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Brief Note

Large post-buckling of heavy tapered elastica cantilevers

and its asymptotic analysis
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Complete characteristics of the deformations of a tapered cantilever due
to self weight are studied. Explicit stability criteria for pointy tapered columns and
numerical results for the blunt columns are given. Asymptotic formulas for large
deformations are derived, and the results compare well with those from numerical
integration. It is found that the deformation depends heavily on a non-dimensional
gravity parameter, the degree of taper and the cross sectional shape of the cantilever.
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1. Introduction

The elastic cantilever is a structural element that models poles, masts,
antennas and mechanisms. A very slender or highly flexible cantilever, or elas-
tica, can admit large reversible deformations. The theory for the elastica was
first formulated by Euler [1], who defined the elastica as a slender rod whose
curvature at any point is proportional to the local moment experienced. If the
deformation is due to self weight, it is called a heavy elastica. Note that large
non-negligible body forces, which is equivalent to self weight, can be created by
an acceleration of the system. Greenhill [2] first correctly found the stability
criteria for a standing uniform heavy cantilever. Various aspects of the uniform
heavy elastica cantilever have been reported previously, e.g. [3–9].

Less work has been done on the non-uniform heavy cantilever. The stability
for the vertical pointy heavy cantilever, i.e. the tip tapered into a sharp point,
was solved by Dinnik [10] in terms of Bessel functions. The same problem was
investigated by Stuart [11] for qualitative behaviors. Non-unique solutions for
the inclined pointy tapered cantilever were also reported [12, 13]. There exist
results on blunt (non-pointy) tapered cantilevers with distributed loads [14–16],
but these sources only considered small to moderate post-buckling cases.
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Due to the advancements in flexible materials, large deformations are becom-
ing more important. For tapered heavy elastica, the existing literature is limited
to a few special geometries, and none for large deformations. This is probably
due to the incurred stiffness of the governing equation, such that conventional
numerical integration becomes inaccurate. The present paper considers the large
deformations of general tapered heavy elastica cantilevers. The cantilevers may
have different cross sectional shapes and need not be pointy. Since the governing
equation becomes singular for large deformations, a matched asymptotic per-
turbation method will be used. The results are compared to those from direct
numerical integration.

2. Formulation

Figure 1 shows a cantilever of length L subjected to its own weight. The angle
between the gravity direction and the base inclination is γ. When γ = 0 the
undeformed cantilever is a vertical column, and when γ = π/2 it is a horizontal
cantilever. Let s′ be the arc length from the base and θ be the local inclination
after deformation. A moment balance on an elemental length gives

(2.1) M ′ = M ′ + dM ′ + P ′ sin θ ds′,

where M ′ is the local moment and P ′ is the weight from s′ to the tip

(2.2) P ′ =

L
∫

s′

ρgds′.

Here ρ is the mass per length, which for non-uniform cantilevers is a function
of s′, and g is the gravitational acceleration. Euler’s constitutive relation is

(2.3) M ′ = EI
dθ

ds′
.

Fig. 1. The tapered cantilever under self weight and an elemental segment.
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Here EI is the flexural rigidity, which is also a function of s′. Eqs. (2.1)–(2.3)
give

(2.4)
d

ds′

(

EI
dθ

ds′

)

+ g

L
∫

s′

ρ ds′ sin θ = 0.

Normalize all lengths by L and drop primes. Let EI0 be the flexural rigidity and
ρ0 be the density at the larger fixed (base) end, and

(2.5) EI = EI0l(s), ρ = ρ0r(s).

Eq. (2.4) becomes

(2.6)
d

ds

(

l(s)
dθ

ds

)

+ β

1
∫

s

r(s)ds sin θ = 0,

where β = ρ0gL
3/EI0 is an important non-dimensional parameter characterizing

gravity. The boundary conditions for the cantilever are

θ(0) = γ,(2.7)

dθ

ds
(1) = 0.(2.8)

After θ(s) is obtained, the shape of the deformed cantilever can be determined
from the Cartesian coordinates

(2.9) x =

s
∫

0

cos θ ds, y =

s
∫

0

sin θ ds.

