
Arch. Mech., 64, 1, pp. 41–63, Warszawa 2012
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The present article deals with the study of the hydrodynamics of a porous
sphere in an oscillatory viscous flow of an incompressible Newtonian fluid. Unsteady
Stokes equations are used for the flow outside the porous sphere and Darcy’s equation
is used for the flow inside the porous sphere. Corresponding Faxén’s law for drag and
torque acting on the surface of the porous sphere is derived. Also the results are
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1. Introduction

The study of periodic and oscillatory flows in porous media has re-
cently received considerable attention because of its application to biology, en-
vironmental sciences and industry. Stokes flow past porous spherical particles
has been studied by many researchers [1]– [5]. They have used Stokes equation
outside the porous region and Brinkman equation/Darcy law, inside the porous
region. The above studies considered linearized Navier–Stokes equations with-
out the inertial term. The problem of a porous sphere in a viscous fluid has
been studied by Feng and Michaelides [6], considering steady Navier–Stokes
equations including the inertial non-linear term. They have used Darcy’s law
inside the porous sphere and calculated the solution using matched asymptotic
expansions. In case of porous sphere experiencing unsteady motion, less atten-
tion has been given. The unsteady Stokes equations for the microscopic flow in
porous media subject to an oscillatory pressure gradient has been studied by
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Chapman and Higdon [7], where the media consist of periodic array of spheres
ranging from dilute systems with isolated spheres to highly concentrated consol-
idated media with overlapping spheres. The effect of oscillatory forcing on flow
through porous media has been studied by Graham and Higdon [8] and the
impact of inertial effects on the flow rate produced by a given pressure gradient
is analyzed. Study on the hydrodynamics of a rigid, weakly permeable sphere un-
dergoing translational oscillations in an incompressible Newtonian fluid has been
done by Looker and Carnie [9], where Darcy’s law is used inside the porous
sphere. It is shown in [10, 11] that homogenization of the full Navier–Stokes
equations in a periodic porous medium yields Darcy’s law. Also using asymp-
totic expansion for the velocity and pressure via homogenization, Looker and
Carnie [9] have shown that the macroscopic equations for unsteady Stokes flow
in a periodic porous medium have the same form as for steady flow, i.e., Darcy’s
law.

Another important area where oscillatory forcing plays a significant role is
during the analysis of convective mass transfer in porous catalysts [12, 13]. In
case of small, highly porous catalyst, the particles diffusion alone may not ac-
count for the nutrient transport, and convective flow has a major role. It is
evident that under steady state, convective flow within a porous catalyst is not
so important, whereas oscillatory forcing at higher amplitude and/or lower fre-
quencies enhances the mass transfer. Ni et al. [14] observed that oscillatory flow
improves the performance of a bed packed with spherical particles. Critten-

den et al. [15] studied the influence of oscillatory flow on axial dispersion in
packed beds of spheres. They observed that the best reduction (up to 50%) in
the axial dispersion coefficient from the non-oscillation base value is at the high-
est frequency considered and when the column to particle size is the smallest.
Hence, the present study aims at understanding of the hydrodynamics of oscil-
latory Stokes flow past a porous sphere. Such an investigation not only gives
an idea of the hydrodynamic forces acting on the surface of a porous sphere,
but also the corresponding calculations can be used in order to understand the
mass transfer inside porous pellets under oscillatory forcing. Another impor-
tant application is to analyze acoustic properties of granular materials. Umnova

et al. [16] have considered oscillatory flow of viscous incompressible flow around
a spherical particle and used the cell model, in order to estimate the hydrody-
namic drag due to oscillating flow in a stack of fixed identical rigid spheres. The
present investigation is also useful in understanding acoustic properties of porous
materials.

Recently, Vainshtein and Shapiro [17] gave a theoretical investigation on
forces acting on a porous sphere oscillating in a viscous fluid. The flow outside
the porous sphere is governed by inhomogeneous Stokes equation and the Darcy–
Brinkman equation that include an unsteady term for the flow inside the porous
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sphere. They have used continuity of velocity components together with conti-
nuity of pressure in case of Darcy law and obtained a force acting on the surface
of a porous sphere by considering an uniform oscillating flow. The correspond-
ing expressions for the limiting values of low and high frequencies are obtained,
when the flow inside the porous sphere is governed by Brinkman equation. It may
be noted that the continuity of velocity components, shear stress together with
the continuity of pressure are justified when Brinkman equation is used inside
the porous region, while these boundary conditions need some attention when
Darcy’s law is used because in the latter case, Beavers and Joseph [18], and
Saffman [19] type slip boundary condition is more appropriate at a porous–
liquid interface. In case of steady Newtonian flows, while employing Darcy’s
law inside a porous region, the Saffman’s condition is used, along with continu-
ity of normal velocity and continuity of pressure (see [5, 20, 21]). Looker and
Carnie [9] have shown that Saffman’s boundary condition can be applied for
oscillatory Stokes flows at low frequency.

