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The paper presents two-dimensional FE simulation results of the concrete be-
haviour under quasi-static cyclic loading using different enhanced coupled elasto-
plastic-damage continuum models. Attention is paid to strain localization and stiff-
ness degradation under tensile bending failure. To ensure the mesh-independence, to
properly reproduce strain localization and to capture a deterministic size effect, all
constitutive models include a characteristic length of micro-structure by means of
a non-local theory. Numerical results are compared with corresponding cyclic labo-
ratory tests on concrete specimens under bending. Advantages and disadvantages of
coupled models used are outlined. In addition, numerical aspects of implementation
and non-local averaging of coupled models are discussed. Finally, a new improved
model is proposed to describe strain localization simultaneously under both tension
and compression.
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1. Introduction

An analysis of concrete elements during cyclic loading under compres-
sion, tension and bending is complex mainly due to a stiffness degradation
caused by progressive fracture [19, 25, 43, 48]. Fracture is always preceded
by formation of a region of strain localization, whose volume is not negligi-
ble as compared to specimen dimensions and is large enough to cause signifi-
cant release and accompanying stress redistribution in the structure [4]. Thus,
strain localization is a fundamental phenomenon in concrete under both quasi-
static and dynamic conditions and can occur in the form of tensile and shear
zones [2]. The determination of the location, width and spacing of localized
zones is crucial to evaluate the material strength at peak and in the post-peak
regime.



228 I. Marzec, J. Tejchman

To take into account a reduction of the concrete strength, irreversible (plastic)
strains and stiffness degradation, a combination of plasticity and damage theories
is physically very appealing since plasticity considers two first properties and
damage considers a loss of the material strength and stiffness deterioration. To
describe properly strain localization within continuum mechanics, the models
should be enhanced in a softening regime by a characteristic length of micro-
structure to preserve the well-posedness of the underlying incremental boundary
value problem in engineering materials [9]. The presence of a characteristic length
allows for considering inhomogeneities triggering strain localization (e.g., size of
aggregate) and to describe a size effect (dependence of the strength and other
mechanical properties on the size of the specimen) observed experimentally on
quasi-brittle and brittle specimens [4, 13].

Within continuum mechanics, plasticity and damage couplings were analyzed
with various ideas (e.g., [17, 18, 21, 26, 29, 30, 31, 32, 37, 38, 42, 50, 51, 61]. How-
ever, there is still no universal coupled elasto-plastic-damage model for concrete.
In addition, the experimental research data on the cyclic concrete behaviour are
very poor and limited.

The aim of the paper is two-fold: a) to show the capability of different
enhanced coupled elasto-plastic-damage continuum models to describe strain
localization and stiffness degradation in notched concrete beams subjected to
quasi-static cyclic loading under tensile failure and to discriminate between the
performances of each of the models and b) to extend one of coupled elasto-plastic-
damage continuum models in order to describe the cyclic behaviour of concrete
during both compression and tension. The models were enhanced by a charac-
teristic length of micro-structure connected to non-local averaging of a suitable
state variable. Four different concepts of coupled elasto-plastic-damage models
were taken into account: by Pamin and de Borst [42], Carol et al. [12] and
Hansen and Willam [18], Meschke et al. [38], and finally, the new improved
model. In addition, a calibration procedure was shortly discussed.

The first coupled model [42] combines non-local damage with hardening plas-
ticity based on the effective stress and strain equivalence concept [24, 51]. To-
tal strains are equal to strains in an undamaged skeleton between micro-cracks
where plastic flow occurs. In the second model [12, 18], plasticity and damage
are connected by two loading functions describing the concrete behaviour in
compression and tension, respectively. The onset and progression of the material
degradation is based upon the strain energy associated with effective stresses
and strains. A damage approach (based on second-order tensors) simulates the
concrete behaviour under tension, whereas plasticity describes its behaviour un-
der compression. A failure envelope is created by combining a linear Drucker–
Prager formulation in compression with a damage formulation in tension based
on a conjugate force tensor and pseudo-log damage rate. In turn, in the third
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formulation [38], an elasto-plastic criterion in the form of the Rankine criterion
with hyperbolic softening is enriched by new components including the stiffness
degradation. Following the partitioning concept of strain rates, an additional
scalar internal variable is introduced into a constitutive formulation to obtain
a split of irreversible strains within plasticity and damage. Based on analysis
results of those three formulations, an improved coupled formulation connecting
plasticity and damage is presented using a strain equivalence hypothesis follow-
ing Pamin and de Borst [42]. In plasticity, the Drucker–Prager criterion in
compression and the Rankine criterion in tension are used [36, 34]. The damage
evolution is assumed to be different in tension and compression. The damage in
tension and compression includes stress weight factors to take into consideration
a stiffness recovery at a crack closure and inelastic strains due to damage.

A characteristic length of micro-structure is included in all models by means
of an integral-type non-local approach to investigate strain localization. FE re-
sults are directly compared with corresponding quasi-static laboratory tests on
notched beams under cyclic bending loading performed by Hordijk [19] and
Perdikaris and Romeo [43].

The innovative points are a) a direct comparison of different variants of en-
hanced coupled elasto-plastic-damage approaches to study the width of a lo-
calized zone and stiffness degradation in concrete beams under tensile loading
subjected to cyclic loading, b) improvement of one of coupled models to simu-
late the cyclic behaviour of concrete in laboratory tests during both tension and
compression and c) discussion on numerical aspects of the implementation and
non-local averaging of coupled models (detailed implementation algorithms are
enclosed in Appendix).

2. Local constitutive coupled models for concrete

2.1. Model by Pamin and de Borst [42]

The first formulation (called throughout the paper model ‘1’) according to
Pamin and de Borst [42] combines elasto-plasticity with scalar damage assum-
ing that total strains εij are equal to strains in an undamaged skeleton (called
effective strains εeffij ). Thus, the plasticity condition is defined in terms of the
effective stress:

(2.1) σeff
ij = Ceijklεkl,

where Ceijkl is the linear elastic stiffness tensor (including modulus of elasticity
E and Poisson’s ratio ν) and εkl denotes the strain tensor. The following failure
criterion to describe a material response in an elasto-plastic regime is used:

(2.2) fep = F (σeff
ij ) − σy(κp),
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wherein F – the von Mises equivalent deviatoric stress defined in effective stresses
σeff
ij , σy – the yield stress and κp – the hardening parameter. Next, the material

degradation is calculated with the aid of an isotropic damage model, which de-
scribes a progressive loss of the material integrity due to the propagation and
coalescence of micro-cracks and micro-voids [24]. This simple isotropic damage
continuum model describes the material degradation with the aid of only a sin-
gle scalar damage parameter D growing monotonically from zero (undamaged
material) to one (completely damaged material). The stress-strain function is
represented by the following relationship:

(2.3) σij = (1 −D)σeff
ij .

