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Steady streaming effect on the flow of a couple stress fluid

through a constricted annulus
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The oscillatory flow of an incompressible couple stress fluid through an annulus
with mild constriction at the outer wall is considered. The mean pressure drops and
the mean wall shear stress are calculated across the constricted region. The steady
streaming effect on the flow is presented. The variations in the mean pressure drop
and wall shear stress with the size of the catheter, the velocity of the catheter and
couple stress fluid parameter, are studied through graphs.
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1. Introduction

The flows of the fluid in pipes of different shapes are important in many
biological and biomedical systems, the human cardiovascular system and in sev-
eral technological devices. The abnormal and unnatural growth in the lumen
of an artery is called stenosis. Localized atherosclerotic constrictions in arteries
(arterial stenosis) are found predominantly in the internal carotid artery, which
supplies blood to the brain, the coronary artery, which supplies blood to the
cardiac muscles, and the femoral artery, which supplies blood to the lower limbs.
Catheterization refers to a procedure in which a long, thin, flexible plastic tube
(catheter) is inserted into the artery. Catheter procedures can both diagnose and
treat heart and blood-vessel conditions. Angiography, which is used for diagnosis,
is the most common type of heart catheter procedure. The insertion of a catheter
in an artery will form an annular region between the walls of the catheter and
the artery. This will alter the flow field, modify the pressure distribution and
increase the resistance. Hence, the pressure or pressure gradient recorded by
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a transducer attached to the catheter will differ from that of an uncatheterized
artery, how small the size of the catheter may be. Therefore, it is important to
study the effect due to presence of a catheter in the physiological artery flows.

A simple mathematical model for studying blood flow in a stenosed artery
when a catheter is inserted into it, is the flow of the fluid through an annulus
with mild constriction at the outer wall. In recent years, attention has been given
to study blood flow characteristics due to presence of catheter in the lumen of
the artery. Several researchers have studied the flow of blood in catheterized
artery by modeling blood as a Newtonian or non-Newtonian fluid. Roose and
Lykodis [1] studied the fluid mechanics of the uretor with an inserted catheter
by considering the peristaltic wave moving along the stationary cylinder. Mac-

Donald [2] considered the pulsatile blood flow in a catheterized artery and
obtained theoretical estimates for pressure gradient corrections of the catheters,
which are positioned eccentrically, as well as coaxially with the artery. Kara-

halios [3] has studied the effect of catheterization on various flow characteristics
in an artery with or without stenosis. Daripa and Dash [4] have analyzed the
numerical study of pulsatile blood flow in an eccentric catheterized artery, using
a fast algorithm treating blood as a Newtonian fluid.

It is well known that, blood being a suspension of cells, behaves like a non-
Newtonian fluid at low shear rates and during its flow through narrow blood
vessels. Shukla et al. [5] investigated the effects of stenosis on non-Newtonian
flow of the blood in an artery. Philip and Peeyush Chandra [6] have stud-
ied the flow of blood, which has been modeled by a simple micro-fluid in the
core region with a Newtonian fluid peripheral layer, in a tube in the presence
of very mild stenosis. Dash et al. [7] considered the steady and pulsatile flow
in a narrow artery when a catheter is inserted into it and estimated the in-
crease in frictional resistance in the artery due to catheterization, using Casson
fluid model. Sankar et al. [8] discussed the steady flow of Herschel–Bulkley
fluid through a catheterized artery. Sankar and Lee [9] analyzed a two-fluid
Herschel–Bulkley model for blood flow in catheterized arteries. Srivastava and
Srivastava [10] have considered the particulate suspension blood flow through a
narrow catheterized artery. Srivatsava and Rastogi [11] have investigated the
problem of blood flow through a narrow, catheterized artery with an axially non-
symmetrical stenosis using a two-phase macroscopic model of blood (i.e., a sus-
pension of red cells in plasma). Blood flow through a catheterized artery is ana-
lyzed by Sankar and Lee [12], assuming the flow is steady and blood is treated
as a two-fluid model with suspension of all the erythrocytes, in the core region
as a Casson fluid and the plasma in the peripheral region as a Newtonian fluid.