The flow coupling between an external Stokes flow with the internal Darcy
flow is generally via the continuity of normal velocity, which requires another
supplement of pressure continuity. Looker and Carnie [9] argued that due to
the decoupling between external and internal flows, one can avoid using pres-
sure continuity at the porous–liquid interface. It is shown that continuity of
normal velocity reduces to no penetration condition in case of weakly perme-
able sphere. However, in general, while dealing with viscous flows past spherical
porous bodies that are not weakly permeable, one has to consider the inter-
nal flow and in such cases, pressure continuity is a valid boundary condition.
Therefore, the present study is to understand the hydrodynamics of arbitrary
oscillatory flow past a porous sphere employing Darcy’s law inside the porous
region. It may be noted that the present study differs from that of Vainshtein

and Shapiro [17] in several issues. They have obtained forces acting on the
surface of a permeable particle in oscillating flow by considering uniform flow,
whereas the present study is focused on deriving more general expressions for
the forces acting on the surface of porous sphere, in terms of Faxén’s law, by
considering an arbitrary oscillatory Stokes flow past a porous sphere. They have
obtained expression for the drag corresponding to the Darcy case (as a low
permeability of Brinkman’s case) using continuity of velocity, continuity of pres-
sure and continuity of shear stress. However, it is well-known that in case of
Darcy flow, either Saffman–Beavers–Joseph slip condition is more appropriate
(see [5, 20,21]) and the present investigation is based on the Saffman’s slip con-
dition. The potential of the method is evident with the fact that arbitrary flow
can be handled. We discuss examples like the uniform flow, oscillatory shear
flow and flow due to an oscillating Stokeslet and several limiting cases are also
discussed.
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2. Mathematical formulation and method of solution

Let us consider a stationary porous sphere of radius a and permeability k
in an arbitrary oscillatory flow of a viscous incompressible fluid. Let us assume
that the flow inside the porous sphere (r < a) is governed by the Darcy’s law
and continuity equation:

Vi = −k
µ
∇P i,(2.1)

∇ · Vi = 0,(2.2)

where k is the permeability of the porous medium, µ is the coefficient of viscosity
of the fluid. The flow outside the porous sphere (r > a) is described by the
unsteady Stokes and continuity equations:

ρ
∂ve

∂t
= −∇pe + µ∇2ve,(2.3)

∇ · ve = 0,(2.4)

where ρ is the density of the fluid. Since we are interested in the study of oscilla-
tory flow with frequency ω, we set the velocity and pressure fields ve and pe as
ve=Vee−iωt and pe = P ee−iωt. The complex treatment is possible since linear
equations are considered. Thus, the governing equations transform to

−iρωVe = −∇P e + µ∇2Ve,(2.5)

∇ · Ve = 0.(2.6)

Here Ve and P e represent the velocity and pressure fields outside the porous
sphere, and Vi and P i are those of the flow inside the porous sphere. The physical
quantities are non-dimensionalized by using the transformation

X̃ =
X

a
, Ṽ =

V

U
, P̃ =

P

µUa
k

,

where U is a characteristic velocity.
Therefore, the non-dimensional equations for the flow inside the porous region

(r < 1) take the form

Vi = −∇P i,(2.7)

∇ · Vi = 0,(2.8)

and the corresponding equations for the fluid region (r > 1) reduce to
(

∇2 k

a2
+
iωa2

ν

k

a2

)

Ve = ∇P e,(2.9)



Faxén’s law for arbitrary oscillatory Stokes flow. . . 45

∇ · Ve = 0.(2.10)

Note that we have omitted the symbol ˜ in Eqs. (2.7)–(2.10).
Now (2.9) together with (2.10) can be written as

(∇2 − λ2)We = ∇P e,(2.11)

∇ · We = 0,(2.12)

where λ2 = −iωa2/ν, We = DaVe and Da = k/a2 is the Darcy number.
In addition, since the unsteady oscillatory Stokes equation has a similar form

(mathematically) to the Brinkman equation, we use the following representation
of the velocity and pressure fields, We and P e:

We = ∇×∇× (AeX) + ∇× (BeX),(2.13)

P e = p0 +
∂

∂r
[r(∇2 − λ2)Ae],(2.14)

which, in fact, yield the complete general solution of the Brinkman and continuity
equations (see [4,22]). Here X is the position vector of the current point, p0 is a
constant, and Ae and Be are unknown scalar functions satisfying the equations

∇2(∇2 − λ2)Ae = 0, (∇2 − λ2)Be = 0.(2.15)

Let us now assume that the velocity field W0 of the basic flow, i.e. of the
unperturbed flow, is given in absence of any boundaries by

W0 = ∇×∇× (A0X) + ∇× (B0X),(2.16)

A0 =

∞
∑

n=1

[

αnr
n + βnfn(λr)

]

Sn(θ, ϕ),

B0 =
∞
∑

n=1

γnfn(λr)Tn(θ, ϕ),

(2.17)

where fn(λr) are modified spherical Bessel functions of the first kind, which
are finite at the center of porous sphere and Sn(θ, ϕ) and Tn(θ, ϕ) are spherical
harmonics of the form

Sn(θ, ϕ) =
n
∑

m=0

Pm
n (ξ)(Anm cosmϕ+Bnm sinmϕ), ξ = cos θ,(2.18)

Tn(θ, ϕ) =
n
∑

m=0

Pm
n (cos θ)(Cnm cosmϕ+Dnm sinmϕ),(2.19)
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where Pm
n are associated Legendre polynomials and Anm, Bnm, Cnm, Dnm are

the known coefficients. The coefficients αn, βn, γn are arbitrary constants and
corresponding to a given basic flow; in absence of any boundaries, αn, βn, γn

take a suitable form. For example, in case of uniform flow along the z-axis, we
have α1 = 1/2, β1 = 0, γ1 = 0. In addition, the scalar functions A0 and B0

satisfy (2.15). It may be noted that the scalars A, B represent the flow field and
the vector equations are now reduced to equivalent scalar equations.

