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Application of generalized differential quadrature method

to nonlinear bending analysis of a single SWCNT

over a bundle of nanotubes
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The deformation of an individual single walled carbon nanotube (SWCNT) over
a bundle of nanotubes has been studied using the generalized differential quadrature
(GDQ) method. The effects of length, diameter, and minimum value of Lennard–
Jones experimental potential have been considered in the governing equation which
is derived based on the GDQ and the issues related to the implementation of the
boundary and compatibility conditions were addressed. The explanation of reliability
and flexibility of the GDQ is done by solving several selected examples which are
evaluated by comparing them with existing exact or approximate solutions which
were previously generated by finite element approach.
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1. Introduction

The tubular carbon structures were observed for the first time by
Iijima [1]. The nanotubes consisted of up to several tens of graphitic shells
(so-called multi-walled carbon nanotubes (MWCNTs)) with adjacent shell sep-
aration of 0.34 nm, diameters of 1 nm and large length/diameter ratio. Later,
Iijima and Ichihashi [2] and Bethune et al. [3] synthesized single-walled car-
bon nanotubes (SWCNTs). The synthesized nanotube samples are characterized
by means of Raman, electronic, and optical spectroscopies. Important informa-
tion is derived by mechanical, electrical and thermal measurements. Along with
the improvement of the production and characterization techniques for nan-
otubes, progress is being made in their application. The estimated high Young’s
modulus and tensile strength of the nanotubes led to speculations for their pos-
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sible use in composite materials with improved mechanical properties [4] and
actually resulted in production of new materials [5–7].

The configuration of the current problem consists of a single SWCNT over
a bundle of nanotubes which is assumed to be rigid due to relative mechanical
properties. The van der Waals interaction plays an important role on the per-
formance of SWCNT structures, such as mechanical properties [8–11]. The van
der Waals nonlinear interaction plays the most important role in the variation
of separation distance between individual SWCNT and its substrate. Wong

et al. [12] employed a cantilevered beam model in their research in which a mi-
croscopic point force bent a single MWCNT. Salvetat et al. [9, 13] used the
simply-supported beam model to simulate the deflections of the MWCNTs and
of some different kinds of SWCNT ropes. In the current study the effects of
physical SWCNT properties on the deflection of an individual SWCNT in dif-
ferent substrate curvature are investigated by modelling the SWCNT as an
Euler–Bernoulli beam model. Generalized differential quadrature (GDQ) is im-
plemented as a practical numerical method in solving higher order differen-
tial equation [15–17], to solve the governing equation of nanotube as a beam
model. The proposed GDQ employs the same number of independent variables
as that of the conditions at any discrete point. Therefore, the GDQ can deal
with the differential equations, which may be constrained by multiple conditions
at any discrete point. Several recent publications have reviewed the modelling
and simulation of carbon nanotubes and nanocomposites mechanical proper-
ties [18–20]. But these review articles do not cover separation of an individual
SWCNT from a substrate of its own kind. Therefore the purpose of this study
is the explanation of reliability and flexibility of the GDQ by solving several
selected examples which are evaluated by comparing them with the existing ex-
act or approximate solutions that were previously generated by finite element
approach.

2. Formulations

2.1. Schematic of problem

As shown in Fig. 1 the problem configuration consist of two main parts, one is
an individual SWCNT and the other is a bundle of nanotubes which plays a role
as a substrate. To fix a situation of coordinate axis the substrate curvature is
assumed to be a parabolic which is shown in Fig. 1.

The analytical equation of the above mentioned parabolic substrate which
curvature constant is m, will be:

(2.1) y =
m

2
x2.
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Fig. 1. Initial condition of the nanobeam model.

From Kudin [21] the stiffness of the nanotube and its diameter have the following
relationship:

(2.2) EI = πCd3,

where EI is the bending stiffness and C is 2152.8 eV/nm2 which is computed
for in-plane stiffness based on ab initio calculations, and d is the diameter of the
tube. From Fig. 2 it is easily recognized that bending stiffness of the bundle is
much bigger than the individual SWCNT [22]. This means that assuming the
substrate as a rigid body will be acceptable.

Fig. 2. Schematic of a bundle of nanotubes consist of 7 SWCNTs, [22].

