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Modelling and simulation of the curing process of polymers
by a modified formulation of the Arruda–Boyce model
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A phenomenologically motivated small strain model and a finite strain gen-
eral framework to simulate the curing process of polymer have been developed and
discussed in our recently published papers [1, 2, 3, 4]. In order to illustrate the ca-
pability of the finite strain framework proposed earlier, only the micromechanically-
inspired 21-chain model and the phenomenologically motivated Neo-Hookean model
(energy function) have been demonstrated so far. The Arruda–Boyce model (well-
known as the 8-chain model in the elastic case and Bergström–Boyce model [5, 14] in
the viscoelastic case) is a prototype hyperelastic model for polymeric materials. This
follow-up contribution presents an extension of the Arruda–Boyce model [6] towards
modelling the curing process of polymers. The necessary details, i.e. the stress tensor
and the tangent operator, for the numerical implementation within the finite element
method, are derived. The curing process of polymers is a complicated process where
a series of chemical reactions have been activated, which will convert low molecu-
lar weight monomer solutions into more or less cross-linked solid macromolecular
structures via the chemical conversion. This paper will model the elastic behaviour
and shrinkage effects of the polymer curing process in the isothermal case using the
Arruda–Boyce model. Several numerical examples have been demonstrated to verify
our newly proposed, modified approach in case of curing process.
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1. Introduction

There are wide-range applications of polymeric materials, especially for
adhesives in household usages and in industrial sectors [12]. Normally, adhe-
sive materials are used in the uncured stage (formation phase) in many cases,
e.g. for adhesives in the automotive, electronics or aerospace industry. In order
to predict different mechanical behaviours during curing, one can observe an in-
creasing demand for constitutive models and simulation methods that consider
a time or degree of cure dependence of the mechanical properties. The curing
process is a phase transition process from the (viscous) liquid phase to the (vis-
coelastic) solid phase via chemical reactions, with the formation and crosslinking
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of new polymer chains. Note that this transition process is modeled by the time-
dependent material parameters in a continuum sense rather than modelling the
chemical transformation of the underlying material structures.

A comprehensive and fair review on the small and large strain constitutive
models for simulating the curing process of polymers has been discussed in Hos-
sain et al. [1, 2, 3]. Although several approaches can be found in the literature
[24, 25] for modelling of the curing processes, but these efforts are mainly re-
stricted to model residual stress build-up in polymer composites during curing.
Kiasat developed a small-strain curing model for isothermal case after performing
considerable illustrative experimental works. This simple model is based on the
assumption of time-dependent material parameters within the framework of lin-
ear viscoelasticity. Additionally, he assumes that new cross-links form unstrained
and stress-free, i.e. new cross-links will not carry any load applied earlier. An-
other excellent but complicated approach for polymer curing has been proposed
by Adolf and co-workers in a series of papers [10, 11, 12], in which they pro-
posed both small-strain and finite strain constitutive models. Recently, Lion and
Höfer [8] developed a phenomenologically-motivated thermo-viscoelastic cou-
pled curing model for large strain curing. Later on, this model is used by the same
research group in different practical applications, i.e. curing of bone-cement [9].
The modular structure of this model makes it attractive since it decomposes the
deformation gradient into mechanical, thermal and chemical shrinkage parts, in
order to account for thermally and chemically induced volume and temperature
changes.