The growth of the damage parameter D is controlled by a threshold parameter
κ, which is defined as a maximum equivalent strain measure ε̃ reached during
the load history up to time t,

(2.4) κ(t) = max
τ≤t

ε̃(τ).

The damage loading function is described as

(2.5) f(ε̃, κ) = ε̃− max{κ, κ0},

where the parameter κ0 is the initial value of the parameter κ when damage
starts. If the loading function f is negative, damage does not develop. During
monotonic loading, the parameter κ grows (it coincides with ε̃) and during un-
loading it remains constant. To describe the equivalent strain measure ε̃, a mod-
ified definition of the failure criterion by von Mises in terms of strains is used
following [44]:

ε̃ =
k − 1

2k(1 − υ)
Iε1 +

1

2k

√

(k − 1)2

(1 − 2ν)2
(Iε1)

2 +
12k

(1 − ν)2
Jε2 ,(2.6)

Iε1 =
1

3
εkk, Jε2 =

1

2
εijεij −

1

6
Iε

2

1 ,(2.7)

where Iε1 – the first invariant of the strain tensor, Jε2 – the second invariant
of the deviatoric strain tensor, and k – the ratio between the compressive and
tensile strength. An exponential softening function by Peerlings [44] is chosen
to describe the evolution of the damage parameter D,

(2.8) D = 1 − κ0

κ
(1 − α+ αe−β(κ−κ0)),

wherein α and β are the material constants. The equivalent strain measure ε̃ can
be defined in terms of total εij or elastic strains εeij .
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The local coupled elasto-plastic-damage model ‘1’ requires the following six
material constants to capture the cyclic tensile behaviour: E, ν, κ0, α, β, k
and one hardening yield stress function. In the case of linear hardening, eight
material constants are totally needed (in addition, the initial yield stress σ0

yt at
κp = 0 and hardening plastic modulus Hp).

2.2. Model by Carol et al. [12] and Hansen and Willam [18]

In the second model (called model ‘2’), a two-surface isotropic damage/plasti-
city model combining damage mechanics and plasticity in a single formulation
is used [12, 18]. A plastic region in compression is described with the aid of
a Drucker–Prager criterion. The material experiences in compression permanent
deformation under sustained loading with no stiffness reduction. In turn, in ten-
sion, damage is formulated in the spirit of plasticity by adopting the concept of
a failure condition and a total strain rate decomposition into the elastic strain
rate dεeij and degrading strain rate dεdij (as a result of the decreasing stiffness):

(2.9) dεij = dεeij + dεdij .

The boundary between elastic and progressive damage is governed by the failure
function

(2.10) fd = F (σij, qd),

where qd is the history variable describing the evolution of a damage surface.
The stress rate is equal to

(2.11) dσij = Csijkl(dεkl − dεdkl)

with Csijkl as the secant stiffness matrix connected with the material damage
parameter D via

(2.12) Csijkl = (1 −D)Ceijkl.

The application of the secant stiffness is central to the idea that the degraded
strains and stresses are reversible, since the material stiffness must degrade to
make this idea possible [12, 18]. The degrading strain rate was defined as the
excess strain rate beyond the value that corresponded to the stress increment
according to the current secant stiffness.

The effective stresses and effective strains are again experienced by the un-
damaged material between cracks. Assuming the energy equivalence hypothesis,
the mutual relationship between the nominal and effective stress and strain is

(2.13) σij =
√

1 −Dσeff
ij and εeffij =

√
1 −Dεij
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and

(2.14) σeff
ij ε

eff
ij = σijεij

with

(2.15) σeff
ij = Ceijklε

eff
kl and σij = (1 −D)Ceijklεkl.

The loading function (Eq. (2.10)) for the Rankine-type damage model is defined
in terms of the modified principal tensile conjugate forces:

(2.16) fd =

3
∑

i

(−ŷ(i)) − r(L),

where −ŷ(i) – the principal components of the tensile conjugate force tensor
and r(L) – the resistance function as the complementary energy. The conjugate
force −ŷ(i) is defined with the aid of effective stresses and strains within linear
isotropic elasticity:

(2.17) −ŷ(i) =
1

2
〈σeff
i 〉〈εeffi 〉,

where 〈·〉 is the Macauley bracket. Originally, Carol et al. [12] and Hansen and
Willam [18] proposed the following resistance function with two parameters gf
and r0:

(2.18) r(L) = r0e
−
r0
gf
L
,

with gf – the fracture energy and r0 – the elastic strain energy at the peak under
uniaxial tension,

(2.19) r0 =
(ft)

2

2E
,

where ft denotes the tensile strength.
The parameter L in Eq. (2.16) denotes the pseudo-log damage variable and

is calculated with the aid of Eqs. (2.17) and (2.18),

L = ln
1

1 −D
, (D = 1 − e−L),(2.20)

L̇ =
Ḋ

1 −D
.(2.21)
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However, Eq. (2.18) inadequately describes the post-peak behaviour (i.e., too
high sudden stress drop is obtained). As an alternative, a new resistance function
with two parameters can be used [35]:

(2.22) r(L) =
1

2
Eκ2

0 exp

(

L(2 − β)

β

)

,

wherein κ0 denotes the threshold strain value and β is the parameter describing
material softening. In addition, the resistance function with three parameters by
Nguyen [39] can be also applied in numerical simulations:

(2.23) r(L) =
1

2

f2
t

E

(

E + Epte
−L·nt

Ee−L +Epte−L·nt

)2

with Ept – the damaged stiffness modulus and nt – the rate of the stiffness
modulus. When simultaneously considering both damage and plasticity, the total
strain rate becomes the sum of the elastic, damage and plastic rate:

(2.24) dεij = dεeij + dεdij + dεpij .

The plastic strains are permanent while the elastic and damage strains are re-
versible. Therefore, the elastic-damage strain dεedij is a part of the total strain:

(2.25) dεij = dεedij + dεpij .

The local coupled elasto-plastic-damage model requires the material constants:
E, ν, φ, ψ, gf and r0 (Eq. (2.18)), E, ν, φ, ψ, κ0 and β (Eq. (2.22)), E, ν, φ, ψ,
ft, Ept and nt (Eq. (2.23)) and one compressive hardening/softening yield stress
function.

2.3. Model by Meschke et al. [38]

In the third model (called model ‘3’), an elasto-plastic criterion is enhanced
by a component describing the stiffness degradation. The permanent strain rate
decomposition is assumed as

(2.26) dεpdij = dεpij + dεdij .

The plastic-damage strain rate dεpdij is calculated as in classical plasticity. A com-
ponent associated with degradation and plasticity is obtained by introducing the
scalar γ,

(2.27) dεpij = (1 − γ)dεpdij and dεdij = γdεpdij .
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The parameter γ enables one a splitting of effects connected with plastic strains
and material deterioration that contribute to an increase of the compliance ten-
sor. The evolution law for the compliance tensor compatible with general form
of loading function f is (dλ – the proportionality factor)

(2.28) Ḋijkl = γdλ

∂f

∂σij

(

∂f

∂σkl

)T

M
with M =

(

∂f

∂σij

)T

σij .