On the other hand, if the basic flow with the velocity field W0 is perturbed
by the presence of a stationary porous sphere with the radius r = 1, then the
velocity field We of the resulting flow outside the porous sphere is given by the
relation We = W0 + W∗, where W∗ is the velocity due to the disturbed flow
such that W∗ → 0 as r → ∞. Hence, the resulting flow in the exterior region
(r > 1) is given by

Ae =

∞
∑

n=1

[

αnr
n +

α
′

n

rn+1
+ βnfn(λr) + β

′

ngn(λr)

]

Sn(θ, ϕ),(2.20)

Be =

∞
∑

n=1

[

γnfn(λr) + γ
′

ngn(λr)
]

Tn(θ, ϕ),(2.21)

where gn(λr) are modified spherical Bessel functions of the second kind. Since in
the porous region (r < 1) the pressure field is harmonic and finite at the origin,
it can be expressed as

P i = p0 +

∞
∑

n=1

δnr
nSn(θ, ϕ),(2.22)

where (r, θ, ϕ) are spherical coordinates with respect to the origin, chosen at
the center of the sphere r = 1. In the above expressions α

′

n, β
′

n, γ
′

n and δn are
unknown constants. The unknowns are to be determined from the boundary
conditions.

2.1. Boundary conditions

The obvious choice of boundary condition at a permeable interface is the con-
tinuity of normal component of velocity, which is the consequence of incompress-
ibility. In order to have a completely determined flow of the free fluid, a certain
condition on the tangential component of the free fluid velocity needs to be spec-
ified at the interface. Based on experiments, Beavers [18] (BJ) proposed a con-
dition involving porous–liquid interface. Further, Taylor [23] and Richard-

son [24] provided support for the BJ condition. A mathematical justification of
this interface condition was obtained by Saffman [19]. A common choice for
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boundary conditions while matching Darcy’s law with the Stokes equation, is
continuity of pressure and continuity of normal velocity components, along with
Saffman’s slip condition for tangential velocity components [5, 20, 21, 25]. But,
when the flow is of oscillatory nature, applicability of Saffman’s condition at the
porous–liquid interface is validated by Looker and Carnie [9], however under
low frequency. In analogy to the restriction on the Darcy number proposed by
Looker and Carnie [9], the present system is assumed to satisfy the following
conditions:

(2.23)

√
k

a
≪ 1, ̟ =

ωa2

ν
= O(1),

and a is assumed to be much smaller than the wavelength of sound in the fluid.
This ensures that Saffman’s slip condition can be applied at the surface of the
porous sphere in case of oscillatory flow [9]. It can be seen from (2.9) that all the
terms resulting from the oscillatory flow are O((a

√
Da
√

ω/ν)2). Hence, provided
that

(2.24) a
√
Da

√

ω

ν
≪ 1,

the flow near the boundary may be treated as steady with new velocity We =
DaVe. Hence, one can use Saffman’s slip condition. The relation (2.24) is equiv-
alent to

(2.25) ω ≪ ν

a2Da
.

Therefore, we consider the following conditions at the boundary between the
porous and fluid regions, i.e., for r = 1.

(i) Continuity of the pressure field:

(2.26) P e = P i.

(ii) Continuity of the normal velocity component:

(2.27) V e
r = V i

r ⇒W e
r = DaV i

r .

(iii) Saffman’s boundary condition for the tangential components of the ve-
locity field:

W e
θ =

√
Da

α

∂W e
θ

∂r
, W e

ϕ =

√
Da

α

∂W e
ϕ

∂r
,(2.28)

where α is the dimensionless slip coefficient.
Now, using these boundary conditions, the unknown coefficients α

′

n, β
′

n, γ
′

n

and δn are determined in terms of the known coefficients αn, βn and γn, and are
given by:
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(2.29)

α
′

n = (n+ 1)
[{Xngn(λ)+λ(α+l)(1−l2λ2)gn+1(λ)}αn+λ(α+l)Ynβn]

Zn
,

β
′

n = −(n+ 1){(1 − l2λ2)αn + fn(λ)βn} + (n+ 1 + nl2λ2)α
′

n

(n+ 1)gn(λ)
,

γ
′

n =
γn{(α− nl)fn(λ) − lλfn+1(λ)}

(nl − α)gn(λ) − lλgn+1(λ)
,

δn = λ2{nα′

n − (n+ 1)αn},

where

(2.30)

Xn = λ2{l2(n+ 1)α− l3(n2 + λ2 − 1) − l},
Yn = fn(λ)gn+1(λ) + fn+1(λ)gn(λ),

Zn =
[

l{n(n+ 1)(n+ 2) − (n2 + λ2 − 1)(nλ2l2 + n+ 1)}

+ α(n+ 1)(nλ2l2 + 2n+ 1)
]

gn(λ)

− λ(α+ l)(nλ2l2 + n+ 1)gn+1(λ),

and l =
√
Da.

