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In this work, an exact analytical solution to the axisymmetric heat con-
duction equation for hollow spherical objects with temperature-dependent thermal
conductivity is presented. The nonlinear differential equation is first transformed into
a linear one by means of an integral transform method. Then, the separation of vari-
ables method is employed to solve the transformed linear equation. Ultimately, we
use the inverse transform to obtain the physical temperature field. Furthermore, two
examples are worked out, i.e., the one-dimensional heat conduction in the radial direc-
tion and the two-dimensional case with axial symmetry. The solution is presented as
an infinite series in terms of Legendre functions. The problem with spherical symme-
try is also solved by using perturbation methods up to the third-order approximation,
and the results are compared with the exact solution.

Key words: heat conduction, steady-state, analytical solution, temperature-depen-
dent thermal conductivity, nonlinear equation, hollow sphere.

Copyright c© 2012 by IPPT PAN

1. Introduction

Heat conduction in spherical objects is an important problem in engi-
neering practice. It is also an interesting problem from a fundamental/mathe-
matical point of view. Analytical methods are often limited to linear problems,
i.e., problems with linear differential equations and boundary conditions. In heat
conduction context, this implies a constant or at most a space-dependent (but
not temperature-dependent) thermal conductivity. However, the assumption of
a constant thermal conductivity is valid when the range of temperatures involved
is not wide. When we encounter a wide range of temperatures in a problem, then
the temperature dependence of the thermal conductivity is usually to be taken
into account.

Analytical solution of linear heat conduction problem in a spherical object
is a rather classical problem, see for example [1]. Also, some recent analyti-
cal works can be found on the non-Fourier heat conduction in a hollow sphere
[2, 3]. However, these are linear cases. Analytical solutions for nonlinear cases
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with temperature-dependent thermal conductivity are rare. Trostel [4, 5] has
proposed a method to treat this kind of problems analytically using the Kirch-
hoff’s transform. He has applied his method to the one-dimensional problem of
nonlinear heat conduction in a hollow cylinder (in the radial direction). A pertur-
bation method is utilized in [6] to solve the nonlinear heat conduction problem in
a fin with temperature-dependent thermal conductivity. The homotopy analysis
method (HAM) is used in [7] to analytically investigate the thermal performance
of a straight fin of trapezoidal profile with temperature-dependent thermal con-
ductivity. Hybrid analytical-numerical methods are becoming more attractive
among researchers. Often in these approaches, the nonlinear governing equation
is reduced in dimensions by using some symmetry arguments, e.g., by using the
Lie group theory, and then the reduced problem (usually an ordinary differential
equation) is solved numerically, e.g., see [8].

In this work, we analytically solve the problems of spherically-symmetric and
axisymmetric heat conduction in a hollow sphere with temperature-dependent
thermal conductivity. The solution to this nonlinear problem is obtained as an
infinite series in terms of Legendre functions. We make use of the Kirchhoff’s
integral transform to solve the problem.

The remainder of this paper is organized as follows. The governing differential
equations are presented in Sec. 2. Section 3 contains the solution method in
general and the application of the general solution to hollow spherical objects
with worked-out examples. The paper is concluded in Sec. 4.

2. Governing equations

In this section, we present the governing equations of steady heat conduction
in a hollow sphere with temperature-dependent thermal conductivity. For this
purpose, we start with the steady energy conservation equation without heat
generation:

(2.1) ∇ · q = 0,

where ∇ and q are the nabla operator and heat flux vector, respectively. This
is a scalar equation

(2.2)
∂qi
∂xi

=
∂q1
∂x1

+
∂q2
∂x2

+
∂q3
∂x3

= 0,

for three components of the heat flux vector q, i.e., qi’s. In order to close the
system, we require a constitutive equation. In this work, we use the Fourier heat
conduction law:

(2.3) q = −λ · ∇ϑ,
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in which the scalar quantity ϑ is the temperature, and λ is the thermal conduc-
tivity tensor. For isotropic materials, the thermal conductivity tensor λ reduces
to a spherical tensor, i.e.,

(2.4) λ = λ1,

with λ and 1 being the thermal conductivity and the identity tensor, respectively.
Substituting Eq. (2.4) into Eq. (2.3) yields

(2.5) q = −λ∇ϑ.