In Fig. 2, the diameter of the bundle is about 4 times bigger than each
individual SWCNT diameter [22] thus its bending stiffness is 43 times bigger
than for each individual SWCNT (Eq. 2.2).

2.2. Modeling the individual SWCNT as a beam

Based on aspect ratio of SWCNTs and their mechanical properties, the sim-
ulation of SWCNT as a straight inextensible beam is acceptable [14, 23, 24],
the only interaction force between nanotubes is the van der Waals force [18–24]
which is determined in many papers from experimental Lennard–Jones poten-
tial [24–26]. Using the above information and the Euler beam theory for single
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SWCNT will determine the governing equation which explains the deflection of
the individual tube.

From the Euler beam theory the governing equation of the one-dimensional
inextensible beam is [27, 28]:

(2.3)
d2

dX2

(

EI
d2y

dX2

)

+ Fsubstrate = −Fexternal.

Figure 1 shows the symmetry of the y axis; therefore, the analysis of a one-
half of SWCNT is sufficient to obtain the results. The only force that acts is van
der Waals force which is expressed in per unit length as [25]:

(2.4) F (r(X)) =

17.81U0



−
(

3.41

3.13 r(X)+r0−d
r0−d + 0.28

)11

+

(

3.41

3.13 r(X)+r0−d
r0−d + 0.28

)5


 ,

where U0 is the minimum energy in the Lennard–Jones energy potential, rs is
the distance between the surfaces of nanobeam and substrate when the van der
Waals force is zero (Fig. 1), r0 is the distance which is measured by r0 = rs + d
where d is the diameter of the nanobeam and r(X) is an offset distance between
the surfaces of nanobeam and substrate during deformation. From Eq. (2.1) the
curvature of an individual SWCNT has the following form:

(2.5) y(X) =
m

2
X2 + r(X).

The boundary conditions due to symmetry and configuration of the problem
will be:

(2.6)
y(1)(0) = 0, y(3)(0) = 0,

y(2)(L) = 0, y(3)(L) = 0.

Considering Eq. (2.5), the governing equation and the boundary conditions in
Eq. (2.5) will be:

(2.7) EI
d4r(X)

dX4
+ F (r(X)) = 0,

with bounndary conditions

(2.8)
r(1)(0) = 0, r(3)(0) = 0,

r(2)(L) = −m, r(3)(L) = 0.

By applying the Taylor series expansion to the van der Waals force and trun-
cating higher order terms one can simplify high order nonlinearities to practical
form as follows:

(2.9) FvanderWaals ≈ −1.10−8 + 274.5242066r(X) +O(r2(X)).
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2.3. Differential quadrature and solution procedure

The GDQ method has been proved to be an efficient higher-order numerical
technique for the solution of initial and boundary value problems. The GDQ
technique has been widely reported to yield successful solutions for various dy-
namic and stability problems [29–36]. The essence of the GDQ method is that
a derivative of a function F is approximated as a weighted linear sum of all
functional values within the computational domain

(2.10)
dnF

dXn

∣

∣

∣

∣

X=Xi

=
N
∑

j=1

cnijF (Xi),

where

(2.11) c1ij =
π(Xi)

(Xi −Xj)(π(Xi))
; i, j = 1, 2, . . . , N, i 6= j,

where π(Xi) is defined as:

(2.12) π(Xi) =
N
∏

j=1

(Xi −Xj), i 6= j.

When i = j:

(2.13) c1ij = c1ii = −
N
∑

k=1

c
(1)
ik , i = 1, 2, . . . , N, i 6= k, i = j,

where N is the number of grid points along the x direction. The weighting
coefficients for the second, third and fourth derivatives are determined by the
following formula:

c
(m)
ij = m

(

c1ijc
(m−1)
ii −

c
(m−1)
ij

(Xj −Xi)

)

,(2.14)

i, j = 1, 2, . . . , N, i 6= j, m = 2, 3, . . . , N − 1,

c
(m)
ii = −

N
∑

j=1, j 6=i

c
(m)
ij , i = 1, 2, . . . , N, i 6= k, i = j.(2.15)

One of the most accurate meshes in GDQ formulation are Chebyshev nodes
which are defined by following inverse node numbering:

(2.16) Xi = X1 +
1

2

(

1 − cos
i− 1

N − 1
π

)

(XN −X1), i = 1, 2, . . . , N.
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For convenience and generality the following nondimensional variables are
introduced in the present analysis:

(2.17) x =
X

L
,

where x is nondimensional variable which varies between 0 to 1, L is the length
of nanotube and X represents vertical axis before nondimensionalisation. By this
assumption the derivatives will have the following form:

(2.18)

dr

dX
=

dr

Ldx
,

d3r

dX3
=

1

L3

d3r

dx3
,

d4r

dX4
=

1

L4

d4r

dx4
.