The couple stress fluid theory represents the simplest generalization of the
classical viscous fluid theory that allows for polar effects in the fluids. This
fluid theory shows all the important features and effects of couple stresses and
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results in equations that are similar to Navier–Stokes equations. The main ef-
fect of couple stresses will be to introduce a size-dependent effect that is not
present in the classical non-polar theories [13]. Blood is a suspension of blood
cells [14] and blood cells influence flow characteristics significantly. The model
using Newtonian/non-Newtonian concepts have no additive equations for ac-
counting these size effects in the flow, however micro-continumm theories pro-
posed by Stokes [13], Eringen [15] and Cowin [16] have additive constitutive
equation for accounting the size effects. In view of the above, blood is consid-
ered to be represented by couple stress fluid in the present study. Chaturani

has analyzed the problem of pulsatile flow of couple stress fluid with applica-
tion to blood flow [17]. An analysis of the effects of couple stresses on the blood
flow through thin artery with mild stenosis has been carried out by Sinha and
Singh [18]. Srivastava [19] considered the flow of couple stress fluid through
stenotic blood vessels. Srinivasacharya and Srikanth [20] studied the effect
of couple stresses on the pulsatile flow through constricted annulus.

A class of problems of interest for researchers in fluid mechanics is the con-
tribution of the steady streaming effect, due to the oscillatory nature of the flow.
In an oscillatory flow, the steady motion of the fluid may occur when the real
parts of the components of the velocity vector oscillate with a phase difference
other than π/2. This is due to the generation of a non-zero average force on the
fluid and a non-zero mean flux across the surface in the fluid. The consequent
steady motion of the fluid leads to extensive migration of fluid elements in an
apparently oscillatory system. This drift motion is called the steady streaming.
Schlichting [21] studied the phenomenon of steady streaming about a solid
circular cylinder in a vibrating fluid.

It is well-known that a fluid flow which is dominated by fluctuating compo-
nents will realize in a non-zero time averaged component – a contribution due to
the nonlinearity of the governing equations [22, 23]. This observation was missed
in most of the studies on pulsatile flow of blood, since the models were based
on the linearized Navier–Stokes equations. Although the analyzes were quite
satisfactory in explaining many of the essential characteristics of blood flow in
small arteries, they failed to be adequate in special situations. In fact, when
an oscillatory viscous flow is set up over a wavy surface or wall, the Reynolds
stresses within the fluid generate a steady streaming – a time-independent com-
ponent of motion. Stuart [22] in his classical paper showed that there is an
outer boundary layer within which the steady streaming velocity decays to zero.
Riley [23] reviewed the earlier works on steady streaming analysis and dis-
cussed the formulation of the problem of calculating the steady flow driven by
an oscillating body in fluid in terms of matched asymptotic expansions, under
several different conditions influencing the dynamics of the flow. Hall [24] in-
vestigated the steady streaming in a pipe of slowly varying cross-section when
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an oscillatory pressure difference was maintained between the ends. The results
showed regions of recirculation zones in the Stokes layer near the wall for large
values of the steady streaming Reynolds number. Recently, Sarkar and Ja-

yaraman [25] analyzed a theoretical model to study the combined effects of the
catheter and elastic properties of the arterial wall, on the pulsatile nature of the
blood flow.

In the present study, the oscillatory flow of an incompressible couple stress
fluid through annulus with mild constriction at the outer wall is investigated.
The mean pressure drop and the mean wall shear stress are calculated across the
constricted region. The effects of steady streaming, couple stress fluid parameter
and size of the catheter on mean pressure drop and mean wall shear stress are
reported.

2. Formulation of the problem

Consider the flow of an incompressible couple stress fluid through the artery,
an axisymmetric rigid tube of radius a with a catheter, a coaxial flexible tube of
radius ka (k < 1). The oscillatory nature of the flow will have an influence on the
instantaneous position of the flexible catheter. The movement of the catheter is
considered to be in phase with the rate of flow with small constant amplitude.
The flow is assumed to be axi-symmetric and oscillatory in nature. The stenosis
over a length of the artery is assumed to have developed in an axi-symmetric
manner. The velocity of the catheter is taken as w̃c = wc cos(τ − τ0), where
wc < 1 is the maximum amplitude of the moving catheter and τ0 is the phase
lead of the catheter oscillations.