The stresses are updated analogously to the standard plasticity theory. To sim-
ulate concrete softening in tension, a hyperbolic softening law is adopted,

(2.29) σt(κ) =
ft

(

1 +
κ

κ0

)2 ,

where κ0 – the parameter adjusted to the fracture energy.
This local coupled elasto-plastic-damage model requires in tension five con-

stants only, such as E, ν, ft, κ0 and γ.

2.4. Improved model

In order to describe the cyclic concrete behaviour under both tension and
compression, an improved coupled model (called model ‘4’) was proposed based
on the model ‘1’ by Pamin and de Borst [42] (which combines elasto-plasticity
with a scalar damage assuming a strain equivalence hypothesis). The elasto-
plastic deformation is defined in terms of effective stresses according to Eq. (2.1).
Two criteria are used in an elasto-plastic regime [36, 34]: the Drucker–Prager cri-
terion with a non-associated flow rule in compression, and the Rankine criterion
with an associated flow rule in tension defined by effective stresses (Eq. (2.2)).
The yield surface based on the linear Drucker-Prager criterion was assumed in
the following form:

(2.30) f1 = q + p tanϕ−
(

1 − 1

3
tanϕ

)

σyc(κ1),

where q – the Mises equivalent deviatioric stress and p – the mean stress. The ma-
terial hardening/softening is defined by the uniaxial compression stress σyc(κ1),
wherein κ1 is the hardening-softening parameter. The linear Drucker–Prager cri-
terion is certainly not suitable in a compression regime if a large range of stress
is concerned, because it is not able to correctly describe a pressure sensitivity of
concrete materials (a curved criterion should be used). For our numerical anal-
ysis, where a low pressure level dominates, the adopted simplified criterion is
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sufficient. Moreover, this criterion (Eq. (2.30)) is not directly responsible for the
failure mechanism when using coupled models. The flow potential is

(2.31) g1 = q + p tanψ

with ψ 6= ϕ. In turn, in the tensile regime, the Rankine criterion is used including
a yield function f2 with isotropic softening defined as

(2.32) f2 = max{σ1, σ2, σ3} − σyt(κ2),

where σi – the principal stresses, σyt – the tensile stress and κ2 – the softening
parameter. The material degradation is calculated within damage mechanics,
independently in tension and compression using one equivalent strain measure ε̃
proposed by Mazars [37] (εi – principal strains):

(2.33) ε̃ =

√

∑

i

〈εi〉2.

In tension, the same damage evolution function by Peerlings [44] as in the
model ‘1’ is chosen (Eq. (2.8)). In turn, in compression, the definition by [15] is
adopted:

(2.34) Dc = 1 −
(

1 − κ0

κ

)(

0.01
κ0

κ

)η1

−
(

κ0

κ

)η2

e−δ(κ−κ0),

where η1, η2 and δ are the material constants. Equation (2.33) allows for dis-
tinguishing different stiffness degradation under tension and under compression.
Damage under compression starts to develop later than under tension that is
consistent with experiments. The stress-strain function is represented again by
Eq. (2.3) with the term ‘1 −D’ defined as in Abaqus [1] following Lubliner et

al. [32] and Lee and Fenves [29]:

(2.35) (1 −D) = (1 − scDt)(1 − stDc),

with two splitting functions st and sc controlling the magnitude of damage:

(2.36) st = 1 − atw(σeff) and sc = 1 − ac
(

1 − w(σeff)
)

,

where at and ac are the scale factors and w(σeff) denotes a stress weight function,
which may be determined with the aid of principal effective stresses [29],

(2.37) w(σeff) =











0 if σ = 0,
∑ 〈σeff

i 〉
∑ |σeff

i | otherwise.
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For relatively simple cyclic tests (e.g., uniaxial tension or bending), the scale
factors at and ac can be equal to at = 0 and ac = 1, respectively. Thus, the
splitting functions are: st = 1.0 and sc = w(σeff). For uniaxial loading cases, the
stress weight function becomes

(2.38) w(σeff) =

{

1 if σeff > 0,
0 if σeff ≤ 0.

Thus, under pure tension the stress weight function w = 1.0 and under pure
compression w = 0.

Our constitutive model with a different stiffness in tension and compression
and a positive-negative stress projection operator to simulate crack closing and
crack re-opening is thermodynamically consistent. It shares main properties of
the model by Lee and Fenves [29], which was proved to not violate thermo-
dynamic principles (plasticity is defined in the effective stress space, isotropic
damage is used and the stress weight function is similar). Moreover, Carol and
Willam [11] showed that for damage models with crack closing/reopening ef-
fects included, only isotropic formulations did not suffer from spurious energy
dissipation under non-proportional loading (in contrast to anisotropic ones).

Our local coupled elasto-plastic-damage model requires the following 10 ma-
terial constants E, ν, κ0, α, β, η1, η2, δ, at, ac and two hardening yield stress
functions (the function by Rankine in tension and by Drucker–Prager in com-
pression). If the tensile failure prevails, one yield stress function by Rankine can
be used only. The quantities σy (in the hardening function) and κ0 are responsi-
ble for the peak location on the stress-strain curve and a simultaneous activation
of a plastic and damage criterion (usually the initial yield stress in the hardening
function σ0

y = 3.5–6.0 MPa and κ0 = (8–15) × 10−5 under tension). The shape
of the stress-strain curve in softening is influenced by the constant β in tension
(usually β = 50–800), and by the constants δ and η2 in compression (usually
δ = 50–800 and η2 = 0.1–0.8). The parameter η2 influences also a hardening
curve in compression. In turn, the stress-strain curve at the residual state is af-
fected by the constant α (usually α = 0.70–0.95) in tension and by η1 in compres-
sion (usually η1 = 1.0–1.2). Since the parameters α and η1 are solely influenced
by high values of κ, they can arbitrarily be assumed for softening materials.
Thus, the most crucial material constants are σ0

y , κ0, β, δ and η2 (see Fig. 9). In
turn, the scale factors at and ac influence the damage magnitude in tension and
compression. In general, they vary between zero and one. There do not exist, un-
fortunately, the experimental data allowing for determining the magnitude of at
and ac. Since the compressive stiffness is recovered upon the crack closure as the
load changes from tension to compression and the tensile stiffness is not recovered
due to compressive micro-cracks, the parameters ac and at can be taken for the
sake of simplicity as ac = 1.0 and at = 0 for many different simple loading cases
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as, e.g., uniaxial tension and bending. The equivalent strain measure ε̃ can be de-
fined in terms of total strains or elastic strains. The drawback of our formulation
(similarly as in the model ‘1’) is the necessity to tune up constants controlling
plasticity and damage to activate an elasto-plastic criterion and a damage crite-
rion at the same moment. As a consequence, the chosen yield stress σy may be
higher than this obtained directly in laboratory simple monotonic experiments.

