under consideration
is the application of a variant of the preconditioned conjugate gradient method
for the solution of the system of linear algebraic equations obtained, after the
discretisation of the piezoelectric variational formulation. This iterative solu-
tion strategy speeds up the solution convergence and minimizes the memory
requirements. The two mentioned features are complemented by a special crack
propagation algorithm. To realise this propagation, the finite element mesh is
modified directly. Consequently, no remeshing of the domain with a crack after
each crack propagation step is necessary. The algorithm is simple and can be
easily coupled with the h-adaptivity. To compute the dielectric and mechanical
intensity factors, the interaction integral technique is applied. These intensity
factors are used in the implemented fracture criterion of the maximum modi-
fied hoop stress intensity factor. The criterion takes into account the anisotropy
of the fracture toughness of piezoelectric ceramics, makes possible, to some ex-
tent, prediction of the electric loading influence on fracture and is applicable to
non-self-similar crack growth, i.e. for mixed mode fracture.

In Fig. 1, a flowchart of the algorithm is presented which is used in the com-
puter program πCRACK. In the module πSOLVE, the piezoelectric boundary
value problem is solved with the adaptive finite element method. The finite
element solution is used in the module πFRPAR for the computation of the di-
electric and mechanical intensity factors. On the basis of the intensity factors, in
the module πFRCRIT, the decision is undertaken if the crack propagates or not.
In the case of crack growth, the fracture direction is computed. This direction is
used for the finite element mesh adjustment in the module πFRGROW. After
the mesh modification, a new finite element solution is searched in the module
πSOLVE.
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Fig. 1. Flowchart of the algorithm used in the computer program πCRACK.

In Fig. 2, a scheme of a propagating crack and characteristic angles are pre-
sented. The tangent line is defined in the crack tip as the limit of all tangent
lines to the existing crack and approaching the crack tip. (r, θ) is a polar coor-

Tangent line

Poling direction

Existing crack

Crack tip

New crack portion

θ

φ
α

r

Fig. 2. Propagating crack scheme.
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dinate system with the origin at the crack tip. The ray defined by θ = 0 lies on
the tangent line and points opposite to the existing crack direction. The angle α
describes the orientation of the ray θ = 0 with respect to the poling direction of
the material. The angle φ represents the propagation direction of the new crack
portion with respect to the existing one.

4. Crack propagation algorithm

Because of the crack propagation, additional crack surfaces are created both
of length ∆a. This causes a corresponding change of the domain boundary and
consequently, of the piezoelectric boundary value problem. The so far geometri-
cally continuous regions of the domain are now splitted by the new crack segment.
Since classical finite elements are continuous regions, the splitting must be re-
alized along finite element edges. On the other hand, the direction and length
of a new crack segment are usually determined by physical factors. It means,
the direction and length have to be chosen independently of the finite element
mesh. Consequently, in the general case, generation of new nodes, edges and
elements is necessary to model crack propagation on the finite element level. In
the module πFRGROW of the computer program, they are generated by the
element splitting algorithm, which is graphically presented in Fig. 3. Thereby,
S1 corresponds to the tip of the initial crack and S2 to the tip of the crack after
propagation. φ is the propagation angle already introduced in Fig. 2. ∆a is the

S1

S2

φ

∆
a

∆
a
′

R

R

G

G

G

Fig. 3. Element splitting algorithm.
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propagation length. The mentioned algorithm works as follows. At first, intersec-
tion points are searched between a test segment of length ∆a′ > ∆a and all cut
finite element edges. In those intersection points, new finite element nodes are
pairwise (except the new crack tip S2 where only one node is introduced) defined.
The new nodes are connected in such a way that pairs of finite element edges
are created. In the element splitting process, two characteristic variants can be
distinguished. In the first variant (green), only one of the edges of a certain finite
element is cut by the test segment. In the second variant (red), exactly two of the
edges of a certain finite element are cut by the test segment. The corresponding
description G (green) and R (red) is used in Fig. 3. The green splitting of an
initial finite element results in two new elements, and the red one in four new
elements.