The equations governing the flow of an incompressible couple stress fluid in
the absence of body force and body couple are:

divq = 0,(2.1)

ρ
dq

dt
= − gradP − µ curl curlq − η curl curl curl curlq,(2.2)

where ρ is the density, q is the velocity vector, η is the couple stress fluid pa-
rameter, P is the fluid pressure, and µ is the fluid viscosity.

The force stress tensor τij and the couple stress tensor mij that appear in
the theory, are given by

τij = (−P + λdiv q)δij + 2µdij − (1/2)εijk[m,k + 4ηωk,rr + ρCk)],(2.3)

mij = 4ηωj,i + 4η′ωi,j ,(2.4)

where 2ω = curlq is the spin vector, ωi,j is the spin tensor, dij is the rate
of deformation vector derived from the velocity vector, p is the fluid pressure
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and ρCk is the body couple vector. The quantities λ and µ are the viscosity
coefficients and η′ and η are the constants associated with couple stresses. These
material constants satisfy the following inequalities:

(2.5) µ ≥ 0, 3λ+ 2µ ≥ 0, η ≥ 0, η′ ≤ η.

The problem has been studied in cylindrical coordinate system (r, θ, z). Since
the flow is axisymmetric, all the variables are independent of θ. Hence, for this
flow the velocity is given by q = (u(r, z), 0, w(r, z)). An approximation to the
stenosed wall is taken as

(2.6) rs(z) =

{

a(1 − f(z)) 0 ≤ z ≤ L0,

a otherwise,

where a is the radius of the artery in non-stenosed portion, L0 is the magnitude
of the distance along the artery over which the stenosis is spread out, and h is
the maximum height of the stenosis. In the absence of the catheter, the model
corresponds to the oscillatory flow in annular region between two concentric
tubes, one of constant radius and the other one of a cross-section varying along
the Z-axis. If the catheter moves considerably away from the axis of the tube,
then the eccentric annulus does not allow for any axisymmetric character of the
flow.

The non-dimensional variables are defined as:

(2.7)
r = ar̃, t = t̃/ω, δ = δ̃a, w = u0w̃, u = δu0ũ, P = (ρu2

0p̃)/δ,

z = (az̃)/δ, wc = w̃c/u0,

where δ = a/L0 emerges as the geometric parameter, ω is the frequency of the
prescribed flow rate, u0 is a typical axial velocity, P is the pressure and q the
flow rate. δ ≪ 1 corresponds to the slowly varying cross-section and enables the
use of lubrication theory.

Introducing the non-dimensional variables into Eqs. (2.1) and (2.2) and drop-
ping the tildes, we get

∂u

∂r
+
u

r
+
∂w

∂z
= 0,(2.8)

δ2 Rw2 ∂u

∂t
+Reδ

3

(

u
∂u

∂r
+ w

∂u

∂z

)

(2.9)

= −Re
∂P

∂r
− δ2

α2

[

F 2 − 1

r2

]2

u+ δ2
[

F 2 − 1

r2

]

u,

Rw2 ∂w

∂t
+ Re δ

(

u
∂w

∂r
+ w

∂w

∂z

)

= −Re
∂P

∂z
+ F 2w − 1

α2
F 4w,(2.10)
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Fig. 1. Schematic diagram of catheterized stenosed artery.

where F 2 = ∂2/∂r2 + 1/r∂/∂r + δ2∂2/∂z2, µa2/η = α2, Re = ρau0/µ is the
Reynolds number and Rw2 = ρa2ω/µ is the Womersley number.

The boundary conditions are the usual no slip and hyper-stick conditions:

(2.11)

w = u = 0 at r = rs(z),

w = w̃c(t), u = 0 at r = k,
(

∂2w

∂r2
− σ

r

∂w

∂r

)

= 0 at r = rs(z) and r = k,

where rs(z) represents the stenotic wall and σ = η′/η is a couple stress fluid
parameter. Boundary condition (2.11) shows that couple stresses (2.4) vanish at
the tube wall and catheter wall.

In addition, we assume constant volume flux at every instant along the tube,
i.e.,

(2.12) Q = cos(t) ∀z.

This helps us to find the alterations in the pressure gradient and hence the
pressure due to the presence as well as the movement of the catheter.

3. Solution of the problem

The above equations obtained are non-linear and hence only a series solution
for the velocity field is determined in powers of the geometric parameter δ. This
amounts to solving the problem for a slowly varying cross-section of the annular
region. This will also require that δ ≪ 1 while Re remains O(1).