For linearly tapered cantilevers, the rigidity function l(s) and density function
r(s) can be expressed as

(2.10) l(s) = (1 − cs)m, r(s) = (1 − cs)n,

where 0 ≤ c ≤ 1 and m,n ≥ 0 are constants. The cantilever is uniform if c = 0
or m = n = 0. The cantilever is pointy when c = 1, which is the case considered
by most previous authors.

The exponents m and n govern the cross section properties. Fig. 2a shows
the case where the cross section is similar (e.g. circular) and the diameter tapers
linearly. In this acse m = 4 and n = 2. Figure 2b shows the case when the
thickness is constant but the width tapers linearly. If the cantilever bends in the
width direction, along the axis A-A, then m = 3 and n = 1. If it bends in the



210 C. Y. Wang

a) b) c)

Fig. 2. Exaggerated tapered cantilever shapes.

thickness direction, along the axis B-B, then m = 1 and n = 1. Figure 2c shows
a composite cantilever which is composed of two slats held together by a filling
or webbing of negligible mass. If it bends along the axis A-A, then m = 2 and
n = 0. If it bends along the axis B-B, then m = 0 and n = 0, same as the
uniform case. Hwang and Yeh [12] studied only the m = 4, n = 2 case.

3. The stability problem

The stability problem is relevant for the vertically standing cantilever or
column (γ = 0), where the column would not buckle until a critical β value
(βc) is reached. Exact stability criteria can be derived only for the pointy case
(c = 1). Following Dinnik [10] we set ξ = 1−s and Eqs. (2.6) and (2.10) become

(3.1) ξ2
d2θ

dξ2
+mξ

dθ

dξ
+

β

(n+ 1)
ξ3−m+nθ = 0.

The solution can be expressed in terms of Bessel functions J (e.g. [17])

(3.2) θ ∼ ξ(1−m)/2J±| 1−m

3+n−m
|

(

√

β

n+ 1

∣

∣

∣

∣

2

3 + n−m

∣

∣

∣

∣

ξ(3+n−m)/2

)

.

Since the angle θ is finite at the tip at ξ = 0, we can discard the unbounded
solution in Eq. (3.2). Eq. (2.7) gives θ = 0 at the base at ξ = 1. Thus the explicit
stability criteria are

J3(2
√

β/3) = 0 for m = 4, n = 2,(3.3)

J2(2
√

β/2) = 0 for m = 3, n = 1,(3.4)
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J1(2
√

β) = 0 for m = 2, n = 0,(3.5)

J0(2
√

β/2/3) = 0 for m = 1, n = 1.(3.6)

For the uniform column, m = n = 0 and any c, the criterion is

(3.7) J−1/3(2
√

β/3) = 0.

Form Eqs. (3.3)–(3.6) we obtain the critical loads βc = 30.5298,13.1873, 3.67049,
26.0243 respectively, while Dinnik [10] found 30.6, 13.1, 3.67, 26.0, and Hwang

and Yeh [12], who only studied the m = 4, n = 2 case, found 30.5295.
However, most cantilevers are not pointy, but blunt at the tip. Exact criteria

do not exist for the non pointy column (c 6= 1). Linearizing Eq. (2.6) gives

(3.8)
d

ds

(

(1 − cs)m dθ

ds

)

+ β
(1 − cs)n+1 − (1 − c)n+1

c(n+ 1)
θ = 0.

We guess β and set

(3.9) θ(0) = 0,
dθ

ds
(0) = 1.

Eq. (3.8) is then integrated numerically as an initial value problem. At s = 1
we check if Eq. (2.8) is satisfied. Using one-parameter shooting we obtain the
results shown in Table 1. For c = 0, or the uniform column, βc = 7.83735 from
Eq. (3.7) for all m and n. For c = 1, the results of our numerical method agrees
with the exact values from Eqs. (3.3)–(3.6). Only the lowest root is βc, higher
buckling modes exist, but are physically unimportant.