In the earlier proposed finite strain framework for curing, we only used the
recently proposed 21-chain energy function from a group of micromechanical
models. The 21-chain model, also known as micro-sphere model [20, 21, 22],
is computationally costly since it requires loops over the 21-direction of a unit
sphere at each Gauss-point level. Additionally, the viscoelastic part of the energy
function of the 21-chain model is somehow phenomenologically motivated, i.e.
there is no micromechanical explanation of its underlying material parameters.
On the other hand, the Arruda–Boyce model is well-known in the polymeric
material modelling community which is comparatively easy to compute and has
already been implemented in some widely-used commercial softwares. Most in-
terestingly, this model has a micromechanical explanation of its viscoelastic ex-
tension and evolution laws [5, 14]. The aim of this contribution is to apply the
previously proposed finite strain framework to the Arruda–Boyce energy func-
tion and to extend it to the curing process of polymers in isothermal conditions.
The necessary ingredients for the finite element implementation, i.e. a full deriva-
tion of stress tensor and consistent tangent operator, which are essential for the
iterative solution of boundary value problems within a finite element scheme,
have been derived.
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The paper is organized as follows: In Section 2, the main algorithmic frame-
work which was discussed in our previous papers are reproduced in a comprehen-
sive way. Section 3, a short review on the Arruda–Boyce model and its detailed
extension towards the curing process modelling are demonstrated. In Section 4,
the modelling approach for the curing shrinkage via the multiplicative decom-
position is described briefly. Section 5, the material parameters evolution during
curing is discussed shortly. In Section 6, some illustrative numerical examples
are presented to make our proposed model plausible. Finally, concluding remarks
close the paper.

2. Curing simulation framework

A thermodynamically consistent general framework for finite strain elastic curing
modelling in a rate-form (hypoelastic) was proposed in our previous publications
[2, 3] as

(2.1) Ṡ(t) =
1

2
C(t) : Ċ(t),

where S and C denote the second Piola-Kirchhoff stress tensor and the right
Cauchy-Green strain tensor, respectively. In Eq. (2.1), ˙(•) denotes the material
time-derivative and C(t) describes the time-dependent stiffness operator as de-
rived from the free energy density Ψ of an arbitrary hyperelastic constitutive
model via

(2.2) C = 4
∂2Ψ

∂C2
.

Note that in our model we allow C to obey the time-dependent material pa-
rameters. This formulation can be shown to be thermodynamically consistent
by introducing an energy function

Φ(t) =
1

2

t
∫

0

[C′(s) : [E(t) − E(s)]] : [E(t) −E(s)] ds,

where C
′(s) = dC(s)/ds and E is the Green–Lagrange strain tensor. The relation

(2.1) is a tensor-valued, ordinary differential equation which can iteratively be
solved by applying numerical integration schemes such as the trapezoidal method
or the Euler backward method. By discretizing with the unconditionally stable
implicit Euler backward scheme, it yields

(2.3) Sn+1 = Sn +
1

2
C

n+1 : [Cn+1 −Cn].
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In order to incorporate a constitutive model in the form suited for a finite el-
ement implementation, a consistent linearisation of the stress formulation (2.3)
with respect to the strain is necessary. The computation of the current tangent
operator introduces a sixth-order tensor, namely the derivative of the current
material specific stiffness operator with respect to the strain as

(2.4) E
n+1 = 2

∂Sn+1

∂Cn+1
= C

n+1 + [Cn+1 − Cn] : A
n+1,

where An+1 = ∂C
n+1/∂Cn+1. In the following sections, the framework for the

simulation of curing materials described above will be applied for the Arruda–
Boyce hyperelastic model. From the free energy of the Arruda–Boyce model, the
stiffness operator C and the corresponding tangent operator E are derived.

3. Arruda–Boyce base model

The Arruda–Boyce model [6, 19] is a classical and widely-used constitutive
model using the Langevin chains statistics. The constitutive relation is based
on an eight chains representation of the underlying macromolecular network
structure, where the individual chains use the non-Gaussian behaviour for fi-
nite extensibility. This model accurately captures the network deformation up
to the maximum level while requiring only two material parameters, shear mod-
ulus and number of segments per chain. Since these two material parameters
have a micromechanical explanation which links the physics of molecular chain
orientation involved in the deformation of rubber, the Arruda–Boyce model rep-
resents a simple and accurate constitutive model for finite deformation of poly-
meric materials. It is noted here that the unit volume element is assumed to have
edges parallel to the principal isochoric directions which is composed of 8 chains
oriented in the diagonal form (hence most-frequently the Arruda–Boyce model
is termed as the 8-chain model) from the center of the volume to its corners,
see Fig. 1.