The Fourier constitutive equation (2.5) along with the energy conservation equa-
tion (2.1) gives the following field equation for the temperature:

(2.6) ∇ · (λ∇ϑ) = ∇λ · ∇ϑ+ λ∆ϑ = 0,

where ∆ is the Laplacian operator. The thermal conductivity λ can depend on the
spatial coordinates (e.g., due to material inhomogeneities) and/or temperature.
The former case leads to a linear partial differential equation (PDE) with variable
coefficients whereas the latter case results in a nonlinear PDE. In the simplest
case, λ is assumed to be a constant (with ∇λ = 0), and Eq. (2.6) reduces to the
Laplace equation:

(2.7) ∆ϑ = 0.

Experimental observations show that, in general, λ does depend on temper-
ature, i.e., λ = λ (ϑ) [9]. The assumption of a constant thermal conductivity is
a good approximation when the range of temperatures involved is small. This
assumption is often made because it offers a great simplification in the mathemat-
ical analysis of heat conduction problems. However, in problems which involve
a broad range of temperatures, this assumption becomes less accurate and one
needs to take into account the dependence of λ on the temperature. By doing
so, we have

∇λ =
dλ

dϑ
∇ϑ,

and Eq. (2.6) reads

(2.8)
dλ

dϑ
∇ϑ · ∇ϑ+ λ (ϑ) ∆ϑ = 0,

which is obviously nonlinear.
In the next section, we analytically solve the nonlinear problem of heat con-

duction in hollow spherical objects with temperature-dependent thermal con-
ductivity.
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3. Analytical solution

In this section, we present analytical solutions to the nonlinear PDE (2.6)
(or (2.8)) in hollow spherical objects with inner and outer radii ri and ro, re-
spectively. First, we present the solution strategy for this type of problems in
Subsec. 3.1. Then, we proceed to solve the nonlinear PDE (2.6) in the spherical
coordinate system shown in Fig. 1. In general, for a steady three-dimensional
case we have ϑ = ϑ (r, ψ, ϕ). However, we consider two reduced cases in this
paper. The first case, presented in Subsec. 3.2, considers the temperature field
with spherical symmetry (one-dimensional in the radial direction), that is

(3.1)
∂ϑ

∂ψ
=
∂ϑ

∂ϕ
= 0, ϑ = ϑ (r) .

The second case, presented in Subsec. 3.3, is the axisymmetric case (two-dimen-
sional) which takes place when

(3.2)
∂ϑ

∂ϕ
= 0, ϑ = ϑ (r, ψ) .

Fig. 1. Spherical coordinate system.

3.1. Solution strategy

Trostel [4] has developed a methodology to deal with the nonlinear equation
(2.6). It is based on the following integral transform of the temperature field:

(3.3) Θ (ϑ) =
1

λ0

ϑ
∫

ϑ̃=0

λ(ϑ̃) dϑ̃, λ0 = λ (ϑ = 0) .

Taking the gradient of Eq. (3.3) we have

(3.4) ∇Θ =
1

λ0
λ (ϑ) ∇ϑ,
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in which the Leibniz integral theorem is used. Substitution of Eq. (3.4) into the
nonlinear heat equation (2.6) yields the Laplace partial differential equation for
the transformed temperature Θ:

(3.5) ∆Θ = 0.

It is seen that we obtain a linear PDE which can be solved analytically. The non-
linearity now lies in the integral transform (3.3), that is, Θ nonlinearly depends
on ϑ and vice versa.

For a wide range of engineering materials, one can assume a linear dependence
of the thermal conductivity λ on the temperature ϑ, that is

(3.6) λ (ϑ) = λ0 − λ1ϑ,

with λ0 and λ1 being material constants. Inserting Eq. (3.6) into the integral
transform (3.3) results in

(3.7) Θ (ϑ) = ϑ− ε

2
ϑ2, ε =

λ1

λ0
.

The nonlinear algebraic equation (3.7) describes the transformed temperature Θ
as a function of the physical temperature ϑ. In turn, one can derive an equation
for ϑ in terms of Θ by inverting (3.7):

(3.8) ϑ1,2 (Θ) =
1

ε

(

1 ±
√

1 − 2εΘ
)

.

In order to decide which sign reveals physically acceptable temperatures, we look
at the integral transform (3.3) in the limiting case λ1 → 0 (i.e., ε → 0) which
represents the case of a constant thermal conductivity. Equations (3.3) and (3.7)
show that ϑ = Θ in this case. Now, we take the limit of expression (3.9) as
ε→ 0. For the plus sign, we have

lim
ε→0

ϑ1 = lim
ε→0

1

ε

(

1 +
√

1 − 2εΘ
)

=
2

0
= ∞.