5. Fracture criterion

Considering the choice of appropriate fracture criteria for piezoelectric ma-
terials, it is important to state, already at the early beginning, that suitable
fracture criteria for piezoelectric materials are still being searched for. There
are of course several classical possibilities, like e.g. the criterion of the maxi-
mal energy release rate. Application of this criterion to piezoelectric problems
leads, however, to the conclusion that the electric field always impedes crack
growth regardless of the direction of the electric field applied [11]. This conclu-
sion is not consistent with experimental observations. On the other hand, the
maximum mechanical energy release rate criterion, proposed in [11], is doubt-
ful due to different treatment of mechanical and electrical energies. No pro-
found explanation exists, why the electrical energy part in the total energy
release rate may be neglected. The criterion of the maximum modified hoop
stress intensity factor, presented in [18], fails e.g. in the case of pure electrical
loading. For this loading, no crack propagation is predicted with the fracture
criterion under consideration, whereas experimental findings are opposite. In or-
der to test the criterion of the maximum modified hoop stress intensity factor
more carefully, it has been implemented in the finite element computer program
πCRACK.

Measurements of the fracture toughness of polarized piezoceramics show
that the toughness K ||

c in direction parallel to the poling direction is higher
than the toughness K⊥

c in direction perpendicular to the poling direction [12].
The reported ratio K

||
c /K⊥

c ranges from 1.15 to 2.36 for different piezocera-
mics. To obtain the fracture toughness in any direction, the interpolation
formula

(5.1) Kc (θ) = K⊥
c cos2 (θ + α) +K ||

c sin2 (θ + α)



FE modeling of cracks in piezoelectrics 607

can be used [18]. The hoop stress intensity factor is defined as

(5.2) Kθθ (θ) = lim
r→0

√
2πr σθθ (θ)

and the modified hoop stress intensity factor as

(5.3) K∗ (θ) = Kθθ (θ) /Kc (θ) .

In Eq. (5.2), σθθ (θ) represents the hoop stress. Using the criterion of the modified
hoop stress intensity factor, the crack growth direction θmax is predicted which
guarantees maximal modified hoop stress intensity factor. The crack propagates
in this direction if the condition

(5.4) Kθθ (θmax) ≥ Kc (θmax)

is satisfied. Since the developed finite element computer program should be ap-
plicable to general crack propagation problems, a scan over all angles around the
actual crack tip is realized to predict the crack growth direction θmax.

6. Numerical examples

The computer program πCRACK has been used to analyze stationary cracks
in two test configurations, i.e. the compact tension and the three-point bending
specimens. The geometry of the specimens, boundary conditions and the used
material parameters, presented in Table 1, correspond to the experimental setup
described in [15]. The choice of the supercritical electromechanical loading has
also enabled crack propagation simulations. The detailed geometry of the speci-
mens is shown in Figs. 4 and 5, whereby millimeters are used as units of length.
The cracks are assumed to be electrically impermeable. This leads to the follow-
ing electrical boundary condition on crack faces

(6.1) D+
n = D−

n = 0.

The normal component of the electric displacement vector to the crack faces is
continuous across the crack faces and equals zero. The superscripts + and −
denote the upper and lower crack faces. This impermeability assumption corre-

Table 1. Material parameters of the PZT4 piezoelectric ceramic.

c11

`

N/m2
´

c22

`

N/m2
´

c13

`

N/m2
´

c12

`

N/m2
´

c44

`

N/m2
´

1.39 · 1011 1.13 · 1011 7.78 · 1010 7.43 · 1010 2.56 · 1010

e16

`

C/m2
´

e21

`

C/m2
´

e22

`

C/m2
´

κ11

`

C2/N m2
´

κ22

`

C2/N m2
´

13.44 −6.98 13.84 6.00 · 10−9 5.47 · 10−9
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sponds well with the high dielectric constant of the medium in crack gaps, which
has been used in the experiments described in [15]. In all numerical examples tak-
ing into account anisotropy of the fracture toughness of piezoelectric ceramics,
the ratio K ||

c /K⊥
c = 2 is chosen.

