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A new fundamental solution based finite element method (HFS-FEM) is pre-
sented for analyzing three-dimensional (3D) elastic problems with body forces in this
paper. It begins with deriving formulations of 3D HFS-FEM for elastic problems
without body force and then the body force term is handled by means of the method
of particular solution and radial basis function approximation. In our analysis, the
homogeneous solution is obtained using the proposed HFS-FEM and the particu-
lar solution associated with the body force is approximated by radial basis functions.
Several standard tests and numerical examples are considered to assess the capability
and performance of the proposed method and elements. It is found that, comparing
with conventional FEM (ABAQUS), the proposed method can achieve higher accu-
racy and efficiency when same element meshes are used. It is also found that the
elements associated with this method are not very sensitive to mesh distortion and
can be employed for problems involving nearly incompressible materials. This new
method seems to be promising to deal with problems involving generalized body force,
complex geometry, stress concentration and multi-materials.
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1. Introduction

During the past three decades, Hybrid Trefftz finite element method (HT-
FEM), as a significant alternative to conventional FEM, has become popular and
been increasingly used to analyze various engineering problems [1–13]. In con-
trast to conventional FEM, HT-FEM is based on a hybrid method which includes
the use of an independent auxiliary inter-element frame field defined on element
boundary and an independent internal field chosen so as a prior satisfying the
homogeneous governing differential equations by means of a suitable truncated
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T-complete function set of homogeneous solutions [14]. Inter-element continuity
is enforced by employing a modified variational principle, which is used to con-
struct standard stiffness equation, and to establish the relationship between the
frame field and the internal field of the element. The property of nonsingular ele-
ment boundary integral appeared in HT-FEM enables us to construct arbitrarily
shaped element conveniently; however, the terms of truncated T-complete func-
tions should be carefully selected for achieving desired results and the T-complete
functions for some physical problems are difficult to generate [15].

To remove the drawback of HT-FEM, a novel hybrid FE formulation based
on the fundamental solution, named as HFS-FEM, was firstly developed for
solving two dimensional heat conduction problem in single and multi-materials
[16, 17]. It has demonstrated good performance in 2D elastic [18] and piezo-
electric problems [19] by employing fundamental solutions to substitute for the
T-complete functions in HT-FEM as a trial function. In this approach, the intra-
element field is approximated by a linear combination of fundamental functions
analytically satisfying the related governing equations, the independent frame
field defined along the element boundary and the newly developed variational
functional are employed to guarantee the inter-element continuity, generate the
final stiffness equation, and establish the relationship between boundary frame
field and internal field of the element under consideration.

In the HFS-FEM, the domain integrals in the hybrid functional can be di-
rectly converted into boundary integrals without any appreciable increase in
computational effort and no singular integrals are involved by locating the source
point outside the element of interest and not overlap with field point during the
computation [18]. Moreover, the features of two independent interpolation fields
and element boundary integral in HFS-FEM make the algorithm have potential
applications in the aspect of mesh reduction by constructing specially-purposed
elements such as functionally graded element, hole element, crack element etc.
[9, 20, 21]. The proposed HFS-FEM inherits all advantages of HT-FEM and
removes the difficulty in constructing and selecting T-functions, so it has the ca-
pacity to be applied to more extensive applications than HT-FEM. In addition,
it should be pointed out that the developed HFS-FEM approach is different from
the BEM, although the same fundamental solution is employed. Using the recip-
rocal theorem, the BEM obtains the boundary integral equation, which usually
encounters difficulty in dealing with singular or hyper-singular integrals in the
BEM analysis, while the weakness can be removed using HFS-FEM. Addition-
ally, HFS-FEM makes it possible for a more flexible element material definition
which is important in dealing with multi-material problems, rather than the ma-
terial definition being the same in the entire domain in BEM. However, to the
authors’ knowledge, there is no work reported in the literature on the application
of this promising method to 3D elastic problems.
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In this paper, a new solution procedure based on HFS-FEM approach is pro-
posed to solve three-dimensional elastic problems with/without body forces. The
detailed 3D formulations of HFS-FEM are firstly derived for elastic problems by
ignoring body forces, then a procedure based on the method of particular so-
lution and radial basis function approximation are presented to deal with the
body force. As a consequence, the homogeneous solution is obtained by using
the HFS-FEM and the particular solution associated with body force is ap-
proximated by using the strong form basis function interpolation. The solution
procedure for three-dimensional elastostatic problems is then programmed by
means of MATLAB. Several standard tests and numerical examples are investi-
gated and their results are compared with the existing closed-form solutions or
ABAQUS results. The results show that the proposed method has higher accu-
racy and efficiency than ABAQUS when using same element meshes. It is also
found that this method is not sensitive to mesh distortion and has capability to
deal with nearly incompressible materials.

2. Formulations of the HFS-FEM for 3D elasticity

without the body force

2.1. Governing equations and boundary conditions

In this subsection, basic equations commonly used in literatures are briefly re-
viewed to provide notations for the subsequent sections. Let (X1,X2,X3) denote
the coordinates in Cartesian coordinate system and consider a finite isotropic
body occupying the domain Ω, as shown in Fig. 1. The equilibrium equation for
this finite body in the absence of body force can be expressed as

(2.1) σij,j = 0, i, j = 1, 2, 3.