For the minus sign, one writes

lim
ε→0

ϑ2 = lim
ε→0

1

ε

(

1 −
√

1 − 2εΘ
)

=
0

0
.

Using the l’Hopital’s rule, we have

lim
ε→0

ϑ2 = lim
ε→0

1 −
√

1 − 2εΘ

ε
= lim

ε→0

(

−1

2

)

(−2Θ)
1√

1 − 2εΘ
= Θ.
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Therefore, we choose the minus sign which yields

(3.9) ϑ (Θ) =
1

ε

(

1 −
√

1 − 2εΘ
)

.

It shall be noted here that Eq. (3.9) yields physical temperatures when 2εΘ < 1
or Θ < 1/2ε. This might seem too restrictive at the first glance. However, such
inequality typically holds for engineering materials over a considerable range of
temperatures. For example, for mild steel we have ε = 5.83 × 10−4 and thus
Θ < 857 which translates to ϑ < 1714 ◦C.

3.2. Case with spherical symmetry

In this case, the temperature only depends on the radial coordinate and we
have ϑ = ϑ (r). Thus, the governing Eq. (2.6) reduces to

(3.10) ∇ · [λ (ϑ) ∇ϑ] =
1

r2
d

dr

[

r2λ (ϑ)
dϑ

dr

]

= 0.

The Dirichlet’s boundary conditions are

(3.11) ϑ (r = ri) = ϑi, ϑ (r = ro) = ϑo.

Using the linear dependence of λ on temperature (3.6) and the transform (3.7),
the governing Eq. (3.10) in terms of the transformed temperature Θ reads

(3.12) ∆Θ =
1

r2
d

dr

(

r2
dΘ

dr

)

= 0.

This is a Cauchy–Euler differential equation with the general solution:

(3.13) Θ (r) = C1 +
C2

r
.

The integration constants C1 and C2 are to be determined from the bound-
ary conditions. To this aim, we first need to transform the boundary condi-
tions (3.11):

Θ (r = ri) = ϑi −
ε

2
ϑ2

i = Θi,

Θ (r = ro) = ϑo −
ε

2
ϑ2

o = Θo.

(3.14)

Applying Eq. (3.14) to Eq. (3.13) we have

C1 = Θi −
ro

ri − ro
(Θo −Θi) =

roΘo − riΘi

ro − ri
,

C2 =
ri ro
ri − ro

(Θo −Θi) .

(3.15)
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As an example, here we consider a hollow sphere with ri = 0.6 cm and
ro = 1.0 cm. The boundary temperatures are assumed to be ϑi = 0.0◦C and
ϑ0 = 1000.0◦C. Three cases are considered. First, we consider a constant ther-
mal conductivity which leads to the linear differential equation (2.7) for the
temperature field. In this case, the temperature field is independent of the value
of the thermal conductivity. As for the second case, we consider a sphere made
of mild steel for which we have [4]

λ0 = 0.12 cal cm−1 sec−1 ◦C−1, λ1 = 7 × 10−5 cal cm−1 sec−1 ◦C−2.

A positive λ1 means that the thermal conductivity decreases with increasing the
temperature. Also, we present another fictitious material with

λ0 = 0.12 cal cm−1 sec−1 ◦C−1, λ1 = −7 × 10−5 cal cm−1 sec−1 ◦C−2,

whose thermal conductivity increases with increasing the temperature. The tem-
perature profiles for the above-mentioned cases are shown in Fig. 2. For the first
case with constant λ we have ϑ = Θ and we get the classical solution. For the
second case (mild steel) the temperature profile deviates from the first case. Ex-
cept from the boundaries ri and ro, the temperature is lower across the sphere
thickness. ∂ϑ/∂r of the nonlinear temperature is smaller than that of the linear
one in the vicinity of the inner surface and gets larger by approaching the outer
surface. For the third case with λ1 = −7× 10−5, we have the opposite behavior.
The temperature is greater across the sphere thickness. The temperature gradi-
ent is greater than that of the linear temperature adjacent to the inner surface
and it gets smaller by approaching the outer surface.
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Fig. 2. Spherically symmetric temperature profiles in a hollow sphere with ri = 0.6 cm,
ro = 1.0cm, ϑi = 0 ◦C, ϑo = 1000 ◦C and λ = λ0 −λ1ϑ with λ0 = 0.12. Three cases are shown:
constant λ, λ decreasing with temperature and λ increasing with temperature. Values of λ1