Table 1. Critical loads βc for various tapers.

m,n c = 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

4,2 8.4144 9.0887 9.8887 10.856 12.054 13.584 15.627 18.527 23.029 30.530

3,1 7.9477 8.0762 8.2281 8.4115 8.6391 8.9319 9.3286 9.9112 10.897 13.187

2,0 7.5035 7.1617 6.8105 6.4481 6.0718 5.6779 5.2606 4.8097 4.3039 3.6705

1,1 8.3047 8.8531 9.5069 10.301 11.289 12.553 14.236 16.592 20.133 26.024

Note the critical loads increase with taper c, except for the m = 2, n = 0 case.

4. Asymptotic analysis

An asymptotic solution is possible for large deformations caused by large β.
We shall use the matched asymptotic perturbation method. Let

(4.1) β =
1

ε2
≫ 1.
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Eq. (2.6) shows the interior solution is θ = kπ. Choose k = 1 for the first mode.
In the boundary layer set

(4.2) s = εt, θ = θ0(t) + εθ1(t) + · · · .

After some work, the zeroth order equation is c 6= 0 or 1)

(4.3)
d2θ0
dt2

+ b sin θ0 = 0, b =
1 − (1 − c)n+1

c(n+ 1)

with the boundary conditions

(4.4) θ0(0) = γ, θ0(∞) = π.

Multiply Eq. (4.3) by dθ0/dtand integrate. Using the boundary conditions the
solution is found to be

(4.5) θ0 = π − 4 tan−1[he−
√

bt], h =
1

tan[(γ + π)/4]
.

The first order equation is

d2θ1
dt2

+ bθ1 sin θ0 = cm
d

dt

(

t
dθ0
dt

)

+ t sin θ0(4.6)

= cm

[

2
√
b cos

(

θ0
2

)

− bt sin θ0

]

+ t sin θ0.

Eq. (4.6) although linear, is still formidable. However, we are fortunate to obtain
an exact solution as follows. Let

(4.7) u = he−
√

bt, t =
−1√
b

ln
(u

h

)

.

From Eq. (4.5) one can show

(4.8) sin θ0 =
4u(1 − u2)

(1 + u2)2
, cos

(

θ0
2

)

=
2u

1 + u2
.

We further set

(4.9) θ1 =
cm√
b
H1(u) +

1

b
√
b
H2(u).

Eq. (4.6) gives

u
d

du

(

u
dH1

du

)

− (u4 − 6u2 + 1)

(1 + u2)2
H1 =

4u

(1 + u2)
+

4u(1 − u2)

(1 + u2)2
ln
(u

h

)

,(4.10)

u
d

du

(

u
dH2

du

)

− (u4 − 6u2 + 1)

(1 + u2)2
H2 = −4u(1 − u2)

(1 + u2)2
ln
(u

h

)

.(4.11)
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The solution satisfying H1(0) = 0, H1(h) = 0 is

(4.12) H1 =
u(u2 − h2) + 2u(ln2 h− ln2 u) + 2u ln(u/h)(1 + 2 lnu)

2(1 + u2)
.

The solution satisfying H2(0) = 0, H2(h) = 0 is

(4.13) H2 =
u(u2 − h2) − 2u(ln2 h− ln2 u) + 2u ln(u/h)(1 − 2 lnu)

2(1 + u2)
.

We find

(4.14)
dH1

du
(h) = 1,

dH2

du
(h) = 1.

Note that H1 and H2 are universal functions in the sense that they are inde-
pendent of the cantilever geometry parameters c, b, m,n. These functions are
plotted in Fig. 3 for γ = 0 or h = 1.

Fig. 3. The universal functions for h=1. Top: H1(u), bottom: H2(u).