The use of Saffman’s condition brings limitations on the permeability range.
Looker and Carnie [9] concluded that Saffman’s condition is applicable at
low frequency. Vainshtein and Shapiro [17] calculated the force acting on
a permeable particle in oscillatory flow using the Brinkman and the Darcy
equation.

It may be noted that in case of the Brinkman equation, it is customary
to use continuity of velocity components together with the continuity of stress
components and these boundary conditions are accepted by a large community.
Vainshtein and Shapiro [17] have also used the same boundary conditions in
case of Brinkman’s equation, whereas in case of the Darcy equation, the continu-
ity of tangential velocity needs to be replaced by Beavers–Joseph/Saffman-type
slip condition. Vainshtein and Shapiro [17] reported a critical value of the
Brinkman parameter, a/

√
k, which is expected to control the applicability of

the Darcy equation. They also observed that this critical value diminished with
decreasing frequency of oscillations and reaches that of a non-oscillating particle
≈ 10. It appears that critical value can be as large as 200 for high frequency
of oscillations. For low and moderate values of frequency, this critical value can
be readily identified. Hence, the hydrodynamic problem of oscillatory flow past
a porous body, considering Darcy equation inside together with Saffman’s condi-
tion on the porous–liquid interface, brings such trade-off between frequency and
the range of permeability.
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3. Faxén’s law for porous sphere in oscillatory flow

Faxén derived expressions for the drag and torque exerted by an exterior
steady Stokes flow on a rigid sphere (see [26]). This enables us to express the drag
force and torque in terms of the basic flow. Faxén’s law in terms of singularity
solutions for fluid-fluid, fluid-solid and solid-solid dispersions has been given by
Kim and Lu [27]. By using the singularity method, similar results for unsteady
Stokes flow were obtained [26, 28, 29]. Next, we try to obtain Faxén’s law for
arbitrary oscillatory Stokes flow past a porous sphere.

It is well-known that the drag D exerted by an exterior flow on a spherical
surface r = 1, as well as the torque T, are given by

D =

2π
∫

ϕ=0

π
∫

θ=0

[

T e
rrêr + T e

rθêθ + T e
rϕêϕ

]

r2 sin θ dθ dϕ

∣

∣

∣

∣

∣

r=1

,(3.1)

T =

2π
∫

ϕ=0

π
∫

θ=0

[

rT e
rθêϕ − rT e

rϕêθ

]

r2 sin θ dθ dϕ

∣

∣

∣

∣

∣

r=1

,(3.2)

where êr, êθ, êϕ are the unit vectors corresponding to the spherical coordinates
(r, θ, ϕ), and T e

rr, T
e
rθ and T e

rϕ are the components of the stress tensor.
We now derive the corresponding Faxén’s law which provide expressions for

the drag and torque acting on a porous sphere in an unbounded, arbitrary os-
cillatory Stokes flow. Computing the stress components and using the relations
(3.1) and (3.2), we obtain the following expressions for drag and torque:

(3.3) D =
8π

3
λ2(A11 î +B11ĵ +A10k̂)N1,

where

(3.4) N1 =

[

{3lλ2(2l2 − 1)g1(λ) − 3λ(α+ l)g2(λ)}α1 −N2β1

]

(6l + 6α+ 2αl2λ2 − 2lλ2 − l3λ4)g1(λ) − λ(α+ l)(2 + l2λ2)g2(λ)
,

N2 = λ(α+ l)(3 + l2λ2){f1(λ)g2(λ) + f2(λ)g1(λ)},
and

T =
8π

3
λ(l − α)

{f1(λ)g2(λ) + f2(λ)g1(λ)}
(l − α)g1(λ) − lλg2(λ)

(C11î +D11ĵ + C10k̂)γ1.(3.5)

In the above expressions, f1(λ), f2(λ) and g1(λ), g2(λ) are given by

(3.6)
f1(λ) =

λ coshλ− sinhλ

λ2
, f2(λ) =

(λ2 + 3) sinhλ− 3λ coshλ

λ3
,

g1(λ) =
e−λ(λ+ 1)

λ2
, g2(λ) =

e−λ(λ2 + 3λ+ 3)

λ3
.
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Note that î, ĵ and k̂ are the unit vectors corresponding to an orthogonal frame
of Cartesian coordinates with the origin at the center of the sphere, and the
coefficients A11, A10, B11, C11, C10, D11 are due to the spherical harmonics
Sn(θ, ϕ) and Tn(θ, ϕ) as given in (2.18)–(2.19). The expression for drag and
torque given in (3.3) and (3.5) can be reduced to a compact form which is the
corresponding Faxén’s law. This can be done as follows.

Let us consider the unperturbed velocity W0 given by

W0 = ∇×∇× (A0X) + ∇× (B0X)(3.7)

= 2∇A0 + (X · ∇)∇A0 − X∇2A0 − (X ×∇)B0.