Fig. 1. Geometrical definitions and boundary conditions for a general 3D solid.
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The constitutive equations for linear elasticity and the kinematical relation are
given as

σij =
2Gv

1 − 2v
δijekk + 2Geij ,(2.2)

eij =
1

2
(ui,j + uj,i),(2.3)

where σij is the stress tensor, eij the strain tensor, ui the displacement vector,
δij the Kronecker delta, G the shear modulus, and v Poisson’s ratio. Substituting
Eq. (2.2) and (2.3) into Eq. (2.1), the equilibrium equations may be rewritten in
terms of displacements as

(2.4) Gui,jj +
G

1 − 2v
uj,ji = 0.

For a well-posed boundary value problem, following boundary conditions,
either displacement or traction boundary condition, are prescribed as

ui = ūi on Γu,(2.5)

ti = t̄i on Γt,(2.6)

where Γu ∪ Γt = Γ is the boundary of the solution domain Ω, ūi and t̄i are the
prescribed boundary values.

2.2. Assumed fields

To solve the problem governed by Eqs. (2.4)–(2.6) using HFS-FEM approach,
the solution domain Ω is divided into a series of elements as done in conven-
tional FEM. For each element, two independent fields, i.e. intra-element field
and frame field, are assumed in a manner as that presented in [16, 18]. The main
idea of the HFS-FEM is to establish a FE formulation whereby intra-element
continuity is enforced on a nonconforming internal displacement field chosen as
the fundamental solution of the problem under consideration [18]. In this ap-
proach, the intra-element displacement field is approximated in terms of a linear
combination of fundamental solutions of the problem as

(2.7) u(x) =







u1(x)
u2(x)
u3(x)







= Ne ce (x ∈ Ωe,ysj /∈ Ωe),

where the matrix Ne and unknown vector ce can be further written as

(2.8) Ne =




u∗11(x,ys1) u∗12(x,ys1) u∗13(x,ys1) · · · u∗11(x,ysns) u∗12(x,ysns) u∗13(x,ysns)
u∗21(x,ys1) u∗22(x,ys1) u∗23(x,ys1) · · · u∗21(x,ysns) u∗22(x,ysns) u∗23(x,ysns)
u∗31(x,ys1) u∗32(x,ys1) u∗33(x,ys1) · · · u∗31(x,ysns) u∗32(x,ysns) u∗33(x,ysns)
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(2.9) ce = [ c11 c21 c31 · · · c1n c2n c3n ]T,

in which x and ysj are respectively the field point and source point in the
local coordinate system (X1,X2). The components u∗ij(x,ysj) is the fundamental
solution, i.e. induced displacement component in i-direction at the field point x

due to a unit point load applied in j-direction at the source point ysj placed
outside the element, which are given by [22]

(2.10) u∗ij(x,ysj) =
1

16π(1 − ν)Gr
{(3 − 4ν)δij + r,ir,j},

where ri = xi − xis, r =
√

r21 + r22 + r23, ns is the number of source points.
In our analysis, the number of source points is taken to be the same as the

number of element nodes, which is free of spurious energy modes and can keep
the stiffness equations in full rank, as indicated in [14]. The source point ysj
(j = 1, 2, . . . , ns)can be generated by means of the following method [18]

(2.11) ys = x0 + γ(x0 − xc),

where γ is a dimensionless coefficient, x0 is the point on the element boundary
(the nodal point in this work) and xc the geometrical centroid of the element
(see Fig. 2). Determination of γ was discussed in [17, 18] and γ = 8 is used in
the following analysis.

Fig. 2. Intra-element field and frame field of a hexahedron HFS-FEM element for 3D elastic
problem (the source points and centroid of 20-node element are omitted in the figure for

clarity and clear view, which is similar to that of the 8-node element).

According to Eqs. (2.2) and (2.3), the corresponding stress fields can be
expressed as

(2.12) σ(x) =
[

σ11 σ22 σ33 σ23 σ31 σ12

]T
= Tece,
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where

(2.13) Te =




















σ∗111(x,y1) σ∗211(x,y1) σ∗311(x,y1) · · · σ∗111(x,yns) σ∗211(x,yns) σ∗311(x,yns)

σ∗122(x,y1) σ∗222(x,y1) σ∗322(x,y1) · · · σ∗122(x,yns) σ∗222(x,yns) σ∗322(x,yns)

σ∗133(x,y1) σ∗233(x,y1) σ∗333(x,y1) · · · σ∗133(x,yns) σ∗233(x,yns) σ∗333(x,yns)

σ∗123(x,y1) σ∗223(x,y1) σ∗323(x,y1) · · · σ∗123(x,yns) σ∗223(x,yns) σ∗323(x,yns)

σ∗131(x,y1) σ∗231(x,y1) σ∗331(x,y1) · · · σ∗131(x,yns) σ∗231(x,yns) σ∗331(x,yns)

σ∗112(x,y1) σ∗212(x,y1) σ∗312(x,y1) · · · σ∗112(x,yns) σ∗212(x,yns) σ∗312(x,yns)





















.

The components σ∗ijk(x,y) is given by

(2.14) σ∗ijk(x,y) =
−1

8π(1 − ν)r2
{(1 − 2ν)(r,kδij + r,jδki − r,iδjk) + 3r,ir,jr,k}.

As a consequence, the traction can be written in the form

(2.15)







t1
t2
t3







= nσ = Qece,

in which

(2.16) Qe = nTe, n =





n1 0 0 0 n3 n2

0 n2 0 n3 0 n1

0 0 n3 n2 n1 0



 .