The material constants E, ν, κ0, β, α, η1, η2, δ and two hardening yield stress
functions can be determined for concrete with the aid of two independent simple
monotonic tests: uniaxial compression test and uniaxial tension (or three-point
bending) test. However, the determination of the damage scale factors at and ac
requires one full cyclic compressive test and one full cyclic tensile (or three-point
bending) test.

Table 1 shows a short comparison between four coupled models. The major
drawback of the first three formulations is the lack of damage differentiation
in tension and compression, stiffness recovery associated with crack closing and
relationship between the tensile and compression stiffness during a load direction
change. To describe these phenomena, additional material constants have to be
included.

Table 1. Comparison between four local coupled elasto-plastic-damage
formulations to describe concrete behaviour.

Plastic strains
in tension/
compression

Stiffness
degradation

Unique
strain

division

Stiffness
recovery

Number of
material

parameters

Model ‘1’ Yes Yes No No
Elastic: 2

Plastic: 2 (tens.)
Damage: 4

Model ‘2’
Yes

(only in
compression

Yes
(only in
tension)

Yes No
Elastic: 2
Plastic: 3

Damage: 3-4

Model ‘3’ Yes Yes Yes No

Elastic: 2
Plastic: 2
Damage: 1

Model ‘4’ Yes Yes No Yes

Elastic: 2
Plastic: 1 (tension),

3 (compression)
Damage: 2 (tension),

3 (compression)
Scale factors: 2

The damage hardening/softening laws assumed in constitutive models have
been fully based on experimental data from uniaxial compression and uniaxial
tension which, in turn, strongly depend on the concrete nature, specimen size
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and boundary and loading conditions. It means that they are not physically-
based. This fact reveals the necessity to derive macroscopic laws in a softening
regime from real micro-structure evolutions in materials during homogeneous
tests using, e.g., a discrete element model [59].

The coupled model ‘1’ can be enriched by the crack-closure effect in a similar
way as our model ‘4’. For the models ‘2’ and ‘3’, due to their different structure,
the crack-closure effect can be incorporated by introducing a projection oper-
ator (model ’2’) or by modifying the evolution law for the compliance tensor
(model ‘3’).

3. Non-local theory

To describe properly strain localization, to preserve the well-posedness of the
boundary value problem, to obtain FE-results free from spurious discretization
sensitivity and to capture a deterministic size effect (dependence of the nomi-
nal strength on the structure size), an integral-type non-local theory is used as
a regularization technique [45, 10, 3] which takes advantage of a weighted spa-
tial averaging of a suitable state variable over a neighbourhood of each material
point. Thus, stress at a certain material point depends not only on the state
variable at that point but on the distribution of the state variable in a finite
neighbourhood of the point considered (the principle of a local action does not
hold – a non-local interaction takes place between any two points). It has a phys-
ical motivation due to the fact the distribution of stresses in the interior of con-
crete is strongly non-uniform due to the presence of different phases (aggregate,
cement, bond). Polizzotto et al. [47] laid down a thermodynamic consistent
formulation of non-local plasticity. In turn, Borino et al. [8] and Nguyen [40]
laid down a thermodynamic consistent formulation of non-local damage.

Usually, in elasto-plastic formulations, it is sufficient to achieve mesh-inde-
pendent FE results to treat non-locally one state variable controlling material
softening (e.g., non-local softening parameter), whereas stresses, strains and
other variables remain local [10, 6]. Similarly, in isotropic scalar damage models,
it is sufficient to treat a variable describing material degradation as a non-local
one [36]. However in other damage formulations, this variable has to be carefully
chosen because a wrong choice can cause problems with energy dissipation lead-
ing to mesh-dependent FE solutions [22, 23, 8]. This case occurred, e.g., in the
coupled model ‘2’.

In the first coupled elasto-plastic-damage model (model ‘1’), the equivalent
strain measure in Eq. (2.6) (describing material damage) is replaced by its non-
local counterpart:

(3.1) ε̄(xak) =

∫

V

ω(r)ε̃(xk)dV ,
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where xak – the coordinates of the considered point (actual), xk – the coordinates
of surrounding points, r – the distance between material points, ω – the weighting
function and V – the body volume.

In the second coupled model, non-locality in tension is assigned to the energy
release parameter Y (component of the loading function, Eqs. (2.16) and (2.17)
to achieve a proper mesh-independent solution [35]:

(3.2) Y =
1

2
εijC

e
ijklεkl =

3
∑

i

(−ŷ(i))/e
−L.

The non-local damage energy is composed of a local and non-local term
calculated in the current (i) and previous iteration (i− 1) [49] according to [10]
(see Eq. (3.5)):

(3.3) Ȳ ∗
(i) = (1 −m+mAkl)Y(i) +m(Ȳ(i−1) − Y(i−1)Akl),

wherein m – the non-locality parameter controlling the size of the localized
plastic zone and distribution of the plastic strain and Akl denotes the component
of a non-local matrix (Eq. (3.8)):

(3.4) Akl =
ω(‖xk − xl‖)V (xl)

∑

j=1 ω(‖xk − xj‖)V (xj)
.

V (xl) is the volume associated with the integration point l. For the non-locality
parameter m = 0, a local approach is obtained, and for m = 1, a classical
non-local model is recovered. If the non-local parameter m > 1, the influ-
ence of non-locality increases and the localized plastic region reaches a finite
mesh-independent size [6]. To calculate the non-local energy release parameter
in Eq. (3.3), its local values were taken from the previous iteration for the sake
of simplicity. Such an approximation (the values were not taken from the current
iteration) does not affect the results but simultaneously reduces the calculation
time [6].

In the third model, the rates of the softening parameter (Eq. (2.29)) are
averaged according to [10]:

(3.5) dκ̄i(x) = dκi(x) +m

(
∫

ω(x, ξ)dκi(ξ)dξ − dκi(x)

)

.

Since the rate of the softening parameter is not known at the iteration begin-
ning, some extra sub-iterations are required to solve Eq. (3.5) [56]. To simplify
the calculations, the non-local rates are replaced by their approximations dκesti
calculated on the basis of the known total strain rate [10]:

(3.6) dκ̄i(x) ≈ dκi(x) +m

(∫

ω(x, ξ)dκesti (ξ)dξ − dκesti (x)

)

.
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The FE-results show an insignificant influence of the calculation method of
plastic rates of the non-local softening parameter [6]. In addition, an approxi-
mate method proposed by Brinkgreve in Eq. (3.6) is less time consuming (by
approx. 30%). The non-local rates can be calculated in all integration points
of the specimen, in the integration points where only the plastic strain occurs
or only in the integration points where both plastic strain and softening occur
simultaneously. However, in all these cases, the differences in results are also
insignificant [6].