are shown in the figure.
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It should be noted here that the nonlinear effects are pronounced when the
temperature range is wide. For example, if we reduce ϑo from 1000 ◦C to 400 ◦C,
we observe that the two temperature profiles with non-zero λ1 approach the one
with zero λ1, as shown in Fig. 3. If we decrease the temperature difference even
more, say ϑo = 1 ◦C, then the three profiles fall on top of each other, see Fig. 4.
This shows that for applications involving a wide range of temperatures, one has
to take the nonlinearity into account. However, when the temperature range is
narrow, the linear model with constant λ is sufficiently accurate.
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Fig. 3. Spherically symmetric temperature profiles in a hollow sphere with ri = 0.6 cm,
ro = 1.0 cm, ϑi = 0 ◦C, ϑo = 400 ◦C and λ = λ0 − λ1ϑ with λ0 = 0.12. Three cases are shown:
constant λ, λ decreasing with temperature and λ increasing with temperature. Values of λ1

are shown in the figure.
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Fig. 4. Spherically symmetric temperature profiles in a hollow sphere with ri = 0.6 cm,
ro = 1.0 cm, ϑi = 0 ◦C, ϑo = 1 ◦C and λ = λ0 − λ1ϑ with λ0 = 0.12. Three cases are shown:
constant λ, λ decreasing with temperature and λ increasing with temperature. Values of λ1

are shown in the figure. All three cases lie on top of each other.
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3.3. Case with axial symmetry

For the axisymmetric case with λ = λ0−λ1ϑ, the governing Eq. (2.8) reduces
to the following nonlinear PDE:

(3.16) − λ1

[(

∂ϑ

∂r

)2

+
1

r2

(

∂ϑ

∂ψ

)2 ]

+ (λ0 − λ1ϑ)

[

∂2ϑ

∂r2
+

2

r

∂ϑ

∂r
+

1

r2

(

∂2ϑ

∂ψ2
+ cotψ

∂ϑ

∂ψ

)]

= 0.

The Dirichlet’s boundary conditions read

(3.17) ϑ (r = ri, ψ) = ϑi (ψ) , ϑ (r = ro, ψ) = ϑo (ψ) .

Using the temperature transform (3.7), Eq. (3.16) reduces to the Laplace equa-
tion for the transformed temperature Θ:

(3.18) ∆Θ =
∂2Θ

∂r2
+

2

r

∂Θ

∂r
+

1

r2

(

∂2Θ

∂ψ2
+ cotψ

∂Θ

∂ψ

)

,

subjected to the transformed boundary conditions

Θ (r = ri, ψ) = ϑi (ψ) − ε

2
(ϑi (ψ))2 = Θi (ψ) ,(3.19a)

Θ (r = ro, ψ) = ϑo (ψ) − ε

2
(ϑo (ψ))2 = Θo (ψ) .(3.19b)

Now, we solve this problem by the use of a separation ansatz as Θ (r, ψ) =
R (r)Ψ (ψ). Substituting this ansatz into Eq. (3.18) yields

r2
d2Rn

dr2
+ 2r

dRn

dr
− n (n+ 1)Rn (r) = 0,(3.20)

d2Ψn

dψ2
+ cotψ

dΨn

dψ
+ n (n+ 1)Ψn (ψ) = 0.(3.21)

Equation (3.20) is the Cauchy–Euler differential equation and its general solution
reads

(3.22) Rn (r) = A1nr
n +

B1n

rn+1
.

Equation (3.21) can be rewritten as

1

sinψ

d

dψ

(

sinψ
dΨn

dψ

)

+ n (n+ 1)Ψn (ψ) = 0.
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We now utilize the following transform of angle ψ:

(3.23) Ψn (ψ) = Ψn (ξ (ψ))

with ξ (ψ) = cosψ, 1 − ξ2 = sin2 ψ and
dξ

dψ
= − sinψ.

Applying this transform to Eq. (3.21), we obtain the Legendre differential equa-
tion in terms of ξ:

(3.24)
d

dξ

[

(

1 − ξ2
) dΨn

dξ

]

+ n (n+ 1)Ψn (ξ) = 0,

which has the following general solution.