6.1. Compact tension specimen

In Fig. 4, the model of the analyzed compact tension specimen is presented.
The applied external voltage U generates an electric field with mean magni-
tude E2. The magnitudes of the force F and the electric field E2 depend on the
particular test being carried out and are, in each case, specified later on in the
text. The stiffness of the thin, flexible, metallic electrodes can be neglected com-
pared with that of the piezoelectric ceramic. In Fig. 5, the initial finite element

U

poling

metallic
electrodes

F

F

crack
19

.1

25.5
4.6

4.
6

9.
55

11.5

3.2

Fig. 4. Compact tension specimen model.

Fig. 5. Finite element meshes: initial (left) and in the twelfth refinement step (right).
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triangulation as well as the finite element mesh, obtained in the twelfth refine-
ment step of the implemented adaptive algorithm, are presented. In Fig. 6, values
of the computed mechanical intensity factors KI , KII and the dielectric intensity
factor KIV are plotted as a function of the refinement step. Fast stabilization
of the intensity factors can be observed after a few refinements. Since the crack
in the compact tension specimen opens only in modes I and IV , the computed
intensity factor KII is equal to zero as expected. In [15], the experimentally
obtained critical values of the force F are published which correspond to the
initiation of crack propagation. These forces are different for different electric
fields E2 in each of the six performed tests. Let us denote any electromechanical
loading necessary for the initiation of crack growth as (Fc, E2c).

refinement step

0

0 2 4 6 8 10 12 14 16 18

KI (MPa · m1/2)

KII (MPa · m1/2)

KIV · 103 (C · m−3/2)

0.2

0.4

0.6

0.8

1

Fig. 6. Adaptive convergence of intensity factors for F = 85 N and E2 = 2.62 kV/cm.

In Table 2, these electromechanical loadings, the corresponding values of
the critical intensity factors and energy release rates are presented. KIc and

Table 2. Critical load and fracture parameters.

No. Fc E2c KIc KIV c Gc GM
c

(N) (kV/cm) (MPa · m−1/2) (C · m−3/2) (N/m) (N/m)

1 66.0 10.47 0.593 1.587e-3 −86.183 13.52

2 72.0 5.24 0.652 0.879e-3 −17.379 10.07

3 79.0 2.62 0.726 0.535e-3 0.689 8.916

4 97.0 0.0 0.877 0.212e-3 8.851 8.757

5 108.0 −2.62 0.976 −0.124e-3 5.352 7.268

6 126.0 −5.24 1.165 −0.434e-3 −7.544 6.274
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KIV c have been computed by means of the adaptive finite element program
πCRACK. GM is the mechanical part, introduced in [11], of the energy release
rate G. Gc and GM

c have been obtained using KIc, KIIc = 0 and KIV c, as well
as Irwin’s matrix and Irwin’s formula, both cited in [6].

Table 3. Comparison of energy release rates with values from the literature.

No. Gc Ḡc [2] |∆Gc| /Ḡc GM
c ḠM

c [2]
˛

˛∆GM
c

˛

˛ /ḠM
c

(N/m) (N/m) (%) (N/m) (N/m) (%)

1 −86.183 −85.91 0.32 13.52 13.26 1.96

2 −17.379 −17.38 0 10.07 10.01 0.6

3 0.689 0.44 56.59 8.916 8.66 2.96

4 8.851 8.81 0.46 8.757 8.64 1.35

5 5.352 4.86 10.12 7.268 6.61 9.95

6 −7.544 −8.77 13.97 6.274 4.93 27.26

In Table 3, the values of Gc and GM
c from Table 2 are compared with the

values reported in [2]. Fluctuation of the relative error can be observed. However,
most of the corresponding results are in agreement. In Fig. 7, the dependence of
KIc, Gc and GM

c on KIV c is plotted on the basis of Table 2. All three functions
are not constant. Assuming that the fracture toughness K⊥

c is equal to the
intensity factor KIc, it can be easily recognized that the force F = 85 N, lying
slightly over the critical force in Table 2, and electric field E2 = 2.62 kV/cm
lead to satisfaction of the crack propagation condition (5.4). Consequently, the