Finally, in the improved coupled formulation (model ‘4’), the non-locality is
introduced similarly as in the model ‘1’, i.e. local plasticity is combined with
non-local damage.

As a weighting function ω0 (called also an attenuation function or a non-
local averaging function), the Gauss distribution [3] is always assumed in our
calculations:

(3.7) ω(r) =
1

cg
e−(r/lc)2 ,

where the parameter lc is a characteristic length of micro-structure, r is a dis-
tance between two material points and cg denotes a normalizing factor equal to√
πlc (1D case ), πl2c (2D case) and π

√
πl3c (3D case). The averaging in Eq. (3.7)

is restricted to a small representative area around each material point (the influ-
ence of points at the distance of r = 3×lc is only of 0.01%) (Fig. 1). Our non-local
formulation in an integral form with the Gauss weight function does not violate
thermodynamic principles [8, 23]. A characteristic length is related to the micro-
structure of concrete (aggregate size). It is usually determined with an inverse
identification process of experimental data [16, 33, 28, 53]. However, the deter-
mination of a representative characteristic length of micro-structure lc is very
complex in concrete since the strain localization can include a mixed mode (ten-

(r=0)

(r=3lc)=0.01% (r=0)

(r=2lc)=1.83% (r=0)

(r=lc)=37% (r=0)

r=3lc

r=
2l

c

Fig. 1. Region of the influence of characteristic length lc and weighting function ω.
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sile zones and shear zones) and a characteristic length (which is a scalar value) is
related to the fracture process zone with a certain volume which changes during
a deformation (the width of the fracture process zone increases according to, e.g.,
[46], but decreases after, e.g., [55]). In turn, other researchers conclude that the
characteristic length is not a constant, and it depends on the type of the bound-
ary value problem and the current level of damage [14]. Thus, a determination
of lc requires further numerical analysis and measurements, e.g., using a DIC
technique [5, 27, 53]. Based on our both numerical simulations of concrete and
reinforced concrete beams under bending and experiments using a digital im-
age correlation DIC technique in order to measure the width of a localized zone
[53, 54, 58], a characteristic length lc of micro-structure is about 2 mm (fine-
grained concrete) and 5 mm (usual concrete) within isotropic damage mechanics
(using the Gauss distribution function). The setting of a direct relationship be-
tween a characteristic length lc and concrete micro-structure (e.g., aggregate
size) merits further experimental investigations [54].

A proper non-local transformation requires that a non-local field correspond-
ing to a constant local field remains constant in the vicinity of a boundary. The
applied weighting function satisfies the normalizing condition [3],

(3.8) ω(x, ξ) =
ω(‖x− ξ‖)

∫

V ω(‖x− ζ‖)dζ .

The algorithms for four coupled models with non-local softening are pre-
sented in Appendix. The models are implemented into the Abaqus Standard [1]
program with the aid of the subroutine UMAT (user constitutive law definition)
and UEL (user element definition). For the solution of a non-linear equation of
motion governing the response of a system of finite elements, a modified Newton–
Raphson scheme is used. The calculations are performed with a symmetric elas-
tic global stiffness matrix instead of applying a tangent stiffness matrix (the
choice was governed by access limitations to the commercial software Abaqus).
The procedure yielded sufficiently accurate and fast convergence. The magni-
tude of the maximum out-of-balance force at the end of each calculation step
was smaller than 1% of the calculated total force on the specimen. To satisfy
the consistency condition f = 0 in elasto-plasticity, the trial stress method (lin-
earized expansion of the yield condition about the trial stress point) using an
elastic predictor and a plastic corrector with the return mapping algorithm [41]
is applied. The calculations are carried out using a large-displacement analysis.
In this case, the actual configuration of the body is taken into account. The
Cauchy stress is taken as the stress measure. The conjugate strain rate is the
rate of deformation. The rotation of the stress and strain tensor is calculated
with the Hughes–Winget method [20]. A non-local averaging is performed in the
current configuration. This choice is governed by the fact that element areas
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in this configuration are automatically calculated by Abaqus. The three-node
triangular (with one integration point) and four-node quadrilateral (with four
integration points using a selectively-reduced integration scheme) finite elements
are used.

4. Cyclic behaviour of concrete under tension

Due to the lack of accompanying monotonic and cyclic uniaxial laboratory
tests, a general calibration procedure could not be applied to all coupled mod-
els. Therefore, the material constants in each model were found by means of
preliminary FE analyses in order to satisfactorily match numerical results with
experimental ones.

4.1. Four-point cyclic bending of notched concrete beams

The comparative numerical plane strain simulations were performed with
a concrete notched beam under four-point cycling bending subjected to tensile
failure [19] (Fig. 2). The length of the beam was 0.5 m and the height 0.1 m.
The deformation was induced by imposing a vertical displacement at two nodes
at the top of the beam. In the calculations, the modulus of elasticity was E =
40 GPa, Poisson ratio ν = 0.2 and characteristic length lc = 5 mm. The tensile
strength from experiments varied between ft = 2.49 MPa and ft = 4.49 MPa.
The calculations were performed with 7634 triangular finite elements. The size
of elements was not greater than (2 − 3) × lc to obtain objective FE results
[6, 36, 57]. The force-displacement diagrams P = f(u) are shown in Fig. 3.
In turn, Fig. 4 presents the calculated contours of a localized zone above the
notch. The evolution of non-local parameters: equivalent strain measure (models
‘1’ and ‘4’), pseudo-log damage variable (model ‘2’) and softening parameter
(model ‘3’) is demonstrated in Fig. 5.

P,u P,u

Fig. 2. Geometry of notched beam under quasi-static cyclic four-point bending (P – vertical
force, u – vertical displacement) [19].
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a) b)

c) d)

Fig. 3. Experimental and calculated force-displacement curves using four different coupled
elasto-plastic-damage models with non-local softening during quasi-static four-point cyclic
bending under tensile failure [19]: a) model ‘1’ (damage based on total strains), b) model ‘2’,

c) model ‘3’ and d) model ‘4’ (damage based on elastic strains).

For the first enhanced coupled model (model ‘1’) with one surface in harden-
ing plasticity, the von Mises criterion with the yield stress σ0

yt = 6.5 MPa (total
strains) and σ0

yt = 5.9 MPa (elastic strains) was assumed with a linear hardening
parameter (Hp = E/2). Since, an elasto-plastic model is not directly responsible
for the evolution of the failure mechanism, the von Mises criterion was chosen
for concrete in elasto-plasticity for the sake of simplicity (the application of the
criterion by Drucker–Prager does not affect FE results). The following material
constants were used: κ0 = 9.5 × 10−5, α = 0.92 and β = 140 with the total
strains ε̃(εij), and κ0 = 8.6×10−5, α = 0.92 and β = 170 with the elastic strains
ε̃(εeij). The parameter set is different in both cases due to a varying coupling
between plasticity and damage (via elastic or total strains).