(3.25) Ψn (ξ) = Ψn (cosψ) = A2nPn (ξ) +B2nQn (ξ) ,

where Pn (ξ) and Qn (ξ) are the spherical functions, i.e., Legendre functions,
of first and second kind, respectively. Since we have |ξ| = |cosψ| ≤ 1 and the
spherical function of second kind is not defined on this interval, the general
solution (3.25) reduces to

(3.26) Ψn (ξ) = Ψn (cosψ) = A2nPn (ξ) .

With the help of abbreviations An = A1nA2n and Bn = B1nA2n we have

Rn (r)Ψn (ψ) =

(

Anr
n +

Bn

rn+1

)

Pn (ξ) .

Therefore, the transformed temperature field becomes

Θ (r, cosψ) = Θ (r, ξ) =

∞
∑

n=0

Rn (r)Ψn (ψ)(3.27)

=

∞
∑

n=0

(

Anr
n +

Bn

rn+1

)

Pn (ξ) .

Now, we have to determine the coefficients An and Bn (n = 0, 1, 2, . . .) by
enforcing the boundary conditions (3.19). The transformed boundary tempera-
tures are functions of ψ whereas the transformed temperature field is a function
of ψ through ξ = cosψ. Therefore, we write the functions Θo (ψ) and Θi (ψ) as
Θo = Θo (ξ) = Θo (cosψ) and Θi = Θi (ξ) = Θi (cosψ). By doing so, we have

(3.28)







Anr
n
o +Bnr

−(n+1)
o = c

(o)
n ,

Anr
n
i +Bnr

−(n+1)
i = c

(i)
n ,
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in which the functions Θo (ξ) and Θi (ξ) are expanded as

Θo (ξ) =

∞
∑

n=0

c(o)n Pn (ξ) ,(3.29a)

Θi (ξ) =
∞
∑

n=0

c(i)n Pn (ξ) .(3.29b)

The coefficients c
(o)
n and c

(i)
n are determined from the orthogonality of spherical

functions Pn (ξ) on the interval ξ ∈ [−1,+1], namely

(3.30)

+1
∫

−1

Pn (ξ)Pm (ξ) dξ =







0, m 6= n,

2

2n+ 1
, m = n.

This yields

c(o)n =
2n+ 1

2

+1
∫

−1

Θo (ξ)Pn (ξ) dξ,(3.31a)

c(i)n =
2n+ 1

2

+1
∫

−1

Θi (ξ)Pn (ξ) dξ.(3.31b)

Now, the constants An and Bn (n = 0, 1, 2, . . .) are obtained by solving the linear
equation system (3.28):

An = α(i)
n c(i)n + α(o)

n c(o)n ,(3.32a)

Bn = β(i)
n c(i)n + β(o)

n c(o)n ,(3.32b)

where

α(o)
n =

r
−(n+1)
i

∆n
,(3.33a)

α(i)
n = −r

−(n+1)
o

∆n
,(3.33b)

β(o)
n = − rn

i

∆n
,(3.33c)

β(i)
n =

rn
o

∆n
,(3.33d)
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in which

(3.33e) ∆n = rn
o r

−(n+1)
i − r−(n+1)

o rn
i .

Thus, the transformed temperature field Θ can be written as

(3.34) Θ (r, ξ) =
∞
∑

n=0

ηn (r)Pn (ξ) ,

where

(3.35) ηn (r) =
(

α(i)
n c(i)n + α(o)

n c(o)n

)

rn +
(

β(i)
n c(i)n + β(o)

n c(o)n

)

r−(n+1).

Finally, the temperature field ϑ (r, ψ) = ϑ (r, ξ) can be obtained by utilizing the
inverse transform (3.9):

ϑ (r, ξ) =
1

ε

(

1 −
√

1 − 2εΘ (r, ξ)
)

(3.36)

=
1

ε

[

1 −
(

1 − 2ε
∞
∑

n=0

ηn (r)Pn (ξ)

)1/2]

.