Let

(3.1) u = u0 + u1δ + u2δ
2 + · · · ,
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where

(3.2) u0 =
1

2
{u00(r, z)e

it + ū00(r, z)e
−it},

and where ū00 is the complex conjugate of u00. Similar expressions can be written
for w and p. Substituting (3.1) in (2.8)–(2.10) and collecting the coefficients of
various powers of δ on both the sides, we obtain the following set of coupled
linear differential equations.

Zeroth order in δ

The equations corresponding to O(1) terms, i.e. w00, u00, and p00 which are
proportional to eit, are

∂u00

∂r
+
u00

r
+
∂w00

∂z
= 0,(3.3)

∂p00

∂r
= 0,(3.4)

iRw2 w00 + Re
∂p00

∂z
=

(

∂2w00

∂r2
+

1

r

∂w00

∂r

)

− 1

α2

(

∂2

∂r2
+

1

r

∂

∂r

)2

w00.(3.5)

The corresponding non-dimensional boundary conditions become

w00 = u00 = 0 at r = rs(z),

w00 = wce
−it at r = k,

u00 = 0 at r = k,
(

∂2w00

∂r2
− σ

r

∂w00

∂r

)

= 0 at r = rs(z) and r = k,(3.6)

Q00 = 1 ∀z.(3.7)

It can be noted from Eq. (3.4) that p00 is a function of z only. Eq. (3.5) can be
simplified to the form

(3.8) E4w00 − (α2
1 + α2

2)E
2w00 + α2

1α
2
2w00 = −α2 Re

dp00

dz
,

where

E2 =
∂2

∂r2
+

1

r

∂

∂r
, (α2

1 + α2
2) =

µa2

η
and α2

1α
2
2 =

iµa2

η
R2

w.
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The solution of the above equation is given by

w00 = C1(z)I0(α1r) + C2(z)K0(α1r) + C3(z)I0(α2r) + C4(z)K0(α2r)(3.9)

− i
Re

Rw2

dp00

dz
,

where I0(αir) and K0(αir) (i = 1, 2) are the modified Bessel functions of the
zeroth order, of the first and second kind respectively, and C1(z), C2(z), C3(z),
and C4(z) are arbitrary functions of z.

Substituting (3.9) in the Eq. (3.3) we get the velocity component (u00) as

u00 =
r

2iR2
w

∂2p00

∂z2
− 1

α1
[C ′

1(z)I1(α1r) + C ′
2(z)K1(α1r)](3.10)

− 1

α2
[C ′

3(z)I1(α2r) − C ′
4(z)K1(α2r)] +

C5(z)

r
.

The zeroth order flux, given by

Q00 =

rs(z)
∫

k

rw00dr

can be obtained from (3.9) as

Q00 =
C1(z)

α1
[rs(z)I1(α1rs(z)) − kI1(α1k)](3.11)

+
C2(z)

α 1
[rs(z)K1(α1rs(z))] − kK1(α1k)]

+
C3(z)

α2
[rs(z)I1(α2rs(z)) − kI1(α2k)]

+
C4(z)

α2
[rs(z)K1(α2rs(z))] − kK1(α2k)] −

(r2s(z) − k2)

2iR2
w

dp00

dz
.

Solving the system of equations obtained by using boundary conditions (3.6)
and (3.7), we get the values C1(z), C2(z), C3(z), C4(z) and dp00/dz.

3.1. First order in δ (steady streaming solution)

The equations for the first order in δ are

∂u1

∂r
+
u1

r
+
∂w1

∂z
= 0,(3.12)

∂p1

∂r
= 0,(3.13)
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1

4
Re

(

{u00(r, z)e
it + ū00(r, z)e

−it} ∂
∂r

{w00(r, z)e
it + w̄00(r, z)e

−it}(3.14)

+ w00(r, z)e
it + w̄00(r, z)e

−it} ∂
∂z

{w00(r, z)e
it + w̄00(r, z)e

−it}
)

= −Re
∂P1

∂z
+

(

∂2w1

∂r2
+

1

r

∂w1

∂r

)

− 1

α2

(

∂2

∂r2
+

1

r

∂

∂r

)2

w1.