Figure 3a shows the calculated load-displacement curves with a coupled
elasto-plastic-damage model using total strains. The load reversals exhibit
a gradual decrease of the elastic stiffness, however calculated stiffness degra-
dation is overestimate, especially for high values of κ. The calculated vertical
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Fig. 4. Calculated contours of localized zone near notch in beam under four-point bending
with four different coupled elasto-plastic-damage models with non-local softening: a) model ‘1’,

b) model ‘2’, c) model ‘3’ and d) model ‘4’ (at deflection u = 0.15 mm).

a) b)

c)

Fig. 5. Evolution of non-local parameter above notch in beam under four-point bending
with 4 different coupled elasto-plastic-damage models with non-local softening: a) model ‘1’,

b) model ‘2’ and c) model ‘3’ (at deflection u = 0.15 mm).
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force is close to experiment. The slope of the load-displacement curve is realis-
tically reflected. The width of a localized zone above the notch in the beam is
about 2.4 cm (4.8 × lc) (Fig. 5a).

Using the second enhanced coupled model, the resistance function by
Nguyen [39] was assumed with Ept = 37 GPa, nt = 0.175, ft = 2.85 MPa
and m = 1.2. The numerical results agree well with the experimental data only
in the case of the ultimate vertical force and softening slope in the post-peak
regime (Fig. 3b). The calculated stiffness degradation is significantly too high
than in the experiment. As a consequence, the width of a localized zone in-
creases up to 3.2 cm (6.4 × lc) (Fig. 5b). The similar results are obtained with
the resistance function by Eq. (2.22).

In the third enhanced coupled model, the calculated ultimate vertical force
(with the parameters: ft = 2.85 MPa, κ0 = 1.85 × 10−3, γ = 0.2 and m = 2)
again very similar as compared with the experimental value (Fig. 3c). Also the
softening behaviour is realistically reflected. The slope of the experimental and
numerical curve is almost the same. The calculated stiffness degradation exhibits
a proper gradual decrease and it is close to experiment. The width of the localized
zone above the notch is 1.4 cm (2.8 × lc) (Fig. 5c).

In the fourth enhanced model, the constants σ0
yt = 6.5 MPa, Hp = E/2,

κ0 = 4.3 × 10−5, β = 650, α = 0.90, η1 = 1.2, η2 = 0.15, δ = 450, at = 0
and ac = 1 were used (damage was based on elastic strains). The calculated
force-displacement curve exhibits good agreement with experimental outcomes
(Fig. 3d). The bearing capacity of the beam is very well captured. The post-peak
behaviour is close to experiment, however the softening slope is slightly worse
reflected as in the model ‘3’. In turn, a calculated stiffness decrease is almost the
same as in the experiment. Thus, an evident improvement as compared to the
model ‘1’ with respect to the magnitude of the stiffness reduction was achieved.
The calculated contours of a non-local variable describing the shape of a localized
zone are similar as in the model ‘1’ (Fig. 4d). The results of Fig. 4 demonstrate
that the shape of a localized zone above the notch is different due to the material
stiffness in a softening regime induced by the material formulation. The shape
of a localized zone in the models ‘1’ and ‘4’ is the same due to a similar model
formulation, and is typical for other solutions within damage mechanics (e.g.,
[44, 42].

Summarizing, the coupled models ‘1’, ‘3’ and ‘4’ are capable to satisfactorily
capture the cyclic concrete behaviour under tensile failure.

4.2. Three-point cyclic bending of notched concrete beams

In order to check the capability of the improved coupled model ‘4’ to simulate
a deterministic size effect observed experimentally in brittle materials [60], the
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FE-calculations were performed in addition with concrete notched beams under
three-point cycling loading (Fig. 6, Table 2) [43]. The number of triangular finite
elements was equal to 2.292, 5.213 and 9.211 for a small-, medium- and large-
size beam, respectively. The size of elements was again not greater than 3 × lc.
The deformation was induced by imposing a vertical displacement at the mid-
node at the beam top. The modulus of elasticity was E = 45.6 GPa and the
Poisson ratio was ν = 0.2 and. To match approximately the numerical results
with the experimental ones, the following material constants were chosen for
three beams: σ0

yt = 6.5 MPa, Hp = E/2, κ0 = 9.0 × 10−5, β = 1550, α = 0.99,
η1 = 1.2, η2 = 0.15, δ = 950, at = 0 and ac = 1 and lc = 5 mm (equivalent
strain measure based on elastic strains). As compared to FE calculations at
four-point cyclic bending, the same constants σy, Hp, η1, η2, at and ac were
assumed.

P,u

S

a

d
Fig. 6. Geometry of notched beam under quasi-static cyclic three-point bending (P – vertical

force, u – deflection, dimensions are given in Table 2) [43].

Table 2. Concrete beam dimensions in quasi-static cyclic tests by
Perdikaris and Romeo [43] (Fig. 6).

Beam
Height Thickness Span Notch height
d [mm] t [mm] S [mm] a [mm]

small 64 127 254 20

medium 128 127 508 39

large 254 127 1016 78

Figures 7a and 7b demonstrate the calculated force-displacement diagrams
for a small- and large-size beam compared with the experimental data. The
stiffness degradation is again realistically captured by the model. The calcu-
lated ultimate force as compared to experiments is higher by 10–15%. To obtain
a better agreement between ultimate forces and calculated stiffness, the material
constant should be better calibrated (in particular κ0 and parameters controlling
the damage evolution β, δ and η2). The calculated results of a deterministic size
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a) b)

Fig. 7. Experimental [43] and calculated load-displacement curves with enhanced coupled
model ‘4’ with damage based on elastic strains (quasi-static cyclic three-point bending):

a) small-size beam, b) large-size beam (at = 0.0 and ac = 1.0).

effect with respect to the ultimate vertical force were confronted with the size
effect law by Bažant [2, 4] for notched beams:

(4.1) σN =
Bft

√

1 +D/D0

,

wherein σN – the nominal strength, ft – the tensile strength, D – the specimen
characteristic size equal to the beam height), B – the dimensionless geometry-
dependent parameter (depending on the geometry of the structure and crack)
and D0 – the size-dependent parameter called transitional size (both unknown
parameters to be determined). The FE results of the normalized vertical force
versus d/lc (Fig. 8) indicate a satisfactory agreement with Eq. (4.1) (the results

Fig. 8. Calculated deterministic size effect for concrete notched beams subjected to quasi-
static cyclic three-point bending (using coupled model ‘4’) as compared with size effect law

by Bažant [4] (t – beam thickness, d – beam height, S – beam span).
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of FE calculations on size effect with larger concrete notched beams are given
by Bobiński et al. [7]).