First, we show that for ϑi (ψ) = ϑi and ϑo (ψ) = ϑo, the solution (3.34)
reduces to the one-dimensional solution (3.13) with integration constants given
by (3.15). For this purpose, we start with constants (3.31):

c(o)n = Θo

+1
∫

−1

Pn (ξ) dξ =

{

Θo, n = 0,

0, n ≥ 1.
(3.37a)

c(i)n = Θi

+1
∫

−1

Pn (ξ) dξ =

{

Θi, n = 0,

0, n ≥ 1.
(3.37b)

This means that only the term with n = 0 is non-zero in the series (3.34) and all
other terms with n ≥ 1 vanish. From Eq. (3.33e) we have ∆0 = (ro − ri) /riro.
The solution (3.34) reduces to

(3.38) Θ (r) = A0 +
B0

r
,

with

A0 =
roΘo − riΘi

ro − ri
,(3.39a)

B0 =
ri ro
ri − ro

(Θo −Θi) .(3.39b)

This is exactly the solution we obtained in Subsec. 3.2.
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As an example here, we solve the case with ϑi (ψ) = 0 ◦C and ϑo (ψ) =
ϑo sinψ with ϑo = 1000 ◦C. Again, we have ri = 0.6 cm and ro = 1.0 cm. The
dependence of the boundary temperature Θo on ψ leads to a two-dimensional
temperature field, i.e., Θ = Θ (r, ψ). In this case, we have

(3.40) c(o)n =

+1
∫

−1

Θo (ξ) Pn (ξ) dξ.

The integrals in (3.40) are evaluated numerically. Moreover, we have c
(i)
n = 0

for all n. The other coefficients are computed using the given formulae. Finally,
the transformed temperature Θ (r, ψ) and consequently the physical temperature
ϑ (r, ψ) are obtained.
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Fig. 5. Axisymmetric temperature fields in a hollow sphere with ri = 0.6 cm, ro = 1.0 cm,
ϑi (ψ) = 0 ◦C, ϑo (ψ) = 1000 sinψ ◦C and λ = λ0−λ1ϑ with λ0 = 0.12. Three cases are shown:
constant λ, λ decreasing with temperature and λ increasing with temperature. Values of λ1

are shown in the figure. Horizontal axis is x = r sinψ and vertical axis is z = r cosψ. Colors
map the temperature.

The temperature fields for three different cases are shown in Fig. 5. These
three cases have the same material properties as of the example in Subsec. 3.2.
We, again, observe that the temperature of the case with constant λ lies in
between the other two cases with positive and negative λ1. We also observe
that the high-temperature region is more extended in the case with negative λ1

compared to other two cases.
Moreover, one-dimensional temperature profiles in the radial direction r at

ψ = π/2 and in the zenithal direction ψ at r = (ri + ro) /2 are plotted in Figs. 6
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Fig. 6. Axisymmetric temperature profiles in a hollow sphere with ri = 0.6 cm, ro = 1.0 cm,
ϑi (ψ) = 0 ◦C, ϑo (ψ) = 1000 sinψ ◦C and λ = λ0 − λ1ϑ with λ0 = 0.12. The profiles are
along the radial direction r at ψ = π/2. Three cases are shown: constant λ, λ decreasing with

temperature and λ increasing with temperature. Values of λ1 are shown in the figure.
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Fig. 7. Axisymmetric temperature profiles in a hollow sphere with ri = 0.6 cm, ro = 1.0 cm,
ϑi (ψ) = 0 ◦C, ϑo (ψ) = 1000 sinψ ◦C and λ = λ0 − λ1ϑ with λ0 = 0.12. The profiles are along
the zenithal direction ψ at r = 0.8 cm. Three cases are shown: constant λ, λ decreasing with

temperature and λ increasing with temperature. Values of λ1 are shown in the figure.

and 7, respectively. Again, we observe that the temperature is lower for the case
with λ1 > 0 and greater for the case with λ1 < 0 as compared to the linear case
with λ1 = 0. Figure 6 shows that not only the values, but also the shape of the
temperature profile is changed for different cases. However, Fig. 7 reveals that,
in the zenithal direction ψ, the shape of the temperature profile is preserved and
only the values are changed.
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3.4. Comparison with perturbation solution

Another approach to solve the nonlinear heat equation (2.8) is the use of
perturbation methods. This gives an approximate solution to the problem. Here,
we compare such an approximate solution with our exact solution and examine
the convergence of the perturbation series.

In order to perform a perturbation solution, we rewrite Eq. (2.8) in the
following form:

(3.41) (1 − εϑ) ∆ϑ = ε∇ϑ · ∇ϑ.