If the chain conformation incorporates the non-Gaussian statistics for a ran-
dom walk single chain, then the energy function ϕi of a particular chain consisting
of N identical segments as has been introduced by Kuhn and Grün [23], i.e.

(3.1) ϕ(λr) = kΘN

[

λrL−1(λr) + ln
L−1(λr)

sinhL−1(λr)

]

,

where λr = λ/
√
N denotes the relative chain stretch, k,Θ are Boltzmann’s

constant and absolute temperature, respectively, and L(•) = coth (•) − 1/(•) is
the Langevin’s function. There are several ways proposed in the literature [4, 21]
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Fig. 1. Arruda–Boyce model: undeformed and deformed configurations.

to find the inversion of the Langevin function (one often uses L−1 to denote it),
the Pade approximation is one of them as

(3.2) γ := L−1(λr) ≈ λr
3 − (λr)

2

1 − (λr)2
.

According to certain literature, e.g. [14, 16, 20], the Pade approximation has
advantages over the polynomial approximations , i.e. it has a simple form which
shows the singular behaviour of the inverse Langevin function at λr = 1 with
good results. To obtain the macro-level free energy from the free energy of a single
chain, the averaging should be performed via Ψ(C, J) = n〈ϕ(λr)〉; for details,
see cf. Lulei [21]. Note that now the relative macro-stretch λr will be related to
the right Cauchy–Green tensor via

λr =

√

1

3N
[λ2

1 + λ2
2 + λ2

3] =

√

trC

3N
,

where λi (i = 1, 2, 3) are the eigenvalues of the right Cauchy-Green tensor. Using
the relation for the shear modulus as µ := nkΘ and adding a penalty term as in
the Neo–Hookean case, the free energy density of the 8-chain model finally reads

(3.3) Ψ(C, J) = µN

[

γλr + ln
γ

sinh γ

]

+
1

2
κ(lnJ)2 − µ lnJ,

where κ is the compression modulus. Subsequently, the curing simulation frame-
work requires the computation of the current stiffness and tangent operator.
Application of Eq. (2.2) to (3.3) yields

C
n+1 = 4

∂2Ψ

∂C2
=

4µn+1Nn+1

9Nn+1 [1 − λ2
r ]

2 [I ⊗ I] + κn+1
A(3.4)

− 2
[

µn+1 − κn+1 lnJ
]

B,
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where Nn+1, κn+1 and µn+1 are cure-dependent material parameters termed as
the number of segments per chain, the bulk and shear moduli, respectively. The
second order identity tensor I is defined as I = δijei⊗ej , δij being the Kronecker
delta. For a detailed derivation, the reader is referred to e.g. [4, 17, 18]. The
fourth-order tensors A and B appearing in Eq. (3.4) can be written in indical
notation as in the Appendix. Another partial derivative with respect to C yields
the sixth-order tensor which is also a part of the current tangent operator for
the Arruda–Boyce elastic curing model

A
n+1 =

∂C
n+1

∂C
(3.5)

=
8µn+1Nn+1

27N2,n+1[1 − λ2
r ]

3
[I ⊗ I ⊗ I]

+ κn+1[B + 2 lnJC + B ⊗C−1] − 2µn+1
C,

with the abbreviations B,C as defined in the Appendix and also in Section 4
of [2]. Up to this section, all necessary ingredients required for the Arruda–Boyce
elastic curing model are ready.