The unknown ce in Eqs. (2.7) and (2.12) may be calculated using a hybrid
technique [17], in which the elements are linked through an auxiliary conforming
displacement frame which has the same form as in conventional FEM (see Fig. 2).
This means that in the HFS-FEM, a conforming displacement field should be
independently defined on the element boundary to enforce the field continuity
between elements and also to link the unknown ce and the nodal displacement de.
Thus, the frame is defined as

(2.17) ũ(x) =







ũ1

ũ2

ũ3







=











Ñ1

Ñ2

Ñ3











de = Ñede, (x ∈ Γe),

where the symbol “ ”̃ is used to specify that the field is defined on the element
boundary only, Ñe is the matrix of shape functions, de is the nodal displacements
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of elements. Taking the surface 2-3-7-6 of a particular 8-node brick element (see
Fig. 2) as an example, matrix Ñe and vector de can be expressed as

Ñe =
[

0 N̄1 N̄2 0 0 N̄4 N̄3 0
]

,(2.18)

de =
[

u11 u21 u31 u12 u22 u32 · · · u18 u28 u38

]T
,(2.19)

where the shape functions are expressed as

(2.20) N̄i =





Ñi 0 0

0 Ñi 0

0 0 Ñi



 , 0 =





0 0 0
0 0 0
0 0 0



 ,

where Ñi, (i = 1, . . . , 4) can be expressed by natural coordinate ξ, η ∈ [−1, 1]

(2.21)

Ñ1 =
(1 + ξ)(1 + η)

4
, Ñ2 =

(1 − ξ)(1 + η)

4
,

Ñ3 =
(1 − ξ)(1 − η)

4
, Ñ4 =

(1 + ξ)(1 − η)

4
,

and (ξi, ηi) is the natural coordinate of the i-node of the element (Fig. 3).

Fig. 3. Typical linear interpolation for the frame fields.

2.3. Modified functional for hybrid finite element method

The HFS-FEM formulation for 3D elastic problems can be established by the
variational approach [18]. In the absence of body forces, the hybrid functional
Πme used for deriving the present HFS-FEM can be constructed as [15]

(2.22) Πme =
1

2

∫∫

Ωe

σijεijdΩ−
∫

Γt

t̄iũidΓ +

∫

Γe

ti(ũi − ui)dΓ
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where ũi and ui are the intra-element displacement field defined within the ele-
ment and the frame displacement field defined on the element boundary, respec-
tively. Ωe and Γe are the element domain and element boundary, respectively.
Γt, Γu and ΓI stand respectively for the specified traction boundary, specified
displacement boundary and inter-element boundary (Γe = Γt + Γu + ΓI).

Compared to the functional employed in the conventional FEM, the present
hybrid functional is constructed by adding a hybrid integral term related to the
intra-element and element frame displacement fields to guarantee the satisfaction
of displacement and traction continuity conditions on the common boundary of
two adjacent elements. By applying the Gaussian theorem, Eq. (2.22) can be
simplified as

Πme =
1

2

∫∫

Ωe

σijεijdΩ−
∫

Γt

t̄iũidΓ +

∫

Γe

ti(ũi − ui)dΓ(2.23)

=
1

2

(
∫

Γe

tiuidΓ −
∫∫

Ωe

σij,juidΩ

)

−
∫

Γt

t̄iũidΓ +

∫

Γe

ti(ũi − ui)dΓ.

Due to the satisfaction of the equilibrium equation with the constructed intra-
element fields, we have the following expression for HFS finite element model

Πme =
1

2

∫

Γe

tiuidΓ −
∫

Γt

t̄iũidΓ +

∫

Γe

ti(ũi − ui)dΓ(2.24)

= −1

2

∫

Γe

tiuidΓ +

∫

Γe

tiũidΓ −
∫

Γt

t̄iũidΓ.

The functional (2.24) contains only boundary integrals of the element and will be
used to derive HFS-FEM formulation for the three-dimensional elastic problem
in the following section.

2.4. Element stiffness matrix

The element stiffness equation can be generated by setting δΠme = 0. Sub-
stituting Eqs. (2.7), (2.15) and (2.17) into the functional (2.24), we have

(2.25) Πme = −1

2
cT
e Hece + cT

e Gede − dT
e ge,

where

(2.26) He =

∫

Γe

QT
e NedΓ , Ge =

∫

Γe

QT
e ÑedΓ , ge =

∫

Γt

ÑT
e t̄dΓ.
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To enforce inter-element continuity on the common element boundary, the
unknown vector ce should be expressed in terms of nodal DOF de. The station-
ary condition of the functional Πme with respect to ce and de yields, respec-
tively,

∂Πme

∂cT
e

= −Hece + Gede = 0,(2.27)

∂Πme

∂dT
e

= GT
e ce − ge = 0.(2.28)

Therefore, the relationship between ce and de, and the stiffness equation can be
obtained as follows

ce = H−1
e Gede,(2.29)

Kede = ge,(2.30)

where Ke = GT
e H−1

e Ge is the element stiffness matrix. It should be mentioned
that the condition number of matrix He may become very large if the positions
of source points are not chosen appropriately. This issue can be determined
by numerical experiments for the parameter γ in Eq. (2.11). According to our
experience, the suitable range for γ is between 2 and 15 to assure a better
condition number for matrix He in order to improve the accuracy.

2.5. Numerical integral over element

Generally, it is difficult to get the analytical expression of the integral in
Eq.(2.26) and numerical integration over the element is required. In our calcu-
lation the widely used Gaussian integration is employed.