The corresponding boundary conditions are

w1 = u1 = 0 at r = rs(z) and r = k,(3.15)
(

∂2w1

∂r2
− σ

r

∂w1

∂r

)

= 0 at r = rs(z) and r = k,(3.16)

Q1 = 0 ∀z.(3.17)

We observe that the solution has both the steady and unsteady parts. Hence,
we take

w1 = ws(r, z) + wus(r, z, t),(3.18)

u1 = us(r, z) + uus(r, z, t),(3.19)

p1 = ps(r, z) + pus(r, z, t),(3.20)

where the suffix s stands for the steady part and us stands for unsteady part.
The corresponding steady state equations are

∂us

∂r
+
us

r
+
∂ws

∂z
= 0,(3.21)

∂ps

∂r
= 0,(3.22)

1

4
Re

[

u00
∂w̄00

∂r
+ ū00

∂w00

∂r
+ w00

∂w̄00

∂z
+ w̄00

∂w00

∂z

]

(3.23)

= −Re
∂Ps

∂z
+

(

∂2ws

∂r2
+

1

r

∂ws

∂r

)

− 1

α2

(

∂2

∂r2
+

1

r

∂

∂r

)2

ws.

The boundary conditions in terms of ws and us are:

ws = us = 0 at r = rs(z) and r = k,(3.24)
(

∂2ws

∂r2
− σ

r

∂ws

∂r

)

= 0 at r = rs(z) and r = k,(3.25)

Qs = 0 at r = rs(z).(3.26)
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It can be noted from Eq. (3.22) that ps is a function of z only. Eq. (3.23) can
be simplified to the form

(3.27) D2(D2 − α2)ws = α2

{

−Re
∂ps

∂z
− Re

4
[u00

∂w̄00

∂r

+ ū00
∂w00

∂r
+ w00

∂w̄00

∂z
+ w̄00

∂w00

∂z

]}

.

The general solution of the Eq. (3.27) is

ws =
1

m2
[d1(z)I0(αr) + d2(z)K0(αr)] +

[

Re
∂ps

∂z

r2

4
+ d3(z) log(r)

]

(3.28)

− Re
α

4

∫

[I1(αr)V1(r, z) −K1(αr)V2(r, z)]dr + d4(z),

where d4(z) is an arbitrary function of z which is to be determined, and

V1(r, z) =

∫

r

r

[

u00
∂w̄00

∂r
+ ū00

∂w00

∂r
+ w00

∂w̄00

∂z
+ w̄00

∂w00

∂z

]

K1(αr)dr,

V2(r, z) =

∫

r

r

[

u00
∂w̄00

∂r
+ ū00

∂w00

∂r
+ w00

∂w̄00

∂z
+ w̄00

∂w00

∂z

]

I1(αr)dr.

The flux (Qs) given by

Qs =

rs(z)
∫

k

rws dr

can be obtained from (3.28) in the following form:

Qs = − 1

m3
[d1(z){rs(z)I1(αrs(z)) − kI1(αk)}(3.29)

− d2(z){rs(z)K1(αrs(z)) − kK1(αk)}] + Re
∂ps

∂z

r4s(z) − k4

64

+ d3(z)/4[r
2
s(z)(2 log(rs(z)) − 1) − k2(2 log(k) − 1)]

−
rs(z)
∫

k

r

(
∫

[I1(αr)V1(r, z) −K1(αr)V2(r, z)]dr

)

dr

+ d4(z)
r2s(z) − k2

8
.

The arbitrary functions d1(z), d2(z), d3(z) and d4(z) and the pressure gradi-
ent ∂ps/∂z can be obtained by using the boundary conditions (3.24) and (3.26)
and solving the resulting system of equations.
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4. Results and discussion

The numerical calculations have been made by choosing the stenosis geometry
rs(z) as

(4.1) rs(z) =

{

1 − εe−π(z−0.5)2 0 ≤ z ≤ 1,

1 otherwise,

where ε is the maximum height of the stenosis.
The numerical values of arbitrary functions C1(z), C2(z), C3(z), C4(z) and

∂p00/∂z are obtained solving the system of equations Eq. (3.6) and (3.7) using
MATHEMATICA. Similarly, taking the polynomial expressions for the Bessel
functions and using MATHEMATICA, the values of d1(z), d2(z), d3(z) and
d4(z) and ∂ps/∂z are evaluated numerically by solving the system of equations
obtained from the boundary conditions (3.24) to (3.26) for various values of
geometric and fluid parameters. As k represents the ratio of radii (catheter size),
it varies from 0 to 1. k = 0 corresponds to the case when there is no catheter.
The effects of the parameters k and σ on the mean pressure drop and mean
shear stress, are shown graphically. The parameter σ represents the effect of
couple stresses and σ ≤ 1. The range for the catheter velocity (wc) and other
parameters is chosen from the works of earlier authors, given in References.