4. Modelling curing shrinkage

The curing shrinkage is one of the most important pathological phenomena
observed during polymer curing, which means the reduction of the specific vol-
ume due to chain growth and/or cross-linking that may show significant resid-
ual stresses and/or strains in case of specimen held within fixed boundaries
during curing. Two distinct approaches to incorporate the shrinkage effect into
constitutive models have been proposed and discussed in details in our earlier
papers [2, 3], i.e.: (1) the superposition of an exponentially decaying shrinkage
strain function, which has been proposed and demonstrated by Kiasat [13],
and (2) a multiplicative decomposition of the deformation gradient, advocated
by Lion and Höfer [8]. One curing shrinkage approach will be recapitulated
briefly in order to apply it in case of Arruda–Boyce curing model. The applica-
tion of a multiplicative decomposition of the deformation gradient is frequently
used in viscoelasticity and in viscoplasticity, but within the context of curing
shrinkage has been first suggested by Lion and Höfer [8]. Decomposing the
deformation gradient into two parts, i.e. a stress producing mechanical part and
a volume reducing shrinkage part yields

(4.1) F = Fm · Fs with Fs = [1 + αs]1/3I .

Therein, α∈ [0, 1] denotes the degree of cure, cf. [1], and s≤0 is an user-defined
parameter controlling the magnitude of the shrinkage. From the usual thermo-
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dynamical argumentation, the corresponding second Piola-Kirchhoff stress is ob-
tained

(4.2) S = [1 + αs]−2/3Sm,

with the mechanical stress Sm. The necessary tangent operator is again obtained
by linearising the stress with respect to the strain for which the chain rule yields

(4.3) E = [1 + αs]−4/3
Em,

with Em = 2∂Sm/∂Cm denoting the mechanical tangent operator that has to be
calculated. Both Eqs. (4.2) and (4.3) show that without application of external
(mechanical) load, stress will be generated due to the chemical shrinkage.

5. Material parameters evolution

The temporal evolution of the material parameters during curing has been
demonstrated in our previous papers [1, 2] and also in Dal and Kaliske [7],
where a simple expression describing such a behaviour for the shear modulus is

(5.1) µ(t) = µ0 + [µ∞ − µ0][1 − exp (−κµt)],

whereas the initial and final values µ0 and µ∞, as well as the curvature para-
meter κµ, are required. Maintaining the mass conservation principal, the current
number of chain segments in a single chain can be calculated in the way following,

n(t)N(t) = n0N0 ⇒ N(t) =
µ0N0

µ(t)
,

i.e. if the initial values of µ0 and N0 are prescribed, the evolution of µ(t) will
provide the current value for the number of chain segments, N(t).

6. Numerical examples

In this section, several numerical examples are presented to demonstrate
that the proposed extension of the Arruda–Boyce model to the case of curing
simulation, can reproduce the typical mechanical behaviour during isothermal
curing. In an attempt to verify the extension, two benchmark simulations are
presented which were also discussed in our earlier publications [2] with different
energy functions, i.e. a gain in stiffness and a stress rate of zero in case when the
strain rate becomes zero. Initially, one one-dimensional example which reflects
the behaviour of a single eight-noded brick element with a prescribed uniax-
ial stretch history and parameter evolution are presented, see Fig. 2. Later on,
two three-dimensional examples are presented, i.e. a plate with a centered hole
(symmetric half-part) is studied to demonstrate the fact that the material be-
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Fig. 2. a) Evolution of shear modulus µ(t) as in Eq. (5.1) where [µ0, µ∞, κµ, N0] =
[0.001 MPa, 0.5 MPa, 0.0925 s−1, 104] and applied load history λ(t) to the Arruda-Boyce elastic

curing model. b) First Piola stress vs. time. c) First Piola stress vs. stretch.

comes stiffer during a curing process, and another example is presented to show
the shrinkage-induced stress development if the specimen is held within fixed
boundaries during curing. In order to avoid more complexity, the bulk modulus
evolution has always been calculated from the current shear modulus via

κ(t) =
2µ(t)

3
[1 + ν][1 − ν]−1.