After nondimensionalisation the governing equation will be:

(2.19) EI
1

L4

d4r(x)

dx4
+ F (r(x)) = 0

with boundary conditions

(2.20) r(1)(0) = 0, r(3)(0) = 0, r(2)(1) = −mL2, r(3)(1) = 0.

By applying Eqs. (2.10)–(2.20)

(2.21)
EI

L4
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Because of high instability on borders, for applying boundary conditions, the
above equations should be substituted into first, second, (n− 1)-th and last line
of Eq. (2.21):

(2.22)
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Clearly, the above set of equations can be solved using several known
methods.

2.4. Finite element method (FEM)

FEM is applied to the governing equation in order to do verification, and
corresponding results show the great agreement between analytical and FEM
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solutions. Expressing Eq. (2) in the Galerkin weak form:

(2.23)

L
∫

x=0

(

EI
d2w(x)

dx2

d2r

dx2
+ w(x)F (r(x))

)

dx = −mEI dw(x)

dx

∣

∣

∣

∣

x=L

,

where w(x) is acceptable test function. In terms of force, using the Newton–
Raphson method, yields:

(2.24) F (r) = F (r̄0) +
d

dr
F (r̄0)∆r +O(∆r2),

w is assumed to be:

(2.25) w =
∑

A∈ηg

CAΦA,

and ∆r will be determined by:

r =
∑

B∈η
(dB +∆dB)ΦB,(2.26)

∆r =
∑

B∈η
∆dBΦB ,(2.27)

where Φ is shape function, computed values of dB are used to evaluate the ∆dB

which is an unknown variable, the set of all unknown degrees of freedom at points
grid in the FEM mesh is ηg and the total number of points grid multiplied by
the degrees of freedom at each point is called η. Equation (2.24) is substituted
into Eq. (2.23) and then the Newton–Raphson approach is applied to derive
Eq. (2.28):

(2.28)
∑

A∈ηg

CA





∑

B∈η





L
∫

x=0

EI
d2ΦA

dx2

d2ΦB

dx2
dx+

L
∫

x=0

ΦA
dF (r̄0)

dr
ΦBdx



∆dB



 =

−mEI dw(x)

dx

∣

∣

∣

∣

x=L

−
∑

A∈ηg

CA





L
∫

x=0

ΦAF (r̄0)dx+
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L
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explaining

(2.29)

KAB =

L
∫

x=0

EI
d2ΦA

dx2

d2ΦB

dx2
dx,

K∗
AB =

L
∫

x=L

ΦA
dF (r̄0)

dr
ΦBdx,

FA =

L
∫

x=0

ΦAF (r̄0)dx,

and rewriting Eq. (2.28):

(2.30)
∑

A∈ηg

CA





∑

B∈η

(KAB +K∗
AB)∆dB





= −mEI dw(x)

dx

∣

∣

∣

∣

x=L

−
∑

A∈η

CA





∑

B∈η

KABdB + FA



 .

Hermite interpolation polynomials which are used should be at least of order 3,
because every element has four unknowns.

(2.31)

Φe
1(x) = 1 − 3s2 + 2s3,

Φe
2(x) = les(s− 1)2,

Φe
3(x) = s2(3 − 2s),

Φe
4(x) = les2(s− 1),

le represents the length of one element, s is determined by (x − x1)/(x2 − x1),
where x1 and x2 are the left and right values of coordinates axis of the ele-
ment. The first step to assess a value for dB is important for converging the
Newton–Raphson approach. Because Eq. (2.30) is highly nonlinear equation,
an incremental load is used. At the beginning the curvature of the substrate
is assumed to be zero and resultant solutions are taken as initial guess. In the
next step the larger curvature of substrate is used, for the initial guess in this
step the solution of the previous step is used therefore the convergence of the
approach is determined. The above steps are repeated until a required m is
reached.
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3. Results

3.1. Mesh point number effect

Because of the high importance of the number of points required in the
grid to converge the approach, it should be examined. As a simple illustration,
Figs. 3 and 4 use 100 point grids and continuity of results is visible. Defor-
mation behavior and interaction force are depicted in Figs. 3 and 4, respec-
tively.