Then assuming the form of A0, B0 as in (2.17), we get

[W0]0 = 2[∇A0]0 = 2(α1 +
λ

3
β1)(A11î +B11ĵ +A10k̂),(3.8)

[∇2W0]0 =
2λ3

3
β1(A11 î +B11ĵ +A10k̂),(3.9)

[∇×W0]0 =
2λ

3
γ1(C11î +D11ĵ + C10k̂).(3.10)

Using (3.8)–(3.10), the expressions given in (3.3) and (3.5) can be expressed
in terms of the basic flow as follows:

D =
4π

3
λ2E[W0]0 − 4π

[

E

3
+ F

]

[∇2W0]0,(3.11)

T = 4π(l − α)
{f1(λ)g2(λ) + f2(λ)g1(λ)}

(l − α)g1(λ) − lλg2(λ)
[∇×W0]0,(3.12)

where W0 is the velocity field corresponding to the basic flow; the notation [ ]0
means evaluation at the origin r = 0, and

(3.13)

E =
3lλ2(2l2 − 1)g1(λ) − 3λ(α+ l)g2(λ)

(6l + 6α+ 2αl2λ2 − 2lλ2 − l3λ4)g1(λ) − λ(α+ l)(2 + l2λ2)g2(λ)
,

F =
(α+ l)(3 + l2λ2){f1(λ)g2(λ) + f2(λ)g1(λ)}

(6l + 6α+ 2αl2λ2 − 2lλ2 − l3λ4)g1(λ) − λ(α+ l)(2 + l2λ2)g2(λ)
.

Therefore, the decomposition given in (2.16) helps us to express the drag
and torque, exerted on a porous sphere by an arbitrary, oscillatory Stokes flow
in terms of Faxén’s law. Since there are restrictions on the validity of Saffman’s
condition in case of oscillatory flow, the above expressions are of mathematical
interest only to make the study complete. In order to obtain physically mean-
ingful results, one has to take into account the restrictions involved as described
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in Subsection 2.1. Hence, we consider the case of low permeability of the porous
sphere and expanding the formulae (3.11) and (3.12) up to O(l2), we get the
following results:

D = 2π

[

λ2 + 3λ+ 3 − 3l

α
(λ+ 1)2 +O(l2)

]

[W0]0(3.14)

− 2π

[

1 +
3

λ
+

3

λ2
− 3l

αλ2
(λ+ 1)2

− 3eλ

λ2

{

1 − l

α
(λ+ 1)

}

+O(l2)

]

[∇2W0]0,

T = 4πeλ

[

1 − λ+ λ2 +
l

α
(2λ3 + 2λ2 + 3λ− 2) +O(l2)

]

[∇×W0]0.(3.15)

It may be noted that the expressions given in (3.11) and (3.12) that represent
Faxén’s law for arbitrary oscillatory Stokes flow past a porous sphere, and the
expressions given in (3.14) and (3.15) that represent the drag and torque acting
on the surface of a weakly permeable porous sphere corresponding to arbitrary
oscillatory Stokes flow, are new in the literature.

In the limiting case of l → 0, the above expressions reduce to

D = 2π(λ2 + 3λ+ 3)[W0]0 − 2π

(

1 +
3

λ
+

3

λ2
− 3eλ

λ2

)

[∇2W0]0,(3.16)

T = 4π

[

eλ

λ+ 1

]

[∇×W0]0.(3.17)

These formulae, which give the drag and torque in the case of an arbitrary
oscillatory Stokes flow past an impermeable sphere, have been obtained by
Pozrikidis [29].

3.1. Uniform oscillatory flow past a porous sphere

If the basic flow is uniform along the z-axis, then the corresponding ex-
pressions for A0 and B0 in nondimensional form are A0 = 1

2r cos θ, B0 = 0.
Comparing it with the general expressions given in (2.17), we have α1 = 1

2 and
β1 = 0. Hence, the expressions for drag and torque given in (3.11) and (3.12)
reduce to

D = 4πλ2 (2l2 − 1)lλ2g1(λ) − λ(α+ l)g2(λ)

(6l+6α+2αl2λ2−2lλ2−l3λ4)g1(λ)−λ(α+l)(2+l2λ2)g2(λ)
k̂,(3.18)

T = 0.(3.19)
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The general expression for drag acting on the surface of a porous sphere in case
of uniform flow is given by Eq. (3.18). Expanding the expression (3.18) up to
O(l2), we get the following formula:

D = 2π

[

λ2 + 3λ+ 3 − 3l

α
(λ+ 1)2 +O(l2)

]

k̂,(3.20)

which is the drag acting on the surface of weakly permeable sphere in uniform
flow. In the low frequency limit (λ≪ 1), the modified spherical Bessel functions
behave like

(3.21) fn(λ) ∼ λn

(2n+ 1)!
, gn(λ) ∼ (2n− 1)!