Due to lack of sufficient experimental data for the evolution of Poisson’s ratio
during curing, we follow O’Brien et al. [24] assumption of a constant ν, e.g.
ν = 0.35.

6.1. One-dimensional example

In order to substantiate whether the proposed extension of the Arruda–Boyce
model reproduces the central assumption upon which the finite strain curing
framework is based, i.e. the gain in stiffness during the advancement of curing
and no stress-increment in case the strain rate becomes zero, a simple one-
dimensional uniaxial tension test using a single finite element is presented here.
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In this simulation, a three-phase deformation, i.e. pull-hold-pull, is applied con-
sisting of a linear increase to λ = 1.05 (continuum/macroscopic stretch) within
the first five seconds, which is followed by forty seconds holding and another
linear increase to λ = 1.1 during the last five seconds, cf. Fig. 2a. Following the
temporal evolving nature of the shear modulus during curing as presented in the
literature [13], the simplest possible form, i.e. an exponential saturation function
as depicted in Fig. 2a, is used in the simulation. The resulting stress responses
versus time and stretch are given in Figs. 2b and 2c. The main assumption that
is considered during our model development, i.e. the stiffness increase during
curing has no impact on the stress response of a constant deformation state, is
correctly reproduced, which is reflected by the constant lines between 5 and 45
seconds (Fig. 2b) and, implicitly, by the kinks at λ = 1.05 that stem from the
continuous increase of µ (Fig. 2c).

6.2. Three-dimensional examples

To demonstrate the stiffness gain due to curing, a three-dimensional plate
with a hole in its center is considered. This example represents a typical boundary
value problem with inhomogeneous stress distribution under load. Its dimensions
are 60×12×2 mm3 and the hole has a diameter of 6 mm. The plate is discretised
by 544 eight-noded hexagonal elements and is supported as depicted in Fig. 3a.
Due to symmetry boundary conditions, only one half of the geometry has been

(a)

(b)

(c)F

F

Fig. 3. Demonstration of stiffness gain: inhomogeneous 3D-example, Arruda–Boyce elastic
curing model; a) initial configuration, boundary conditions and loading; b) deformation and
Cauchy stress after ten loadsteps ∆Fx = 0.6 N ; c) stress-free but still deformed (due to stiffness

gain) after ten reverse loadsteps ∆Fx = −0.6 N .



630 M. Hossain, P. Steinmann

taken into consideration. Force increments of 0.6N are applied at the upper
edge to achieve elongations in the x-direction. While being loaded, the specimen
undergoes elastic curing, whereas

[µ0, µ∞, κµ, N0] = [0.0001 MPa, 1.5 MPa, 0.5 s−1, 1 · 105].

Figures 3b and 3c depict the resulting deformations and Cauchy stresses in x-
direction after ten tensile and another ten compressive loadsteps. First, tensile
stresses and a significant deformation arise, cf. Fig. 3b, while after the second
ten loadsteps of equal magnitude but reverse direction, the plate is stress-free
but, due to the interim stiffness increase, still deformed, cf. Fig. 3c.

(b)(a)

Fig. 4. a) Curing shrinkage of a three-dimensional thin-plate subjected to fixed boundary
conditions; b) deformed shape and (Cauchy) stress in x-direction after 20s of curing. Arruda–
Boyce model extended by multiplicative deformation approach of Sec. 4. Parameters used are:

[µ0, µ∞, κµ, s, N0] = [0.0001 MPa, 1.5 MPa, 0.25 s−1,−0.1, 2 · 106].

As we had discussed earlier, curing shrinkage is another important phe-
nomenon which is nicely captured by the above-mentioned model. To prove
the correct behaviour of our curing models for real three-dimensional struc-
tures, we consider an inhomogeneous thin-plate example which has dimensions
of 40 × 10 × 0.5 mm3 and being discretised by eight hundred eight-noded hex
elements as depicted in Fig. 4a, cf. [15]. The parameter set used here is

[µ0, µ∞, κµ, s,N0] = [0.0001 MPa, 1.5 MPa, 0.25 s−1,−0.1, 2 · 106].