0

0-5 5 10 15 20

GM
c · 10−1 (N/m)

Gc · 10
−2 (N/m)

KIc (MPa · m1/2)

KIV c · 10
4 (C · m−3/2)

-1

-0.5

0.5

1

1.5

Fig. 7. Dependence of energy release rates Gc, GM
c and mechanical intensity factor KIc on

dielectric intensity factor KIV c.
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crack initiates and an accellerated propagation takes place under constant force
loading. By means of the program πCRACK, a quasi-static simulation without
inertia effects was carried out.

Fig. 8. Finite element meshes generated just before one of the six crack propagation steps.

In Fig. 8, finite element meshes are shown which have been automatically gen-
erated during the simulation of crack growth. Thereby, only those meshes are
chosen which have been generated just before one of the crack propagation steps.
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crack propagation or adaptive step

0
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8

10 20 30 40 50 60 70

KI (MPa · m1/2)

KII (MPa · m1/2)

KIV · 103 (C · m−3/2)

Fig. 9. Intensity factors for crack propagation and adaptive steps for F = 85 N and
E2 = 2.62 kV/cm.

In Fig. 9, mechanical and dielectric intensity factors are plotted as a func-
tion of crack propagation or adaptive step. Six crack propagation steps are
performed, each followed by adaptive steps until stabilization of the intensity
factors. The stabilized intensity factors KI and KIV as well as the intensity
factor KIc are plotted in Fig. 10. Thereby, the dependence of KIc on KIV c

crack propagation or adaptive step

0

0

2

4

6

8

10 20 30 40 50 60 70

KI (MPa · m1/2)

KIc (MPa · m1/2)

KIV · 103 (C · m−3/2)

Fig. 10. Converged intensity factors KI and KIV as well as the corresponding fracture
toughness KIc for propagating crack under F = 85 N, E2 = 2.62 kV/cm.
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has been taken into account. Since the experimental data used in this paper
are available only for discrete points, linear interpolation and extrapolation
had to be applied to obtain values of KIc for the computed values of KIV .
Analyzing the diagram in Fig. 10, one can easily conclude that the change
of KIc due to the electric field can be neglected for the experiment under
consideration.

6.2. Three-point bending specimen

In Fig. 11, the model of the analyzed three-point bending specimen is pre-
sented. The voltage U generates the electric field E2 = 5 kV/cm. The specimen
is loaded with the force F = 165 N. In [15], different specimens with three
locations of the initial crack with respect to the axis of symmetry of the spec-
imen have been experimentally investigated. Since the location on the axis of
symmetry leads to qualitatively similar results to the ones of the compact ten-
sion specimen, only the two remaining asymmetric initial crack configurations
are analyzed in this publication. The complete set of results is presented for
the specimen with the 4 mm off-center initial crack. For the specimen with the
2 mm off-center initial crack, only the computed crack paths for the anisotropic
and isotropic fracture toughnesses are shown. Once again, the stiffness of the
thin, flexible, metallic electrodes can be neglected compared with that of the
piezoelectric ceramic.

U

F

poling

cracks

metallic
electrodes

19.1

9

4

22

17.1

Fig. 11. Three point bending specimen model.