λ(n+1)
,

and hence the corresponding expression for drag given in (3.18) reduces to

D = 4π
λ2(λ2l + 6α+ 6l − 2λ2l3)

(6l + 6α+ 4αλ2l2 + 2λ2l + λ4l3 + 6λ2l3)
k̂.(3.22)

In case of weakly permeable sphere, the expression (3.22) reduces to

D = 4πλ2

(

1 − λ2l

6α
+O(l2)

)

k̂.(3.23)

In the limit l → 0, the formula (3.18) reduces to

D = 6π

(

1 + λ+
λ2

3

)

k̂.(3.24)

This formula was obtained independently by Boussinesq and Basset (see [30,
31]). It may be noted that the expression (3.24) can be obtained from (3.14)
in the limit of l → 0 and V0 → U k̂. In the case of steady uniform flow past
a stationary porous sphere, i.e., for λ → 0, expanding the expression (3.18) in
terms of l and considering terms up to O(l3), we get

D = 6π

[

1 − l

α
+ l2

(

α−2 − 1

2

)

+O(l3)

]

k̂,(3.25)

which is also due to Davis and Stone [21]. If we consider the expression (3.18)
in the limit of λ→ 0 (steady case) and take α = 1, then we get

D = 6π
2(1 + l)

3l3 + l2 + 4l + 2
k̂,(3.26)

which agrees with the result in [20]. It may be noted that when α = 1 in (3.25),
which is due to Davis and Stone [21], it does not reduce to the result by
Neale et al. [20]. This is because Davis and Stone [21] considered terms up
to O(l3) only, whereas the present analysis considers the general case and hence,
full agreement with Neale et al. [20].
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3.2. Flow due to an oscillating Stokeslet

The flow due to an oscillatory point force located at the point y in free space,
whose strength is given by the real or imaginary part of b exp−iωt, where b is
a constant vector, is called the oscillating Stokeslet. The velocity and pressure
of such an oscillatory Stokeslet, in terms of the corresponding tensor notation
in R

3, is given by (see [28])

(3.27)
vj(x) =

1

8πµ
Gλ2

jk (x− y)bk,

p(x) =
1

8π
Πλ2

k (x − y)bk, j, k = 1, 2, 3.

The components of the fundamental oscillatory Stokes tensor Gλ2
and those of

its associated pressure vector Πλ2
, which determine the fundamental solution

(Gλ2
,Πλ2

) of the oscillatory Stokes system, are given by

(3.28)
Gλ2

jk (x − y) =
δjk

|x − y|A1(λ|x − y|) +
(xj − yj)(xk − yk)

|x − y|3 A2(λ|x − y|),

Πλ2

j (x − y) = 2
xj − yj

|x − y|3 ,

where

(3.29)

A1(R) = 2e−R(1 + R−1 + R−2) − 2R−2,

A2(R) = −2e−R(1 + 3R−1 + 3R−2) + 6R−2,

R = λr.

It can be seen from the expressions (3.11)–(3.12) that in order to compute
Faxén’s law corresponding to a given basic velocity W0, it is enough to compute
[W0]0, [∇2W0]0 and [∇× W0]0. Hence, even if the basic flow is not expressed
in terms of the decomposition, one can compute the corresponding Faxén’s law.
However, the use of the decomposition in arriving at the compact form of Faxén’s
law, is implicit as shown in (3.11)–(3.12). Hence, to compute Faxén’s law corre-
sponding to an oscillatory Stokeslet, we consider the location of the oscillatory
Stokeslet to be at (0, 0, c) where c > a and the strength being b1/8πµ with
axis along the positive x-axis. The velocity components of such an oscillatory
Stokeslet in Cartesian form are given by

(3.30)

u =
b1

8πµ

(

A1(λr)

r
+
x2

r3
A2(λr)

)

,

v =
b1

8πµ

(

xy

r3
A2(λr)

)

,

w =
b1

8πµ

(

x(z − c)

r3
A2(λr)

)

,
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where r =
√

x2 + y2 + (z − c)2. Hence, we get

(3.31)

[W0]0 =
b1

4πµ

((

1

c
+

1

λc2
+

1

λ2c3

)

exp−λc − 1

λ2c3

)

î,

[∇2W0]0 =
b1

4πµ

(

λ2

c
+
λ

c2
+

1

c3

)

exp−λc î,

[∇× W0]0 =
b1

4πµ

(

1

c2
+
λ

c

)

exp−λc ĵ.

The corresponding Faxén’s law, when the basic flow is due to an oscillatory
Stokeslet, is obtained as

D = b1d10

((

1

c
+

1

λc2
+

1

λ2c3

)

exp−λc − 1

λ2c3

)

î(3.32)

+ b1d20

(

λ2

c
+
λ

c2
+

1

c3

)

exp−λc î,

T = b1t10

(

1

c2
+
λ

c

)

exp−λc ĵ,(3.33)

where

(3.34)

d10 = λ2E

3
,

d20 = −
(

E

3
+ F

)

,

t10 = (l − α)
{f1(λ)g2(λ) + f2(λ)g1(λ)}

(l − α)g1(λ) − lλg2(λ)
,

where E, F are as those given in (3.13). The interesting limiting values are
corresponding to low and high frequency. We give here expressions for the low
frequency limit and the corresponding limiting values for high frequency can also
be obtained.

Low frequency limit

In order to consider the case of low frequency oscillations (small values of the
frequency parameter λ), we expand Gλ2

in a Taylor series with respect to λ as
follows (see [28]):

(3.35) Gλ2
= G(0) + λG(1) + λ2G(2) + . . .
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where

(3.36)

G
(0)
jk (x − y) =

δjk
r

+
(xj − yj)(xk − yk)

r3
,

G
(1)
jk (x − y) = −4

3
δjk,

G
(2)
jk (x − y) =

r2

4

(

3
δjk
r

− (xj − yj)(xk − yk)

r3

)

.