The normalized moment experienced at the base is

M0 =
dθ

ds
(0) =

1

ε

[

dθ0
dt

(0) + ε
dθ1
dt

(0) + · · ·
]

(4.15)

= 2
√

βb cos
(γ

2

)

−
√
bh

[

cm√
b

dH1

du
(h) +

1

b
√
b

dH2

du
(h)

]

+ · · ·

= 2
√

βb cos
(γ

2

)

− h

(

cm+
1

b

)

+O(β−1/2).
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5. Numerical results

Numerical integration is needed for general post-buckling. If c 6= 0 or 1 Eqs.
(2.6), (2.10) give

(5.1)
d

ds

(

(1 − cs)mdθ

ds

)

+ β
(1 − cs)n+1 − (1 − c)n+1

c(n+ 1)
sin θ = 0.

Guided by Eq. (34) guess M0 = dθ/ds(0). Together with θ(0) = γ, Eq. (5.1)
is integrated by a Runge–Kutta algorithm and we check whether dθ/ds(1) = 0.
Using shooting, the following results are obtained.

Table 2 shows the results for the standing cantilever (column) where γ = 0.
The zero entries are when the column is stable with no deformation. Numerical
integration suffers from stiffness problems and becomes inaccurate for β > 100.
However, our asymptotic approximations become more accurate as β becomes
larger. Since Eq. (5.1) is singular for c = 1, we used c = 0.999 in our numerical
computation.

Table 2a. Base moment M0 for m = 4, n = 2 case, γ = 0.
Values in parentheses are from Eq. (4.15).

β\c 0.1 0.3 0.5 0.7 0.9 0.999

10 2.4835 0.4820 0 0 0 0

20 6.3809 4.5885 2.8896 1.3056 0 0

50
11.731

(11.93)

9.3659
(9.51)

7.0705
(7.09)

4.8703
(4.67)

2.8038
(2.30)

1.8505
(1.18)

100
17.384
(17.50)

14.436
(14.52)

11.565
(11.56)

8.8028
(8.66)

6.2053
(5.86)

5.0160
(4.56)

200
25.30

(25.38)
21.55

(21.60)
17.90

(17.89)
14.40

(14.29)
11.14

(10.90)
9.66

(9.35)

Table 2b. Base moment M0 for m = 3, n = 1 case, γ = 0.
Values in parentheses are from Eq. (4.15).

β\c 0.1 0.3 0.5 0.7 0.9 0.999

10 2.9546 2.2594 1.5451 0.7683 0 0

20 6.7784 5.7101 4.6143 3.4734 2.2376 1.5305

50
12.234
(12.43)

10.800
(10.96)

9.3140
(9.41)

7.7515
(7.76)

6.0649
(5.97)

5.1505
(5.01)

100
18.025
(18.14)

16.267
(16.36)

14.429
(14.49)

12.485
(12.49)

10.383
(10.31)

9.2536
(9.15)

200
26.14

(26.22)
23.94

(24.00)
21.63

(21.66)
19.17

(19.17)
16.51

(16.46)
15.09

(15.02)
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Table 2c. Base moment M0 for m = 2, n = 0 case, γ = 0.
Values in parentheses are from Eq. (4.15).

β\c 0.1 0.3 0.5 0.7 0.9 0.999

5 0 0 0 0 1.0324 1.1977

10 3.4051 3.5280 3.5469 3.4741 3.3175 3.2118

20 7.1852 6.9278 6.6489 6.3514 6.0406 5.8841

50
12.751
(12.94)

12.383
(12.54)

12.016
(12.14)

11.651
(11.74)

11.289
(11.34)

11.112
(11.14)

100
18.686
(18.80)

18.302
(18.40)

17.920
(18.00)

17.542
(17.60)

17.166
(17.20)

16.981
(17.00)

200
27.01

(27.08)
26.62

(26.68)
26.23

(26.28)
25.85

(25.88)
25.46

(25.48)
25.27

(25.29)

Table 2d. Base moment M0 for m = 1, n = 1 case, γ = 0.
Values in parentheses are from Eq. (4.15).