Note that we have assumed a linear variation of the thermal conductivity with
temperature, i.e., λ = λ0 − λ1ϑ = λ0 (1 − εϑ) with ε = λ1/λ0. Now, we as-
sume that the temperature field can be expressed as a power series in the small
parameter ε:

(3.42) ϑ =
∞
∑

n=0

εnϑn = ϑ0 + εϑ1 + ε2ϑ2 + · · · .

Substituting this ansatz in Eq. (3.41), we have

(3.43)

(

1 −
∞
∑

n=0

εn+1ϑn

) ∞
∑

n=0

εn∆ϑn =

∞
∑

n=0

εn+1
∇ϑn ·

∞
∑

n=0

εn
∇ϑn.

Grouping terms with similar power of ε yields the following series of differential
equations:

ε0 : ∆ϑ0 = 0,(3.44a)

ε1 : ∆ϑ1 = ∇ϑ0 · ∇ϑ0,(3.44b)

ε2 : ∆ϑ2 = ϑ0∆ϑ1 + 2∇ϑ0 · ∇ϑ1,(3.44c)

ε3 : ∆ϑ3 = ϑ0∆ϑ2 + ϑ1∆ϑ1 + 2∇ϑ0 · ∇ϑ2 + ∇ϑ1 · ∇ϑ1,(3.44d)

which are called zeroth-, first-, second- and third-order approximations, respec-
tively. Also, appropriate boundary conditions are to be derived. To this aim, we
insert the asymptotic expansion (3.42) into Eq. (3.11). Grouping the terms with
similar power of ε, we get

ε0 : ϑ0 (r = ri) = ϑi, ϑ0 (r = ro) = ϑo,(3.45a)

ε1 : ϑ1 (r = ri) = 0, ϑ1 (r = ro) = 0,(3.45b)

ε2 : ϑ2 (r = ri) = 0, ϑ2 (r = ro) = 0,(3.45c)

ε3 : ϑ3 (r = ri) = 0, ϑ3 (r = ro) = 0.(3.45d)
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This approach can be extended to nth-order approximation. However, it demands
a considerable amount of calculation effort when n is large. Here, we calculate
up to the third-order approximation and compare the results of the perturbation
approximations of different orders (n ≤ 3) with the exact solution.

The results are plotted in Fig. 8 for the parameters of mild steel
(ε = 5.83 × 10−4). We observe that although the first-order solution gives
considerable improvement to the linear solution, it is not enough to get the
temperature profile accurately. The second- and third-order solutions are almost
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Fig. 8. Spherically symmetric temperature profiles in a hollow sphere with ri = 0.6 cm,
ro = 1.0 cm, ϑi = 0 ◦C, ϑo = 1000 ◦C and λ = λ0 − λ1ϑ with λ0 = 0.12 and λ1 = 7 × 10−5.

Also, perturbation solutions of different orders are shown.
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Fig. 9. Spherically symmetric temperature profiles in a hollow sphere with ri = 0.6 cm,
ro = 1.0 cm, ϑi = 0 ◦C, ϑo = 1000 ◦C and λ = λ0 − λ1ϑ with λ0 = 0.12 and λ1 = 1 × 10−4.

Also, perturbation solutions of different orders are shown.
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indistinguishable from the exact solution. The first-order perturbation solution
is often used in approximations of nonlinear equations. Here, we see that only
a first-order approximation does not produce accurate results. If we increase
the perturbation parameter, say ε = 8.33 × 10−4, then even the second- and
third-order solutions deviate from the exact one, as shown in Fig. 9.

4. Conclusions

In this paper, we have developed an exact analytical solution for steady non-
linear heat conduction equation with temperature-dependent thermal conductiv-
ity in hollow spherical objects. For this purpose, we have employed an integral
transform which transforms the nonlinear equation into a linear one (the Laplace
equation). Once the Laplace equation is solved for the transformed temperature
subjected to transformed boundary conditions, one can compute the physical
temperature using the inverse transform. Two problems are solved for demon-
stration of the proposed solution. First, the temperature field in a hollow sphere
with spherical symmetry is investigated. This is a one-dimensional problem in
the radial direction. Second, we solve for the axisymmetric temperature field in
a hollow sphere which is a two-dimensional problem. Finally, we investigated
perturbation solutions of the one-dimensional problem and compared them with
the exact solution. With this, we are able to examine the convergence of the
perturbation solutions.
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