It may be noted that G(0)
jk is nothing else but the steady Stokeslet and G

(1)
jk

represents a uniform flow.
Also, in this low frequency limit, the coefficients given in (3.34), behave like

(3.37)

d10 ∼ λ2(λ2l + 6α+ 6 l − 2λ2l3)

(6 l + 6α+ 4αλ2l2 + 2λ2l + λ4l3 + 6λ2l3)
,

d20 ∼ 1

120

360λ2l3−117λ2l−360α−360l + 120αλ2l2 + αλ4l2+3αλ2+λ4l3

6l + 6α+ 4αλ2l2 + 2λ2l + λ4l3 + 6λ2l3
,

t10 ∼ − 1

120

(l − α)
(

120 + λ2
)

5 l + α
.

Hence, the corresponding Faxén’s law reduces to

D =
b1
2

1

(6 l + 6α+ 4αλ2l2 + 2λ2l + λ4l3 + 6λ2l3)
(3.38)

×
[

(λ2l + 6α+ 6 l − 2λ2l3)

(

λ2

c
− 4λ3

3
+

3λ4c

4

)

+
1

60
(360λ2l3 − 117λ2l − 360α− 360 l + 120αλ2l2

+ αλ4l2 + 3αλ2 + λ4l3)

(

2

c3
+
λ2

c

)]

î,

T = −b1
2

1

120

(l − α)
(

120 + λ2
)

5 l + α

(

2

c2
− λ2

)

ĵ.(3.39)

The total drag in this case is the superposition of the drag due to steady
Stokeslet, together with that of a uniform flow and an additional perturbation
term. In case of weakly permeable sphere expanding the expressions (3.38)–(3.39)
up to O(l2), we get the following results:

D =
b1
2

[{

1 − λ2l

6α
+O(l2)

}(

λ2

c
− 4λ3

3
+

3λ4c

4

)

(3.40)

−
{

1 − λ4l

360α
+O(l2)

}(

2

c3
+
λ2

c

)]

î,
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T =
b1
2

1

120
(λ2 + 120)

{

1 − 6l

α
+O(l2)

}

ĵ.(3.41)

The expressions (3.40)–(3.41) are the Faxén law for oscillating Stokeslet in case
of a weakly permeable sphere.

3.3. A porous sphere in a linear oscillatory shear flow

We consider the porous sphere in a linear oscillatory shear flow along the
z-axis. Therefore, we have the far-field basic velocity in dimensionless form as
W0 = τ̟xk̂, where the coordinates x, y, and z have been non-dimensionalized
by the radius of porous sphere, the shear rate has been non-dimensionalized by
U/a, and the frequency is non-dimensionalized by̟ = ωa2/ν. Here τ is the shear
rate coefficient. We can see that [W0]0 = 0, [∇2W0]0 = 0 and [∇×W0]0 = τ̟ĵ.
Hence, we have

D = 0,(3.42)

T = 4πτ̟(l − α)
{f1(λ)g2(λ) + f2(λ)g1(λ)}

(l − α)g1(λ) − lλg2(λ)
ĵ.(3.43)

This is the general expression for drag and torque acting on the surface of
a porous sphere. In case of weakly permeable sphere expanding the expression
(3.42) up to O(l2), we get

D = 0,(3.44)

T = 4πτ̟eλ

[

1 − λ+ λ2 +
l

α
(2λ3 + 2λ2 + 3λ− 2) +O(l2)

]

ĵ.(3.45)

3.4. A porous sphere in a quadratic oscillatory shear flow

We consider the porous sphere in oscillatory shear flow along the z-axis.
Hence, we have the far-field basic velocity in dimensionless form as W0 =
τ̟(x− x2)k̂. We can see that

[W0]0 = 0, [∇2W0]0 = 2τ̟k̂, [∇× W0]0 = τ̟ĵ.

Hence

D = −8πτ̟

[

E

3
+ F

]

k̂,(3.46)

T = 4πτ̟(l − α)
{f1(λ)g2(λ) + f2(λ)g1(λ)}

(l − α)g1(λ) − lλg2(λ)
ĵ.(3.47)
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In case of weakly permeable sphere expanding the expression (3.46) up to O(l2),
we get

D = −4πτ̟

[

1 +
3

λ
+

3

λ2
− 3l

αλ2
(λ+ 1)2(3.48)

− 3eλ

λ2

{

1 − l

α
(λ+ 1)

}

+O(l2)

]

k̂,

T = 4πτ̟eλ

[

1 − λ+ λ2 +
l

α
(2λ3 + 2λ2 + 3λ− 2) +O(l2)

]

ĵ.(3.49)

It may be noted that linear shear gives zero drag, while quadratic shear pro-
duces a non-zero drag. The torque in both the cases remain the same. Also, the
corresponding expressions due to low frequency limit can be obtained using the
coefficients in (3.37).