Consider a surface of the 3D hexahedron element, as shown in Fig. 3, the
vector normal to the surface can be obtained by

(2.31) vn = vξ × vη =







vnx
vny
vnz







=































dx

dξ

dy

dξ

dz

dξ































×































dx

dη

dy

dη

dz

dη































=































dy

dξ

dz

dη
− dy

dη

dz

dξ

dz

dξ

dx

dη
− dz

dη

dx

dξ

dx

dξ

dy

dη
− dx

dη

dy

dξ































,

where vξ and vη are the tangential vectors in the ξ-direction and η-direction,
respectively, calculated by
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(2.32)

vξ =































dx

dξ
dy

dξ
dz

dξ































=

nd
∑

i=1

∂Ni(ξ, η)

∂ξ







xi
yi
zi







,

vη =































dx

dη
dy

dη
dz

dη































=

nd
∑

i=1

∂Ni(ξ, η)

∂η







xi
yi
zi







,

where nd is the number of nodes of the surface, (xi, yi, zi)are the nodal coordi-
nates. Thus the unit normal vector is given by

(2.33) n =
vn

|vn|
,

where

(2.34) J(ξ, η) = |vn| =
√

v2
nx + v2

ny + v2
nz

is the Jacobian of the transformation from Cartesian coordinates (x, y) to natural
coordinates (ξ, η).

For the H matrix, we introduce the matrix function

(2.35) F(x,y) = [Fij(x, y)]m×m = QT
e Ne.

Then we can get

(2.36) He =

∫

Γe

QT
e NedΓ =

∫

Γe

F(x,y)dΓ,

and we rewrite it to the component form as

(2.37) Hij =

∫

Γe

Fij(x, y)dS =

nf
∑

l=1

∫

Γel

Fij(x, y)dS.

Using the relationship

(2.38) dS = J(ξ, η)dξdη
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and the Gaussian numerical integration, we can obtain

Hij =

nf
∑

l=1

1
∫

−1

Fij [x(ξ, η), y(ξ, η)]J(ξ, η)dξdη(2.39)

≈
nf
∑

l=1

{ np
∑

s=1

np
∑

t=1

wswtFij [x(ξs, ηt), y(ξs, ηt)]J(ξs, ηt)

}

,

where nf and np are respectively the number of surface of the 3D element and
the number of Gaussian integral points in each direction of the element surface.
Similarly, we can calculate the Ge matrix by

Gij =

nf
∑

l=1

1
∫

−1

F̃ij [x(ξ, η), y(ξ, η)]J(ξ, η)dξdη(2.40)

≈
nf
∑

l=1

{ np
∑

s=1

np
∑

t=1

wswtF̃ij [x(ξs, ηt), y(ξs, ηt)]J(ξs, ηt)

}

.

It should be mentioned that the calculation of vector ge in Eq. (2.30) is the
same as that in the conventional FEM, so it is convenient to incorporate the
proposed HFS-FEM into the standard FEM program. Besides, the stress and
traction estimations are directly computed from Eqs. (2.12) and (2.13), respec-
tively. The boundary displacements can be directly computed from Eq. (2.17)
while the displacements at interior points of the element can be determined
from Eq. (2.7) plus the recovered rigid-body modes in each element, which will
be introduced in the following section.

2.6. Recovery of rigid-body motion terms

From the above procedures, we can see that the solution will fail if any of the
functions u∗ij is in a rigid body motion mode due to that the matrix He is not in
full rank and becomes singular for inversion [14]. Therefore, special care should
be taken to discard all rigid body motion terms from ue to prevent the element
deformability matrix He from being singular. However, it is necessary to reintro-
duce the discarded rigid-body motion terms when calculating the internal field
ue of an element. For this purpose the least squares method can be employed.
The missing terms can easily be recovered by setting for the augmented internal
field

(2.41) ue = Nece +





1 0 0 0 x3 −x2

0 1 0 −x3 0 x1

0 0 1 x2 −x1 0



 c0
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and using a least-square procedure to match ueh and ũeh at the nodes of the
element boundary

(2.42) min =
n
∑

i=1

[(u1i − ũ1i)
2 + (u2i − ũ2i)

2 + (u3i − ũ3i)
2],

where n is the number of nodes for the element under consideration. The above
equation finally yields

(2.43) c0 = R−1
e re

where

Re =

n
∑

i=1

















1 0 0 0 x3i −x2i

0 1 0 −x3i 0 x1i

0 0 1 x2i −x1i 0
0 −x3i x2i x2

2i + x2
3i −x1ix2i −x1ix3i

x3i 0 −x1i −x1ix2i x
2
1i + x2

3i −x2ix3i

−x2i x1i 0 −x1ix3i −x2ix3i x
2
1i + x2

2i

















,(2.44)

re =
n
∑

i=1

















∆ue1i
∆ue2i
∆ue3i

∆ue3ix2i − ∆ue2ix3i

∆ue1ix3i − ∆ue3ix1i

∆ue2ix1i − ∆ue1ix2i

















.(2.45)

3. Formulations of the HFS-FEM for 3D elasticity with body force

3.1. Governing equations

Consider the three-dimensional isotropic body occupying the domain Ω, as
shown in Fig. 1, the equilibrium equation for the body with body force bi can
be expressed as

(3.1) σij,j = −bi i, j = 1, 2, 3.