Boundary condition and loading are applied as depicted in Fig. 4a, i.e. upper
and lower parts are fixed, the two short parts are free to move. It is evident from
Fig. 4b that without application of external (mechanical) load, a substantial
amount of residual stress and strains are generated due to curing shrinkage of
ten percent (s = −0.1).

7. Conclusion

In this contribution, an extension of the Arruda–Boyce model for the mod-
elling of curing processes has been proposed with all necessary ingredients, i.e.
the stress update and tangent operator required for finite element implemen-
tation. Although, the main three-dimensional framework for the simulation of
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polymeric materials undergoing finite strain curing processes has been devel-
oped earlier, this new extension will help those who are more familiar with the
Arruda–Boyce constitutive model. The numerical examples demonstrate that
the extended approach is suitable to correctly reproduce the relevant phenom-
ena observable in curing polymers. Moreover, two important aspects of curing
process, i.e. the extension towards viscoelastic and temperature effects are going
to be dealt with in a future work.

8. Appendix

Various fourth and sixth-order tensors, i.e. A, B, B, C appearing in Eqs. (3.4)
and (3.5), are defined as

(A)ijkl =
(

C−1 ⊗C−1
)

ijkl
= C−1

ij C
−1
kl ,(8.1)

(B)ijkl =

(

∂C−1

∂C

)

ijkl

= −1

2

[

C−1
ik C

−1
jl + C−1

il C
−1
jk

]

,(8.2)

(B)ijklpq =
∂(C−1

ij C
−1
kl )

∂Cpq
=
∂C−1

ij

∂Cpq
C−1

kl + C−1
ij

∂C−1
kl

∂Cpq
(8.3)

= −1

2

[

C−1
ip C

−1
jq C

−1
kl + C−1

iq C
−1
jp C

−1
kl

+ C−1
ij C

−1
kp C

−1
lq + C−1

ij C
−1
kq C

−1
lp

]

,

(C)ijklpq = −1

2

∂(C−1
ik C

−1
jl + C−1

il C
−1
jk )

∂Cpq
(8.4)

=
1

4

[

C−1
ip C

−1
kq C

−1
jl + C−1

iq C
−1
kp C

−1
jl

+ C−1
ik C

−1
jp C

−1
lq + C−1

ik C
−1
jq C

−1
lp

+ C−1
ip C

−1
lq C

−1
jk + C−1

iq C
−1
lp C

−1
jk

+ C−1
il C

−1
jp C

−1
kq + C−1

il C
−1
jq C

−1
kp

]

.

References

1. M. Hossain, G. Possart, P. Steinmann, A small-strain model to simulate the curing
of thermosets, Computational Mechanics, 43, 6, 769–779, 2009.

2. M. Hossain, G. Possart, P. Steinmann, A finite strain framework for the simulation
of polymer curing. Part-I: Elasticity, Computational Mechanics, 44, 621–630, 2009.



632 M. Hossain, P. Steinmann

3. M. Hossain, G. Possart, P. Steinmann, A finite strain framework for the simulation
of polymer curing. Part-II: Viscoelasticity and shrinkage, Computational Mechanics, 45,
1, 210–129, 2010.

4. M. Hossain, Modelling and computation of polymer curing, Dissertation, University of
Erlangen-Nuremberg, Germany, 2010.

5. J.S. Bergström, M.C. Boyce, Constitutive Modeling of the large strain time-dependent
behaviour of elastomers, Journal of Mechanics and Physics of Solids, 46, 931–954, 1998.

6. E.M. Arruda, M.C. Boyce, A three-dimensional constitutive model for the large stretch
behaviour of rubber elastic materials, Journal of Mechanics and Physics of Solids, 41, 389–
412, 1993.