5. Cyclic behaviour of concrete under compression and tension

First, simple cyclic uniaxial element tests were numerically performed to
show the behaviour of the model ‘4’ (with four-node quadrilateral elements).
Figure 9 shows the load-displacement diagrams under cyclic uniaxial tension
and cyclic uniaxial compression for different influential material constants β, δ,
η2 and κ0 (which were independently changed). The effect of the constant α
(α = 0.7–0.99) and η1 (η1 = 1.0–1.2) was negligible (Sec. 2.4). The modulus
of elasticity was E = 40 GPa and the Poisson ratio was ν = 0.18. In ten-
sion, σ0

yt = 4.0 MPa and Hp = E/2 (Rankine criterion), and in compression
σ0
yc = 40 MPa, Hp = E/2, φ = 20◦ and ψ = 10◦ (Drucker–Prager criterion)

were chosen. The equivalent strain measure was based on total strains. The ma-
terial constants varied in the following ranges: β = 200–1100, δ = 200–900,

a)

Fig. 9. Effect of different material constants on uniaxial response of coupled elasto-plastic-
damage model ‘4’ for concrete under: a) cyclic uniaxial tension.



Enhanced coupled elasto-plastic-damage models. . . 249

b)

Fig. 9. (c.d) Effect of different material constants on uniaxial response of coupled elasto-
plastic-damage model ‘4’ for concrete under: b) cyclic uniaxial compression (with damage

scale factors at = 0.0 and ac = 1.0).

η2 = 0.15–0.45 and κ0 = (15–25) × 10−5 (with α = 0.95, η1 = 1.2, at = 0.0
and ac = 1.0). The force-displacement results indicate that the effect of κ0, β,
δ and η2 is significant in tension and the effect of κ0, δ and η2 is pronounced
in compression. The parameter κ0 is responsible for a peak location and a si-
multaneous activation of a plastic and damage criterion. The parameters β, δ
and η2 affect a model response in softening during tension and compression, and
the parameter η2 influences a hardening curve in compression. The effect of two
other parameters (α and η1) describing the stress-strain curve at the residual
state is negligible.

Next, a simple cyclic tension-compression-tension element test was calcu-
lated (Fig. 10) (σ0

yt = 4 MPa, σ0
yc = 40 MPa, Hp = E/2, φ = 20◦, ψ = 10◦,

β = 550, δ = 950, κ0 = 8.5 × 10−5, α = 0.95, η1 = 1.2, η2 = 0.15, at = 0.0 and
ac = 1.0). The results show obviously the different stiffness degradation during
compression and tension (that is stronger in tension). A recovery of the com-
pressive stiffness upon crack closure and un-recovery of the tensile stiffness as
the load changes between tension and compression is satisfactorily reflected. The
evident difference between a pure damage model (without plastic strains) and
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Fig. 10. Calculated load-displacement curve with coupled model ‘4’ (with damage scale factors
at = 0.0 and ac = 1.0) during uniaxial tension-compression-tension.

Fig. 11. Calculated load-displacement curves with coupled model ‘4’ during uniaxial tension-
compression-tension with and without plastic strains (in the load range from −60 up to 20 kN).

coupled one (with plastic strains) during one uniaxial load cycle is demonstrated
in Fig. 11.

The effect of the damage scale factors at and ac on the load-displacement
diagram under tension-compression-tension is described in Fig. 12 by assuming
at = 0.2 and ac = 0.8. This change of both factors is stronger in compres-
sion.
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Fig. 12. Uniaxial response of coupled elasto-plastic-damage model ‘4’ for concrete under
tension-compression-tension for different damage scale factors at and ac.

Finally, Fig. 13 demonstrates the 2D FE results with the model ‘4’ for a con-
crete specimen subjected to uniaxial cyclic compression by taking strain local-
ization into account. All nodes at the lower edge of a rectangular specimen were
fixed in a vertical direction. The size of the specimen was arbitrarily chosen:
15 cm (height) and 5 cm (width). To preserve the stability of the specimen,
the node in the middle of the lower edge was kept fixed. The deformations
were initiated through constant vertical displacement increments prescribed to
nodes along the upper edge of the specimen. The lower and upper edges were
smooth. The number of triangular finite elements was 896 (the size of ele-
ments was not greater than 3 × lc). The material constants were: E = 30 GPa,
ν = 0.18, σ0

yc = 20 MPa, φ = 25◦, ψ = 10◦, η1 = 1.2, η2 = 0.7, δ = 800,
lc = 5 mm, at = 0.0 and ac = 1.0. To induce strain localization, a weak ele-
ment was inserted in the middle of height, on the edge of the specimen. Due to
the lack of the initial experimental data, the calculated stress-strain curve was
qualitatively compared with the experimental one by Karsan and Jirsa [25]
(Fig. 13).

The calculated stress-strain curve (Figs. 13c and 13d) is qualitatively the
same as in a cyclic compressive test by Karsan and Jirsa [25] (Figs. 13c
and 13e) with respect to material softening and stiffness degradation. The calcu-
lated thickness of a localized zone is 3.4 cm (6.8 × lc) and the inclination to the
horizontal is about 45◦ (Fig.13b). These results are very similar as those within
elasto-plastic calculations [6]. The shear zone inclination is significantly higher
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a) b) c)

d) e)

Fig. 13. Response of coupled elasto-plastic-damage model ‘4’ for concrete specimen under
uniaxial cyclic compression from FE calculations (with damage scale factors at = 0.0 and
ac = 1.0): a) deformed FE mesh, b) contours of calculated non-local parameter, c) calculated
and experimental stress-strain curve by Karsan and Jirsa [25], d) calculated stress-strain

curve, e) experimental stress-strain curve by Karsan and Jirsa [25].

(and more realistic) than the one obtained with a simple non-local isotropic
damage model [52], that was smaller than 35◦–40◦.

6. Conclusions

The presented FE calculations show that all coupled elasto-plastic-damage
models enhanced by a characteristic length of micro-structure in a softening
regime can properly reproduce the experimental load-displacement diagrams and
strain localization in plain concrete notched beams under tensile loading during
quasi-static cyclic bending. All models ‘1-4’ properly capture material softening
and the width of a localized zone. The models ‘1’, ‘3’ and ‘4’ are also able



Enhanced coupled elasto-plastic-damage models. . . 253

to correctly describe the stiffness degradation. The drawback of the model ‘2’
is the lack of possibility to simulate simultaneously both plastic deformation
and stiffness degradation during cyclic loading. The model ‘3’ has the smallest
number of material constants to be calibrated. The coupled models ‘3’ and ‘4’
indicate the best agreement with cyclic bending experiments under tensile failure.
In general, the models 1, 3 and 4 show similar results under tension. The shape
and thickness of a localized zone above the notch in concrete beams under tension
depends on the coupled formulation.

A choice of a suitable local state variable for non-local averaging is strongly
dependent upon the model. It should be carefully checked to avoid problems
with non-sufficient regularization.