The constitutive equations and the generalized kinematical relation are the
same as those in Eqs. (2.2) and (2.3). Therefore, the equilibrium equations (3.1)
can be rewritten in terms of displacements as

(3.2) Gui,jj +
G

1 − 2v
uj,ji = −bi.

For a well-posed boundary value problem, boundary conditions are also de-
fined by Eqs. (2.5) and (2.6). In the following parts, we will present the procedure
for handling the body force appearing in Eq. (3.2).
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3.2. The method of particular solution

The inhomogeneous term bi associated with the body force in Eq. (3.2) can
be effectively handled by means of the method of particular solution presented
in [15, 23]. In this approach, the displacement ui is decomposed into two parts,
a homogeneous solution uhi and a particular solution upi

(3.3) ui = uci + upi ,

where the particular solution upi should satisfy the governing equation

(3.4) Gupi,jj +
G

1 − 2v
upj,ji = −bi

without any restriction of boundary condition. However, the homogeneous solu-
tion should satisfy

(3.5) Guhi,jj +
G

1 − 2v
uhj,ji = 0

with the modified boundary conditions

uhi = ūi − upi on Γu,(3.6)

thi = t̄i − tpi on Γt.(3.7)

From above equations it can be seen that once the particular solution upi is
known, the homogeneous solution uhi in Eqs. (3.5)–(3.7) can be obtained using
HFS-FEM. The final solution can then be given by Eq. (3.3). In the next section,
radial basis function approximation will be introduced to obtain the particular
solution, and the HFS-FEM will be used for solving Eqs. (3.5)–(3.7).

3.3. Radial basis function approximation

For the body force bi, it is generally impossible to find an analytical solution
which enable us to convert the domain integral into a boundary one. So we must
approximate it by a combination of basis (trial) functions or other methods.
Radial basis function (RBF), which has been found to be most suitable for this
purpose [24, 25], is used for interpolation of body forces in this paper. Hence, we
assume

(3.8) bi ≈
N
∑

j=1

αjiϕ
j ,

where N is the number of interpolation points, ϕj are the RBFs and αji are
the coefficients to be determined. Subsequently, the particular solution can be
approximated by



274 C. Cao, Q.-H. Qin, A. Yu

(3.9) upi =

N
∑

j=1

αjiΦ
j
ik,

where Φjik is the approximated particular solution kernel of displacement. Once
the basis functions are selected, the problem of finding a particular solution is
reduced to solve the following equation

(3.10) GΦil,kk +
G

1 − 2ν
Φkl,ki = −δilϕ.

To solve this equation, the displacement is expressed in terms of the Galerkin–
Papkovich vectors

(3.11) Φik =
1 − ν

G
Fik,mm − 1

2G
Fmk,mi.

Substituting Eq. (3.11) into Eq. (3.10), we can obtain the following bi-
harmonic equation

(3.12) ∇4Fil = − 1

1 − ν
δilϕ.

Taking the Spline Type RBF ϕ = r2n−1 as an example, we have following solu-
tions

Fli = − δli
1 − v

r2n+3

(2n+ 1)(2n+ 2)(2n+ 3)(2n+ 4)
,(3.13)

Φli = A0(A1δli +A2r,ir,l),(3.14)

where

(3.15)

A0 = − 1

8G (1 − v)

r2n+1

(n+ 1) (n+ 2) (2n+ 1)
,

A1 = 7 + 4n− 4v(n+ 2),

A2 = −(2n+ 1),

and rj represents the Euclidean distance between a field point (x, y, z) and
a given point (xj , yj , zj) in the domain of interest. The corresponding partic-
ular solution of stresses can be obtained by

(3.16) Slij = G(Φli,j + Φlj,i) + λδijΦlk,k,

whereλ = 2v
1−2vG. Substituting Eq. (3.14) into Eq. (3.16), we have

(3.17) Slij = B0{B1(r,jδli + r,iδjl) +B2δijr,l +B3r,ir,jr,l},
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where

(3.18)

B0 = − 1

4(1 − v)

r2n

(n+ 1)(n+ 2)
,

B1 = 3 + 2n− 2v(n+ 2),

B2 = 2v(n+ 2) − 1,

B3 = 1 − 2n.

3.4. HFS-FEM for homogeneous solution

After obtaining the particular solution, next step is to modify boundary con-
ditions using Eqs. (3.6) and (3.7), then we can treat the 3D problem as a homo-
geneous problem governed by Eqs. (3.5)–(3.7) by using the HFS-FEM presented
in Section 2. It is clear that once the particular and homogeneous solutions for
displacement and stress components at nodal points are determined, the dis-
tribution of displacement and stress fields at any point in the domain can be
calculated using the element interpolation function.

4. Numerical examples

The performance of the proposed 3D HFS-FEM is now evaluated with a num-
ber of challenging problems from the literature. First, the 3D patch test presented
in [26] is conducted for the proposed element. Then the standard two-element
distortion test and straight beam tests (with Rectangular, Trapezoid and Paral-
lelogram shape elements) are conducted. An irregularly meshed bi-material beam
is also investigated and the element performance of different elements is com-
pared. After that, a cube under uniform loading and body force are presented
to demonstrate the performance of the method for solving problems involving
boy forces. Then a perforated thick plate is considered for assess the perfor-
mance in handling stress concentration. Finally, nearly incompressible materials
are investigated to applicability to volumetric locking problems.