7. H. Dal, M. Kaliske, Bergström–Boyce model for nonlinear finite rubber viscoelasticity:
theoretical aspects and algorithmic treatment for the FE method, Computational Mechan-
ics, 44, 6, 809–823, 2010.

8. A. Lion, P. Höfer, On the phenomenological representation of curing phenomena in
continuum mechanics, Archives of Mechanics, 59, 59–89, 2007.

9. A. Lion, B. Yagimli, G. Baroud, U. Goerke, Constitutive modelling of PMMA-based
bone cement: a functional model of viscoelasticity and its approximation for time domain
investigations, Archives of Mechanics, 60, 3, 221–242, 2008.

10. D.B. Adolf, J.E. Martin, Calculation of stresses in cross-linking polymers, Journal of
Composite Materials, 30, 13–34, 1996.

11. D.B. Adolf, J.E. Martin, R.S. Chambers, S.N. Burchett, T.R. Guess, Stresses
during thermoset cure, Journal of Material Research, 13, 530–550, 1998.

12. D.B. Adolf, R.S. Chambers, A thermodynamically consistent, nonlinear viscoelastic
approach for modelling thermosets during cure, Journal of Rheology, 51, 23–50, 2007.

13. M. Kiasat, Curing shrinkage and residual stresses in viscoelastic thermosetting resins
and composites, PhD Thesis, TU Delft, The Netherlands, 2000.

14. H. Dal, M. Kaliske, A micro-continuum-mechanical material model for failure of
rubber-like materials: Application to ageing-induced fracturing, Journal of Mechanics and
Physics of Solids, 57, 8, 1340–1356, 2009.

15. J. Retka, P. Höfer, Numerische Simulation aushärtender Klebstoffe, Diploma Thesis,
Universität der Bundeswehr München, 2007.

16. J. Diani, P. Gilormini, Combining the logarithmic strain and the full-network model
for a better understanding of the hyperelastic behaviour of rubber-like materials, Journal
of the Mechanics and Physics of Solids, 53, 2579–2596, 2005.

17. J. Bonet, R.D. Wood, Nonlinear Continuum Mechanics for Finite Element Analysis,
Cambridge University Press, 1997.

18. P. Wriggers, Nonlinear Finite Element Methods. Springer, Berlin 2008.

19. M.C. Boyce, E.M. Arruda, Constitutive models of rubber elasticity: a review, Rubber
Chemistry and Technology, 73, 504–523, 2000.

20. C. Miehe, S. Göktepe, F. Lulei, A micro-macro approach to rubber-like materials:
Part-I. The non-affine micro-sphere model of rubber elasticity, Journal of the Mechanics
and Physics of Solids, 52, 2617–2660, 2004.



Modelling and simulation of the curing process of polymers. . . 633

21. F. Lulei, Mikromechanisch motivierte Modelle zur Beschreibung finiter Deformationen
gummiartiger Polymere: Physikalische Modellbildung und Numerische Simulation, PhD
Thesis, Institut für Mechanik (Bauwesen), University of Stuttgart, 2002.

22. S. Göktepe, Micro-macro approaches to rubbery and glassy polymers: Predictive
micromechanically-based models and simulations, PhD Thesis, Institut für Mechanik
(Bauwesen), University of Stuttgart, 2007.

23. W. Kuhn, F. Grün, Beziehungen zwischen elastischen Konstanten und Dehnungsdop-
pelbrechung hochelastischer Stoffe, Kolloid-Zeitschrift, 101, 248–271, 1942.

24. D.J. O’Brien, P.T. Mather, S.R. White, Viscoelastic properties of an epoxy resin
during cure, Journal of Composite Materials, 35, 883–904, 2001.

25. S.R. White, H.T. Hahn, Process modeling of composite materials: residual stress de-
velopment during cure. Part I. Model formulation, Journal of Composite Materials, 26,
2402–2422, 1992.

Received May 3, 2011; revised version October 6, 2011.