4. Results and discussion

Expressions for drag and torque acting on a porous sphere due to arbitrary
oscillatory Stokes flow are derived and expressed in the form of Faxén’s law.
These expressions are verified by some of the existing results in the literature,
due to various limiting cases. The limit as l → 0 corresponds to the case of
impermeable sphere. In this limit, (3.11) and (3.12), reduce to the results given
by Pozrikidis for arbitrary oscillatory flow past an impermeable sphere. We have
shown that for the steady porous sphere case, i.e., λ → 0, the results are in
full agreement with the results of (Neale et al. [20]), whereas similar results of
Looker, differ from O(l2) onwards, because the present investigations considered
the internal flow to the porous sphere as well.

Let us now assess the effect of parameters involved. We consider l = 0.01,
0.025, 0.05, i.e., for various Darcy numbers, the frequency of oscillation between
1 and 10 MHz, as considered by Looker, and a2/ν = 10−6 s. A representative
value for dimensionless slip coefficient α = 0.7 is considered in the analysis.

Uniform flow

The variation of the slip velocity with respect to permeability and frequency
is considered (Fig. 1). The slip velocity is defined as the difference between the
tangential components of the fluid velocity outside the particle and the filter
velocity inside the porous medium, both evaluated at the surface. Hence, Fig. 1
shows that the slip velocity increases almost linearly with both the permeability
and frequency.

Figure 2 shows the magnitude of drag (3.18) with respect to permeability
and frequency in case of uniform flow through a porous sphere. Figure 2a shows
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a) b)

Fig. 1. Variation of slip velocity with a) l =
√

k/a for different frequencies, b) frequency for
different l.

a) b)

Fig. 2. Variation of drag in case of uniform flow with a) frequency for different l, b) l for
different frequency.

that the magnitude of drag decreases with increasing permeability. This can be
accounted by the following two factors. The first factor is the slip velocity in-
creasing with permeability, and the other factor is more fluid penetrating the
surface of the sphere with increase in permeability. Increasing of the slip velocity
(as shown in Fig. 1) results in more fluid slipping over the sphere, hence reducing
the force. Drag also decreases with increasing permeability due to the fluid pene-
trating the surface of the sphere. This is not true in [21], as they have considered
terms up to O(l2) only. Figure 2b shows that the magnitude of drag increases
with increasing frequency. Increasing frequency enhances the magnitude of drag
due to larger resistance.
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Oscillating Stokeslet

The variation in magnitude of drag with position of Stokeslet is shown (Fig. 3)
for different frequencies. It is observed that the magnitude of drag decreases with
position of Stokeslet for different frequencies because while Stokeslet moves far
from the body, the body experiences less resistance, hence reduction in drag is
seen. However, it may be noted that when the Stokeslet is located close to the
porous sphere, larger frequency induces marginal increase in magnitude com-
pared to that of smaller frequency. But, beyond a certain critical location, oscil-
lating Stokeslet with smaller frequency induces larger magnitude of force. The
variation in magnitude of drag and torque with frequency at different permeabil-
ities is shown (Fig. 4) in case of oscillating Stokeslet with (b1 = 1, c = 3), where

Fig. 3. Variation of drag with position of oscillating Stokeslet for different ̟, b1 = 1,
l = 0.025.

Fig. 4. Variation of drag with frequency for different l for oscillating Stokeslet, b1 = 1, c = 3.
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Fig. 5. Variation of torque with frequency for different l for oscillating Stokeslet, b1 = 1,
c = 3.

b1 is the strength and c is the position of Stokeslet. The direction of drag is along
the x-axis, It can be seen that the drag decreases with increase in permeabil-
ity (l =

√
k/a). The direction of torque is along the y-axis, and it can be seen

(Fig. 5) that the magnitude of torque decreases with increase in permeability.
This may be due to the fact that increasing permeability reduces shear stress
that contributes to the torque.

Oscillatory shear flow

The magnitude of drag in case of oscillatory quadratic shear flow is plotted
on frequency (̟) for fixed shear rate, τ = 2.2 (Fig. 6). The qualitative behavior
with permeability is the same as in the case of uniform flow. The magnitude of

Fig. 6. Variation of drag with frequency in case of oscillatory quadratic shear flow.
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Fig. 7. Variation of torque with frequency in case of oscillatory linear/quadratic shear flow.

torque in case of oscillatory linear/quadratic shear flow is plotted with frequency
(Fig. 7) for fixed shear rate, τ = 2.2. The magnitude of torque decreases with
increase of the permeability.

5. Conclusion

The objective of the present article is to obtain Faxén’s law for an arbitrary
oscillatory Stokes flow past a porous sphere. The internal flow is assumed to
be governed by the usual Darcy’s law, together with the equation of continuity,
and that the external flow by the continuity and unsteady Stokes equations.
Saffman’s interfacial boundary condition for tangential velocity is used together
with continuity of pressure and continuity of normal velocity to match the inter-
nal and external flows. The power of the solution procedure lies in the solenoidal
decomposition of the velocity field, in order to discuss hydrodynamics of perme-
able sphere in arbitrary oscillatory Stokes flow. Because this reduces the problem
in terms of solving scalar equations of the type given in (2.15) and also gives a
scope to handle arbitrary flow. The expressions for drag matches with (see [9])
up to O(l2). Also, the results obtained are verified by some existing cases. Exam-
ples like uniform flow, oscillating Stokeslet, oscillatory shear flow and quadratic
shear flow are discussed.
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