Example 1. 3D Patch test. A standard 3D patch test presented by Mac-

neal and Harder [26] is carried out in this example. A unit cube is discretized
by seven irregular 8-node hexahedral elements, as shown in Fig. 4. The material
is linear elastic with Young’s module E = 106 Pa and Poisson ratio v = 0.25.
The eight exterior nodes are given a prescribed linear displacement shown in
Eq. (4.1) to reproduce a uniform strain/stress state for the irregular elements.

(4.1)

u = 0.5 × 10−3(2x+ y + z),

v = 0.5 × 10−3(x+ 2y + z),

w = 0.5 × 10−3(x+ y + 2z).
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Fig. 4. 3D patch test with wrap element (unit cube, E = 106, v = 0.25).

Table 1 gives the nodal coordinates of the elements and the boundary condi-
tion for the external eight nodes, and the interior nodes are free of any external
load. It is found that both the 8-node and 20-node brick element can successfully
pass the patch test with good marks described in Macneal and Harder [26].
It is demonstrated that the linear field can be approximated by the superposition
of finite number of the fundamental solutions with relatively high accuracy.

Table 1. Node coordinates and displacement boundary condition for external
nodes of the 3D patch test.

Node
Coordinates Displacement B.C.

x1 x2 x3 u1 u2 u3

1 0.249 0.342 0.342 – – –

2 0.826 0.288 0.288 – – –

3 0.850 0.649 0.263 – – –

4 0.273 0.750 0.230 – – –

5 0.320 0.186 0.643 – – –

6 0.677 0.305 0.683 – – –

7 0.788 0.693 0.644 – – –

8 0.165 0.745 0.702 – – –

9 0.0 0.0 0.0 0.0 0.0 0.0

10 1.0 0.0 0.0 1.0 0.5 0.5

11 1.0 1.0 0.0 1.5 1.5 1.0

12 0.0 1.0 0.0 0.5 1.0 0.5

13 0.0 0.0 1.0 0.5 0.5 1.0

14 1.0 0.0 1.0 1.5 1.0 1.5

15 1.0 1.0 1.0 2.0 2.0 2.0

16 0.0 1.0 1.0 1.0 1.5 1.5
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Example 2. Beam bending: sensitivity to mesh distortion. In order to de-
monstrate the sensibility of the proposed model to mesh distortion, the well-
known two-element distortion test is examined [27–30], as shown in Fig. 5. The
surface separating the two elements is gradually rotated to skew the mesh. The
tip deflection at point A of the beam under pure bending is presented in Fig. 6.
From this figure, it can be seen that the error of deflection from HFS-FEM
(HFS-HEX8) increases from 10% to about 40% when the distortion parameter
∆ increases from 1 to 4. However, the present element is not so sensitive to
the distortion as the elements by Pian and Tong [31] and Weissman [30].
Comparing with those obtained by Pian and Tong [31] and Weissman [30],
it is obvious that the present results are much better when the element is dis-
torted.

Fig. 5. Perspective view of a cantilever beam under end moment: sensitivity
to mesh distortion.

Fig. 6. Comparison of deflection at point A for a cantilever beam; deflection at point A from
a cantilever beam under end moment.
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Example 3. Cantilever beam under shear loading. A set of beams with rect-
angular, trapezoidal and parallelogram shapes [26, 32] as shown in Fig. 7 are
investigated. The materials constants are E = 1.0× 107 and v = 0.3. One end of
the beam is fixed and the other end of the beam is applied a concentrated load
of P = 1. The length, width and thickness of the beams are 6.0, 0.2 and 0.1,
respectively. The obtained results are normalized by the theoretical solution,
0.1081, which is obtained from the beam theory [26].

a)

b)

c)

Fig. 7. Perspective views of straight cantilever beams: a) regular shape beam, b) trapezoid
shape elements, c) parallelogram shape element.

The normalized results are shown in Table 2. It can be found that the HFS-
HEX8 element cannot overcome the locking phenomenon for the trapezoidal
case and parallelogram case. It exhibits severely locking for the trapezoidal case,
which is only 0.281 times of the exact value. However, it still gives better perfor-
mance compared with the results produced by the elements of Pian and Tong.
For the parallelogram case, the accuracy of the HFS-HEX8 element is similar
with those of element by Cao et al. [32] and Pian and Tong [31].

Table 2. Comparison of normalized tip deflections of straight beam in load
direction.

Mesh type Pian and Tong [31] Cao et. al. [32] HFS-HEX-8

Rectangular 0.981 0.981 0.962

Trapezoidal 0.047 0.980 0.281

Parallelogram 0.625 0.653 0.657

Example 4. Irregularly meshed beam with two materials. In the fourth
example, a long beam composed of two materials as shown in Fig. 8 is investi-
gated. The beam is 4m long with a constant squared cross-section of 0.5×0.5 m2.
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The material parameters are respectively E1 = 200 MPa, v1 = 0.3 and E2 =
400 MPa, v2 = 0.3 [33]. The interface between the two materials is considered
perfectly bonded. The displacements are restrained on one end of the beam and
a transversal force of 2 kN is uniformly applied on the cross-section of the other
end, as shown in Fig. 8.

Fig. 8. Irregularly meshed bimaterial beam: geometry, materials and boundary conditions.