In Fig. 12, the initial finite element triangulation as well as the finite element
mesh, obtained in the twelfth refinement step of the implemented adaptive algo-
rithm are depicted. In Fig. 13, values of the computed intensity factors are plot-
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Fig. 12. Finite element meshes: initial (left) and after twelve refinement steps (right).

refinement step

0
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KI (MPa · m1/2)

KII (MPa · m1/2)

KIV · 103 (C · m−3/2)

-0.3

0.3

0.6

0.9

Fig. 13. Adaptive convergence of intensity factors.

ted as a function of the refinement step. Fast stabilization of the intensity factors
can be observed. Assuming that the fracture toughness K⊥

c = 0.63 MPa · m−1/2

and assuming that the fracture toughness distribution Kc (θ) do not depend
on the electric field but is only expressed with Eq. (5.1), the crack propa-
gation condition (5.4) is satisfied. Consequently, crack propagation analysis is
possible.

In Fig. 14, finite element meshes are depicted which have been automatically
generated during the simulation of crack growth. Thereby, only those meshes
are chosen which have been generated just before one of the crack propagation
steps. In Fig. 15, intensity factors are plotted as a function of crack propagation
or adaptive steps. Six crack propagation steps each are followed by adaptive steps
until stabilization of the intensity factors. As a consequence of the anisotropic
fracture touhgness, the mechanical intensity factor KII is not equal to zero along
the whole crack path. If one assumes the isotropic fracture toughness, the crack
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Fig. 14. Finite element meshes generated just before one of the six crack propagation steps.

crack propagation or adaptive step
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Fig. 15. Intensity factors for crack propagation and adaptive steps (anisotropic fracture
toughness).
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Fig. 16. Intensity factors for crack propagation and adaptive steps (isotropic fracture
toughness).
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Fig. 17. Modified hoop stress intensity factor around the crack tip before the first
propagation step.

propagates along the path, where the mechanical intensity factor KII is equal
to zero. This fact can be observed in Fig. 16. To analyze the crack propagation
angle in the first crack propagation step for both the isotropic and anisotropic
fracture toughnesses, the modified hoop stress intensity factor is shown in Fig. 17
as a function of the angle θ. The maxima of the functions for the isotropic and
anisotropic case lie at 25◦ and 7◦, respectively. The result for the anisotropic case
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is much closer to the experimentally obtained value in [15], i.e. 5◦. Consequently,
the anisotropy of the fracture toughness is an important factor influencing the
crack propagation path. In Fig. 18, crack paths are presented for the anisotropic
and isotropic fracture toughnesses, as well as 4 mm and 2 mm off-center initial
cracks.

K
||
c = K⊥

c

K
||
c = 2K⊥

c

Fig. 18. Crack paths for anisotropic and isotropic fracture toughnesses as well as 4 mm
(lower figure) and 2 mm (upper figure) off-center initial cracks.

To give the Reader an insight into the efficiency of the finite element algo-
rithm used in this publication, the following statements can be formulated. The
computations of stationary crack problems take several minutes on a middle class
PC with one processor. The simulations of propagating crack problems can take
up to several hours on the same type of computers.

7. Conclusions

The self-developed adaptive finite element computer program πCRACK can
be efficiently used for simulations of both the stationary and propagating cracks
in two-dimensional piezoelectric components. The mechanical and dielectric in-
tensity factors, the mechanical and total energy release rates as well as crack
paths can be computed with high accuracy. The analysis of the propagating
crack in the compact tension specimen takes into account the fracture toughness
change due to the change of the electric field in the domain. The computations
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show, however, that the increase of the mechanical intensity factor KI during
crack growth is much higher than the change of the fracture toughness. Con-
sequently, for the experiment under consideration, the influence of the electric
field on the mentioned toughness can be neglected during crack propagation.
In the analysis of the propagating crack in the three-point bending specimen,
the importance of the fracture toughness anisotropy assumption is tested. Com-
parison of the computed and experimentally obtained crack propagation angles
in the first crack growth step proves this assumption to be essential. On the
other hand, a nonnegligible deviation of the computed and experimentally ob-
tained crack paths can be observed for succeeding crack growth steps. One of the
potential reasons may be associated with inertia effects during dynamic crack
propagation in the experiments. This fact should be taken into account more
carefully in the future developments.
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