β\c 0.1 0.3 0.5 0.7 0.9 0.999

10 2.7980 1.3711 0 0 0 0

20 6.8875 5.9784 4.9178 3.5393 0 0

50
12.414
(12.63)

11.311
(11.56)

10.101
(10.41)

8.7289
(9.16)

7.0452
(7.77)

5.9419
(7.01)

100
18.215
(18.34)

16.820
(16.96)

15.312
(15.49)

13.648
(13.89)

11.739
(12.11)

10.636
(11.15)

200
26.33

(26.42)
24.51

(26.60)
22.55

(22.66)
20.42

(20.57)
18.03

(18.26)
16.71

(17.01)

The abridged results for different inclination angles γ are given in Table 3.

Table 3a. Base moment M0 for m = 4, n = 2 case.
Values in parentheses are from Eq. (4.15).

γ π/4 π/2 3π/4

β\c 0.1 0.5 0.9 0.1 0.5 0.9 0.1 0.5 0.9

10 3.9633 2.0848 0.8416 3.3630 1.9990 0.9894 1.8925 1.1762 0.6268

20 6.5824 3.9145 1.8019 5.2584 3.3787 1.8492 2.8992 1.9223 1.1181

50
11.312
(11.41)

7.5682
(7.50)

4.2981
(3.74)

8.8297
(8.88)

6.1592
(6.10)

3.8414
(3.47)

4.8222
(4.84)

3.4262
(3.39)

2.2167
(2.04)

100
16.496
(16.55)

11.683
(11.63)

7.4035
(7.03)

12.786
(12.82)

9.3059
(9.26)

6.2442
(5.99)

6.9613
(6.97)

5.1293
(5.11)

3.5252
(3.40)

200
23.79

(23.83)
17.51

(17.48)
11.94

(11.68)
18.36

(18.38)
13.77

(13.74)
9.73

(9.55)
9.98

(9.99)
7.55

(7.53)
5.42

(5.33)
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Table 3b. Base moment M0 for m = 3, n = 1 case.
Values in parentheses are from Eq. (4.15).

γ π/4 π/2 3π/4

β\c 0.1 0.5 0.9 0.1 0.5 0.9 0.1 0.5 0.9

10 4.2061 3.0148 1.7849 3.5300 2.6657 1.7595 1.9789 1.5264 1.0483

20 6.8887 5.2039 3.4028 5.4750 4.2949 3.0256 3.0122 2.4017 1.7417

50
11.732
(11.83)

9.4074
(9.42)

6.8396
(6.67)

9.1352
(9.19)

7.4899
(7.49)

5.6671
(5.54)

4.9836
(5.01)

4.1273
(4.12)

3.1762
(3.11)

100
17.046
(17.10)

14.102
(14.11)

10.799
(10.68)

13.192
(13.22)

11.078
(11.07)

8.7004
(8.62)

7.1771
(7.19)

6.0681
(6.06)

4.8196
(4.78)

200
24.53

(24.57)
20.73

(20.74)
16.44

(16.36)
18.91

(18.93)
16.15

(16.15)
13.02

(12.96)
10.27

(10.28)
8.82

(8.81)
7.16

(7.13)

Table 3c. Base moment M0 for m = 2, n = 0 case.
Values in parentheses are from Eq. (4.15).

γ π/4 π/2 3π/4

β\c 0.1 0.5 0.9 0.1 0.5 0.9 0.1 0.5 0.9

10 4.4589 4.2505 3.9670 3.7038 3.5332 3.3336 2.0687 1.9787 1.8779

20 7.2051 6.8091 6.3930 5.6992 5.4429 5.1801 3.1292 3.0036 2.8760

50
12.166
(12.26)

11.676
(11.73)

11.196
(11.19)

9.4516
(9.50)

9.1473
(9.17)

8.8499
(8.84)

5.1508
(5.17)

5.0044
(5.01)

4.8613
(4.86)

100
17.616
(17.68)

17.107
(17.14)

16.608
(16.61)

13.613
(13.65)

13.298
(13.31)

12.989
(12.98)

7.4011
(7.41)

7.2496
(7.26)

7.1011
(7.10)

200
25.29

(25.33)
24.77

(24.79)
24.26

(24.26)
19.48

(19.50)
19.16

(19.17)
18.85

(18.84)
10.58

(10.59)
10.42

(10.43)
10.27

(10.27)

Table 3d. Base moment M0 for m = 1, n = 1 case.
Values in parentheses are from Eq. (4.15).