The response of the beam has been computed using the 3D HFS-FEM for
three irregular meshes, as shown in Fig. 9: i.e., Mesh 1 (2× 2× 10 elements with
99 nodes), Mesh 2 (4 × 4 × 20 elements with 525 nodes) and Mesh 3 (8 × 8 ×
40 elements with 3321 nodes). The transverse displacement u2 along the force
direction at the central tip point of the cross-section is used for comparison.
Table 3 gives the transverse displacement u2 obtained by the HFS-FEM using
HFS-HEX8 and HFS-HEX20 elements as well as the results by ABAQUS C3D8
elements and enhanced strain elements (EAS) [34]. It is found that the C3D8
element is severely locked as expected for Mesh 1. EAS elements give much
better results than the original C3D8 elements. The HFS-HEX8 element also
displays the locking problem for Mesh 1 but significantly improved the results
of C3D8, which has the similar performance to EAS element. The quadratic
element HFS-HEX20 has the best performance in the listed elements. However,
it can be expected that all the elements both from HFS-FEM and ABAQUS
will converge to the benchmark value of 3.8388 cm (obtained by ABAQUS using
20× 20× 20 elements with 71001 nodes shown in Fig. 10) with the increasing of
the mesh density.

Comparison with the solution of ABAQUS using several ten thousands of
nodes, it is interesting that similar results with nearly same accuracy can be
obtained by HFS-FEM using much less meshes. It is expected that using non-
uniform mesh density for the interface and ends, similar results are obtainable
with an even smaller number of elements. It can be concluded from Table 3 that
the HFS-FEM with linear or quadratic elements are not sensitive to element
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Fig. 9. Irregularly meshed bimaterial beam: Mesh 1 (2 × 2 × 10 elements), Mesh 2
(4 × 4 × 20 elements) and Mesh 3 (8 × 8 × 40 elements).

Fig. 10. Regularly meshed bimaterial beam: fine mesh used by ABAQUS for benchmark
reference (20 × 20 × 100 elements).
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distortion as shown in Example 2, and the shear locking problems is not as
severe as C3D8 and has competitive performance with the EAS.

Table 3. Transversal displacement and relative errors of the irregularly meshed
beam calculated by HFS-FEM and ABAQUS using different elements.

Mesh
HFS-FEM ABAQUS

HEX8 HEX20 EAS C3D8

Mesh 1 (2 × 2 × 10)
3.0842

(19.65%)
3.7890
(1.30%)

3.2541
(15.23%)

2.1612
(43.70%)

Mesh 2 (4 × 4 × 20)
3.6188
(5.73%)

3.8305
(0.22%)

3.6982
(3.66%)

3.2769
(14.64%)

Mesh 3 (8 × 8 × 40)
3.7650
(1.92%)

3.8382
(0.01%)

3.7993
(1.03%)

3.6878
(3.93%)

Note: displacement unit: cm; values in the parentheses are the relative error.

Example 5. Cubic block under uniform tension and body force. To investi-
gate the performance of the proposed method for problems involving body forces,
an isotropic cubic block subject to a uniform tension is considered in this exam-
ple. The dimension of the block is 10 × 10 × 10 and its geometry and boundary
conditions are shown in Fig. 11. A constant body force of 10 Mpa and uniform
distributed tension of 100 MPa are applied to the cube. Three different meshes
with distorted 8-node brick elements: Mesh 1 (4 × 4 × 4), Mesh 2 (6 × 6 × 6)
and Mesh 3 (10 × 10 × 10) as shown in Fig. 12, are employed to investigate the
convergence of the method. The displacement and stress at Point A calculated

Fig. 11. Cubic block under uniform tension and body force: geometry, boundary condition
and loading.
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ZMesh 2

X
Y

ZMesh 3

Fig. 12. Cubic block under uniform tension and body force: Mesh 1 (4 × 4 × 4 elements),
Mesh 2 (6 × 6 × 6 elements) and Mesh 3 (10 × 10 × 10 elements).

Fig. 13. Cubic block under uniform tension and body force: fine mesh used by ABAQUS for
benchmark reference (40 × 40 × 40 elements).
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by ABAQUS with a very fine mesh (shown in Fig. 13, 40×40×40 C3D8 element
with 68921 nodes) are given as a reference benchmark for comparison, which can
be viewed as the exact solution.

Figures 14 and 15 present the displacement component u1 and the stress
component σ11 at Point A of the block, which are calculated by the HFS-FEM
on the three meshes shown in Fig. 12. The results from C3D8 and EAS elements

Fig. 14. Cubic block with body force under uniform distributed load: convergent study of
displacements.

Fig. 15. Cubic block with body force under uniform distributed load: convergent study of
stresses.
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are also presented for comparison. It can be seen from these figures that the
results obtained both from HFS-FEM and ABAQUS converge to the benchmark
value with the increasing of the number of degree of freedom (DOF). For Mesh 1,
the hybrid EAS element has the best performance while for Mesh 2 and Mesh 3
it can be seen that HFS-FEM with HEX8 elements exhibits better accuracy for
both displacement and stresses compare with EAS in traditional FEM. From the
results it can be seen that the C3D8 has the worst performance in the presented
three type elements. Contour plots of u1 and σ11 obtained by HFS-FEM on
Mesh 3 are also presented in Fig. 16.
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Fig. 16. Contour plots of displacement u1 and stress σ11 of the cube.

It should be noted that for problems involving body forces the accuracy of
the RBF interpolation has to be considered for a satisfactory solution. Due to
our current method for producing the interpolation points, i.e. the interpolation
points are the same as the element nodes, thus increasing the nodes of the domain
will improve the accuracy for body force approximation, and then the results
of displacement and stress are improved. Thus, it is expected to increase the
number of nodes so as to increase the interpolation points for improving the
accuracy of HFS-FEM for problems involving body force. The details on the
RBF interpolation can be found in previous literatures [10, 35, 36].