Fig. 3. Deformation of single SWCNT (2L = 20, d = 0.4) and the mesh grid has
100 points.

By substituting the deformation results into Eq. (2.4), the van der Waals
interaction will be shown in Fig. 4, which has an adequate accuracy from the
engineering point of view.
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Fig. 4. Interacting force of single SWCNT (2L = 20, d = 0.4) and the mesh grid has
100 points.

Figure 5 shows the results for the same SWCNT which uses 20 points. The
deformation response results emphasize the instability in this approach resulting
from the mesh grid.
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Fig. 5. Deformation of single SWCNT (2L = 20, d = 0.4) and the mesh grid has 20 points.

Fig. 6. Deformation of single SWCNT (2L = 40, d = 1.4) and the mesh grid has 100 points.
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3.2. Length effect

Herein the length of SWCNT is the parameter which is studied in GDQ re-
sults and each case is solved for 100 points grid. In Figs. 6 and 7 the length of the
individual SWCNT is 2L = 40 nm and the diameter is 1.4 nm and these figures
are about deformation and interaction, respectively. The observed behaviors are
similar to those which were seen in Fig. 3.

Fig. 7. Interacting force of single SWCNT (2L = 40, d = 1.4) and the mesh grid has
100 points.
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Using last results and Eq. (2.4), the interactions in the above case are plotted
in Fig. 7 again reasonable values are obtained.

Figures 7 and 8 show the results related to SWCNT which has the length
of 200 nm and the diameter of 1.4 nm. Figure 8 is related to deformation
manner.

Fig. 8. Deformation of single SWCNT (2L = 200, d = 1.4) and the mesh grid has
100 points.

After obtaining deformation values, interaction will be achieved by Eq. (2.4),
the related responses are displayed in Fig. 9.
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Fig. 9. Interacting force of single SWCNT (2L = 200, d = 1.4) and the mesh grid has
100 points.

3.3. Validation of GDQ approach

To validate the present GDQ approach for deformation solutions of the
SWCNT, comparisons have been carried out with the results of Li et al. [24].
In their analysis, finite element method was used to describe the deformation of
the individual nanotube.
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The research was performed in two cases, the first one belongs to a single
tube which has the length of 20 nm and the diameter of 1.4 nm. Corresponding
responses are depicted in Fig. 10.

1. FEM method’s results, [24]. 2. GDQ method’s results.

Fig. 10. Deformation of single SWCNT (2L = 20, d = 0.4) and the mesh grid has
100 points.

In the second case, the nanotube has the length of 40 nm and the diameter
of 1.4 nm. Computations related to this case are depicted in Fig. 11.
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1. FEM method’s results, [24]. 2. GDQ method’s results.

Fig. 11. Deformation of single SWCNT (2L = 40, d = 1.4) and the mesh grid has
100 points.

4. Conclusion

The deformation of individual SWCNT located over a bundle of nanotube is
analyzed based on small deformation theory and the Euler beam theory. The van
der Waals forces are significant in SWCNTs which are located closely. Influence
of the length and diameter of the individual SWCNT beside the curvature of
substrate on deformation behavior of the single SWCNTs is shown. The govern-
ing equation and the boundary conditions for the SWCNT as an Euler beam
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are solved using the GDQ method. From the GDQ solutions, it can be clearly
seen that the length of a single SWCNT has a great effect of deformation behav-
ior related to the same curvature. With the same SWCNT the number of mesh
points is important especially in distribution of interacting forces. As a parame-
ter the aspect ratio is important and it is obvious that in small aspect ratio the
individual SWCNT can deform more significantly and be near the substrate in
high curvature value of substrate.

Validations of the present GDQ approach have been carried out by compar-
isons with the results of Li et al. [24]. In their analysis, finite element method was
used to describe the deformation of the individual nanotube. The comparisons
illustrate the stability and continuity of results of GDQ method beside rapid
convergence in this method.
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