The improved model ‘4’ captures, in addition, plastic strains and stiffness
degradation in both tension and compression, and stiffness recovery effect during
cyclic loading by means of a strain equivalence hypothesis (thus the coupling
between damage and plasticity is different than in Abaqus 2004). It is able to
properly describe strain localization under both tension and compression due to
a presence of a characteristic length of micro-structure. Its drawback is no clear
distinction between elastic, plastic and damage strain rates, and a relatively large
number of material constants to be calibrated. Most of material constants may
be calibrated independently with a monotonic uniaxial compression and tension
(bending) test. Standard uniaxial cyclic tests are needed to calibrate damage
scale factors.
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Appendix

Algorithm for coupled model ‘1’

Stage 1

For each integration point
1) Compute strain increments ∆εij and update total strains εij

(elastic predictor)
(εeij)

trial = (εeij)
t + ∆εij and (εpij)

trial = (εpij)
t

2) Compute stress (elastic predictor)
σ̃trial
ij = σ̃tij + Ce

ijkl∆εkl
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3) Check
if F (σ̃trial

ij , κt) ≥ 0 (plasticity)

initialization σ̃
(0)
ij = σ̃trial

ij , ∆κ(0) = 0, i = 0

while |F (σ̃
(i+1)
ij , κt + ∆κ(i+1))| ≤ 10−10

a) compute δλ and ∆κ(i+1)

b) update stress σ̃
(i)
ij → σ̃

(i+1)
ij end while

else (elasticity): κt+∆t = κt, σ̃t+∆t
ij = σ̃trial

ij , (εeij)
t+∆t = (εeij)

trial, (εpij)
t+∆t = (εpij)

trial

Choice if ε̃ → ε̃((εeij)
t+∆t) or ε̃ → ε̃((εij)

t+∆t)

Stage 2

For each integration point
1) Compute non-local value of equivalent strain measure ε̃ → ε̄(1)

2) Update the damage threshold parameter κ(t) → κ(t + ∆t)
κ = max{maxτ≤t ε̄(τ), κ0}

3) Check
if f(ε̄, κ(t + ∆t)) ≥ 0
update damage variable: Dt → Dt+∆t

else Dt+∆t = Dt

4) Update stress
σt+∆t
ij = (1 − Dt+∆t)σ̃t+∆t

ij

(1)Calculation of non-local equivalent strain measure (Eq. (3.1)) in surrounding integration
points.

Algorithm for coupled model ‘2’

For each integration point
1) Compute strain increments ∆εij and update total strains εij

(εeij)
t+∆t = (εeij)

t + ∆εij
2) Compute effective strain (trial)

(ε̃ij)
t+∆t = exp(−Lt/2)(εij)

t+∆t

3) Compute effective stress (trial)
(σ̃ij) = Ce

ijkl(ε̃kl)
t+∆t

4) Compute non-local damage energy release Ȳ ∗ (1)

5) Check
if f(Ȳ ∗) − r(Lt+∆t) ≥ 0
initialization: f (0) = f(Ȳ ∗), ∆L(0) = 0, i = 0
while |f(Ȳ ∗)(i+1) − r(Lt + ∆L(i+1))| ≤ 10−10

a) compute: δL and ∆L(i+1)

b) update loading function: f(Ȳ ∗)(i+1)

end while
else: Lt+∆t = Lt

6) Update secant stiffness
(Cs

ijkl)
t+∆t = exp(−Lt+∆t)Ce

ijkl

7) Update stress
σt+∆t
ij = (Cs

ijkl)
t+∆t(εkl)

t+∆t

(1)Calculation of non-local damage energy release (Eq. (3.3)) in surrounding integration points
in current and previous iteration.
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Algorithm for coupled model ‘3’

For each integration point
1) Compute strain increments ∆εij and update total strain εij

(elastic predictor)
(εeij)

trial = (εij)
t + ∆εij − (εpij)

t

2) Compute stress
σtrial
ij = (Cijkl)

t(εekl)
trial

3) Compute approximation of the softening parameter ∆κest (1)

4) Check
if f(σtrial

ij , κt + ∆
⌣

κ) ≥ 0, where ∆
⌣

κ = m(
P

ak∆κestk − ∆κest) (2)

while |f(σ
(i+1)
ij , κt + (∆κ̂)(i+1))| ≤ 10−10

a) initialization: σ
(0)
ij = σtrial

ij , ∆κ(0) = 0, i = 0
b) compute rate of non-local softening parameter:

∆κ̂(i+1) = ∆κ(i+1) + m(
P

ak∆κestk − ∆κest) (3)

c) update stress: σ
(i)
ij → σ

(i+1)
ij

end while
update strain
(εpij)

t+∆t = (εpij)
t + (∆εpij)

t+∆t, (εdij)
t+∆t = (εdij)

t + (∆εdij)
t+∆t according to Eq. (2.27)

and (εeij)
t+∆t = (εeij)

trial − (∆εpij + ∆εdij)
t+∆t

update compliance tensor (Dijkl)
t → (Dijkl)

t+∆t according to Eq. (2.28)
else (elasticity):
κt+∆t = κt, σt+∆t

ij = σtrial
ij , (εeij)

t+∆t = (εeij)
trial, (εpij)

t+∆t = (εpij)
t, (εdij)

t+∆t = (εdij)
t

and (Dijkl)
t+∆t = (Dijkl)

t

(1)Approximation ∆κest is calculated on the basis of known total strain rate.
(2)Rate of non-local softening parameter is calculated by Eq. (3.6) with approximation ∆κest

in surrounding integration points in current iteration.
(3) ak is element of nonlocal coefficient matrix (Eq. (3.4)) in row associated with considered
integration point.

Algorithm for coupled model ‘4’

Stage 1

For each integration point
Step 1) to 3) identically as in model ‘1’

Choice if ε̃ → ε̃((εeij)
t+∆t) or ε̃ → ε̃((εij)

t+∆t)

Stage 2

For each integration point
1) Compute non-local value of equivalent strain measure ε̃ → ε̄ (1)

2) Update the damage threshold parameter κ(t) → κ(t + ∆t)
κ = max{maxτ≤t ε̄(τ), κ0}

3) Check
if f(ε̄, κ(t + ∆t)) ≥ 0
update damage variable:

– calculate damage evolution in tension and compression (Eqs. (2.8) and (2.34))
– calculate stress weight factor according to Eq. (2.38)
– evaluate stiffness recovery functions according to Eq. (2.36)
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– update component ‘1-D’: (1 − D)t → (1 − D)t+∆t (Eq. (2.35))
else: (1 − D)t+∆t = (1 − D)t

4) Update stress
σt+∆t
ij = (1 − D)t+∆tσ̃t+∆t

ij

(1)Calculation of non-local equivalent strain measure (Eq. (3.1)) with in-surrounding integra-
tion points.
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