Example 6. Thick plate with a centered hole. The influence of holes on the
distribution of stresses in structural elements has been investigated for a long
time [37–39]. To demonstrate the capability of the new method for handling
complex geometry and stress concentration, one thick plate with a circle hole at
its center is investigated in this example. A uniform displacement u1 = 1 mm is
applied on one face of the plate along x axis as shown in Fig. 17. The reference
results are obtained by ABAQUS using 138,866 C3D8R elements with 151,725
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nodes as shown in Fig. 18. Three different meshes used in this example, Mesh 1
(660 elements with 985 nodes), Mesh 2 (1392 elements with 1876 nodes) and
Mesh 3 (5274 elements with 6657 nodes), are shown in Fig. 19.

Fig. 17. Thick plate with central hole: geometry, material and boundary conditions.

Fig. 18. Thick plate with central hole: fine mesh used by ABAQUS for benchmark reference
(138866 elements with 151725 nodes).
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Fig. 19. Perforated thick plate: Mesh 1 (660 elements with 985 nodes), Mesh 2 (1392
elements with 1876 nodes) and Mesh 3 (5274 elements with 6657 nodes).

Figure 20 presents the results calculated by the HFS-FEM and ABAQUS
for the stress at point M (as shown in Fig. 17). It is obvious that the results
from HFS-FEM are much better than those given by ABAQUS. The error of
HFS-FEM is less than 3% while the error of ABAQUS is larger than 20% by
using the finer Mesh 3. The von Mises stress of the thick plates is also given in
Fig. 21, in which the von Mises stress is given by

(4.2) σvm =

√

3

2
σ′ijσ

′
ji,

where σvm is the von Mises stress, σij is the stress tensor and σ′ij is the deviatoric
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Fig. 20. Perforated thick plate under uniform distributed load: convergent study of stresses.

Fig. 21. Perforated thick plate under uniform distributed load: convergent
study of Von Mises stress.

stress defined by

(4.3) σ′ij = σij −
1

3
σkkδij.

It can be seen from Fig. 21 that the HFS-FEM demonstrates a promising
performance with far smaller error that that from ABAQUS in the stress con-
centration problems.
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Example 7. Nearly incompressible block [28, 40]. As shown in Fig. 22, a near-
ly incompressible block with dimensions 100×100×50 is considered. The block is
fixed at the bottom and loaded at the top by a uniform pressure of q = 250/unit
area, acting on an area of 20×20 at the center. Due to symmetry of the problem,
only a quarter of the block is discretized with a uniform 5 × 5 × 5 mesh. The
bottom face of the block is fixed in the x3-direction, and the symmetry boundary
conditions are applied to the symmetry surface of the block. The geometry and
the material properties as well as the load applied and the boundary conditions
are given in Fig. 22.

Fig. 22. Nearly incompressible block: geometry, boundary conditions and the tested mesh.

The vertical displacement at the top center P of the block is listed for
the HFS-HEX8 element, HIS element [41] as well as the 3D.EAS-30 [28] and
QM1/E12 [42] element in Table 4. It is found that HFS-HEX8 is free of vol-
umetric locking and shows a significantly softer response compared with the
QM1/E12 element. The enhanced strain element 3D.EAS-30 exhibits a little
stiffer than HFS-HEX-8 and HIS proposed by Areias et al. [41]. The contour
plot of the vertical displacement of the block using the HFS-HEX-8 element

Table 4. Near-incompressible regular block, displacement
at the center P of the block.

Element Displacement

HFS-HEX8 0.02132

HIS [41] 0.01921

3D.EAS-30 [28] 0.01905

QM1/E12 [42] 0.01892
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Fig. 23. Contour plot of the vertical displacements of the near-incompressible regular block
under central uniform loading.

with 5×5×5 meshes is shown in Fig. 23. However, it is noted that with the
QM1/E12 element, solutions can only be obtained for the two coarsest meshes.
For finer mesh resolutions, the QM1/E12 element shows unphysical hourglass
instabilities [40].

5. Conclusions

In this work a new HFS-FEM approach has been proposed for analyzing
three-dimensional elastic problems. The detailed formulations for three-dimen-
sional HFS-FEM are firstly derived for elastic problems by ignoring body force
term and then the method of particular solution and radial basis function ap-
proximation are integrated into the HFS-FEM model to solve elastic problems
with body forces. The homogeneous solution is obtained by the HFS-FEM and
the particular solution by the approach of radial basis function. Several standard
tests and numerical examples are presented to demonstrate the capability and
accuracy of the method. It is found that the new method with linear 8-node
and quadratic 20-node brick elements can successfully pass the patch test. It
is also found that HFS-HEX8 element exhibit shear locking phenomenon and
cannot pass the Trapezoidal and Parallelogram beam test although it is not
very sensitive to the mesh distortion and have a better performance compared
to the Pian and Tong’s element. In addition, it is demonstrated that the new
method usually converges better compared with the traditional FEM and it can
be used in problems with nearly incompressible materials without volumetric
locking. This new method seems to be promising to deal with the problems
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involving complex geometry, stress concentration and multi-materials. It is pos-
sible to extend the current method to nonlinear problems by treating nonlinear
terms as a generalized body force and developing a convergent iterative algorithm
[4, 43].
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