Mean pressure drop

In view of the above analysis, the mean pressure drop, upto O(δ) analysis, is
defined as

(4.2) ∆ps(z) =

z
∫

0

∂p
s

∂z
dz.

To obtain ∆ps, the calculated values of ∂ps/∂z are integrated numerically using
the trapezoidal rule. It may be noted that ∆ps is the correction of the pressure
drop value corresponding to the O(δ) analysis.

The variation of pressure drop (∆ps) for different values of the parameters is
shown in Figures 2 to 4. Fig. 2 shows the effect of the catheter size k with fixed
Re = 2, Rw = 5, σ = 0.5, δ = 0.5, wc = 0. It is observed that as the size of
the catheter increases, pressure drop also increases. Fig. 3 depicts the effect of σ
for the fixed values of Re = 2, Rw = 5, δ = 0.5, wc = 0. As the parameter σ
increases, pressure drop decreases. It is important to note that the drop is much
higher when compared to the Newtonian fluid as predicted by Jayaraman and
Sarkar. In Fig. 4, the effect of the catheter movement on the pressure drop is
presented. It is seen that as the velocity of the catheter increases, pressure drop
also slightly increases.
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Fig. 2. Effect of k on pressure drop for Re = 2, Rw2 = 5, σ = 0.5, δ = 0.5, wc = 0.

Fig. 3. Effect of σ on pressure drop with k = 0.2, Re = 2, Rw2 = 5, δ = 0.5, wc = 0.

Fig. 4. Effect of wc on pressure drop with k = 0.2, Re = 2, Rw2 = 5, δ = 0.5, σ = 0.5.



Steady streaming effect on the flow of a couple stress fluid 149

Mean wall shear stress

The mean wall shear stress up to O(δ) analysis is

(4.3) Trz =
∂w

s

∂r
− 1

4α2

∂

∂r

(

∂2w
s

∂r2

)

+
1

4α2r2
∂ws

∂r
− 1

4rα2

∂2ws

∂r2
.

Figures 5 to 7 depict the variation of shear stress at the maximum height
of the stenosis for various values of the fluid parameters, catheter size and the
velocity of the catheter respectively. In Fig. 5 the effect of k on the stress for fixed

Fig. 5. Effect of k on shear stress for Re = 2, Rw2 = 5, σ = 0.5, δ = 0.5, wc = 0.

Fig. 6. Effect of σ on shear stress for k = 0.2, Re = 2, Rw2 = 5, δ = 0.5, wc = 0.
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Fig. 7. Effect of wc on shear stress with k = 0.2, Re = 2, Rw2 = 5, δ = 0.5, σ = 0.5.

values of Re = 2, Rw = 5, σ = 0.5, δ = 0.5, wc = 0 is presented. It is observed
that as k increases, stress also increases. Fig. 6 explains the effect of σ on the
stress. It is interesting to note that the contribution of O(δ) terms is significant
for the stress and it decreases as the parameter value increases from 0.2 to 0.8,
which is in agreement with that of the Newtonian case. Fig. 7 depicts the effect
of the flexible nature of the catheter. It is observed that as the movement of the
catheter increases, the stress also increases. However, the effect is not significant.

5. Conclusions

The contribution of the steady streaming effect on the flow of couple stress
fluid, due to the oscillatory nature of the flow is studied. This configuration is
intended as a simple model for studying blood flow in a stenosed artery when
a catheter is inserted into it. The mean pressure drop and the mean wall shear
stress, are calculated across the constricted region. The effects of the couple stress
fluid parameters, size of the catheter and the velocity of the catheter on these
mean quantities are discussed. It is observed that as the size of the catheter and
the velocity of catheter increases, the pressure drop as well as the shear stress
increases, while they decrease when the couple stress fluid parameter σ increases.
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