γ π/4 π/2 3π/4

β\c 0.1 0.5 0.9 0.1 0.5 0.9 0.1 0.5 0.9

10 4.2420 3.1045 1.7667 3.5656 2.7942 1.8643 1.9985 1.6018 1.1234

20 6.9783 5.5486 3.6831 5.5348 4.5383 3.2950 3.0419 2.5250 1.8898

50
11.853
(11.96)

9.9434
(10.09)

7.5785
(7.87)

9.2106
(9.27)

7.8274
(7.90)

6.1519
(6.29)

5.0199
(5.05)

4.2908
(4.32)

3.4157
(3.47)

100
17.173
(17.24)

14.692
(14.78)

11.720
(11.89)

13.271
(13.31)

11.445
(11.49)

9.2810
(9.36)

7.2150
(7.23)

6.2449
(6.26)

5.1014
(5.14)

200
24.66

(24.70)
21.35

(21.41)
17.46

(17.56)
18.99

(19.02)
16.53

(16.56)
13.66

(13.71)
10.31

(10.32)
9.00

(9.01)
7.47

(7.49)
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Instead of graphs, our results are given in tables to facilitate their use in
practice and to show the differences between the exact numerical values and the
asymptotic approximations.

6. Discussions

For the stability problem of a standing column, explicit formulas for the
critical load for a pointy tip (c = 1) can be expressed in terms of Bessel functions.
For a blunt tip, we numerically found the critical loads, which are quite sensitive
to the taper c and cross sectional shapes (m, n).

Our asymptotic analysis for large β is entirely new. We are fortunate to
obtain a solution up to first order. The asymptotic results compare well with
numerical integration, which suffers from stiffness problems when β > 100.

The results for post buckling deformations are reflected in Tables 2 and 3. We
find when the gravity parameter β increases, perhaps due to acceleration of the
system, the base moment M0 increases. Fig. 4 shows the typical post buckling
shapes. Note that when β is large, the boundary layer character (of large changes
in slope) is evident near the base region.

Fig. 4. Effect of gravity on deformation shape (m = 4, n = 2, c = 0.5, γ = 0). From top:
β < 12.054, β = 13, 20, 50, 200.

In general, when the taper increases, the base moment decreases, as shown
in Fig. 5. That is because there is less total weight for larger taper. However
an exception is the m = 2, n = 0 cross section (Fig. 2c, along axis A-A),
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Fig. 5. Effect of taper on deformation shape (m=4, n=2, β = 20, γ = 0) From top:
c > 0.838, c = 0.8, 0.7, 0.5, 0.1.

where at low β, the effect is opposite. This cross section also behaves differently
for the critical load in Table 1. Such interesting results should be investigated
experimentally.

Figure 6 shows typical post buckling shapes when the base angle is varied.
An increase in base angle decreases the base moment.

Fig. 6. Effect of base inclination (m = 4, n = 2, c = 0.5, β = 20) From top: γ = 0, π/4, π/2,
3π/4, π.

The effect of cross sectional shape (and bending direction) is shown in Fig. 7.
We cannot give a general statement on the trend, but only note that the can-
tilever cross section has non negligible effects of the cantilever shape.
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Fig. 7. Effect of cross sectional shape on deformation. (c=0.5, β=20, γ = 0) (m, n) from
top: (4,2), (1,1), (3,1), (0,0), (2,0).

In conclusion, our present work greatly advances the current knowledge of
heavy tapered cantilevers, especially large deformations.
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