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The main purpose of this paper is to find the homogenized equation and the
associate continuity condition in the explicit form of a boundary-value problem in
two-dimensional domains separated by an interface oscillating rapidly between two
concentric ellipses. This boundary-value problem originates from various mechanical
problems. By the homogenization method and following the techniques presented
recently by these authors the homogenized equation and the associate continuity
condition in the explicit form are derived. Since the obtained homogenized equation
is totally explicit it is convenient to use.
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1. Introduction

Boundary-value problems in domains with rough boundaries or interfaces
are closely related to various practical problems such as scattering of elastic
waves at rough boundaries and interfaces [1], transmission and reflection of waves
on rough interfaces [2, 3, 4], mechanical problems concerning the plates with
densely spaced stiffeners [5], flows over rough walls [6] and so on. When the
amplitude (height) of the roughness is much smaller in comparison to its period,
the problems are usually analyzed by perturbation methods. When the amplitude
is much large than its period, i.e., the boundaries and interfaces are very rough,
the homogenization method [7, 8] is required.

In [9] Nevard and Keller investigated a boundary-value problem in two-
dimensional domains separated by a curve highly oscillating between two straight
lines, namely
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(σUx)x + (σUz)z − λU = f(x, z), (x, z) /∈ L,(1.1)

[U ]L = 0, [σUn]L = 0,(1.2)

where U and f are scalar functions,

φx := ∂φ/∂x, φz := ∂φ/∂z, φn = φxnx + φznz, nx, nz

are the components of the unit normal to the curve L which rapidly oscillates
between two straight lines z = −A (A > 0) and z = 0 (Fig. 1), U(x, z) is
unknown, f(x, z), σ, λ are given and

(1.3) σ, λ =

{
σ+, λ+ for (x, z) ∈ D+,

σ−, λ− for (x, z) ∈ D−,

σ+, σ−, λ+, λ− are constant and [w]L = w+−w− on L, D+ and D− are separated
by L. By using the homogenization method the authors derived the homogenized
equation and the associate continuity condition in the explicit form. This prob-
lem was then considered in two-dimensional domains with an interface highly
oscillating between two concentric circles [9], and the corresponding homoge-
nized equation and associate continuity condition in the explicit form were also
obtained.

z = - A

0

L

D

D

+

-n

Fig. 1. Two-dimensional domains D+ and D− have a very rough interface L expressed by
equation z = h(x/ε)=h(y), where h(y) is a periodic function with period 1. The curve L

highly oscillates between the straight lines z = 0 and z = −A (A > 0).

The main purpose of this paper is to extend the results of Nevard and Keller
to the general problem of Eqs. (1.1)–(1.2), in particular, to find the homoge-
nized equation and the associate continuity condition in the explicit form of the
following problem:

(σ11Ux + σ12Uz)x + (σ12Ux + σ22Uz)z − λU = f(x, z), (x, z) /∈ L,(1.4)

[U ]L = 0, [qn]L = 0,(1.5)
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where

(1.6) qn = (σ11Ux + σ12Uz)nx + (σ12Ux + σ22Uz)nz

and

(1.7) σij , λ =

{
σ+

ij , λ+, for (x, z) ∈ D+,

σ−
ij , λ−, for (x, z) ∈ D−,

σ+
ij , σ

−
ij , λ

+, λ− are given constants, U(x, z) is unknown, f(x, z) is given, the
interface L rapidly oscillates between two straight lines or two concentric ellipses.
The matrix (σij)2×2 is assumed to be positive definite, i.e., there exists a positive
constant α so that

(1.8) σijηiηj > αηkηk for any real vector η = (η1, η2).

When σ12 = 0 and σ11 = σ22 = σ, the problem (1.4)–(1.5) coincides with the
problem (1.1)–(1.2). The boundary-value problem (1.4)–(1.5) originates from
various mechanical problems, such as the steady thermal conductivity problem,
the problem of harmonic wave propagation in anisotropic elastic media, and
so on.

By the homogenization method and following the techniques presented re-
cently in [10, 11, 12], the homogenized equation and the associate continuity
condition in the explicit form are derived for both cases when L highly oscillates
between two straight lines and L highly oscillates between two concentric ellipses.
The obtained results recover the ones derived by Nevard and Keller [9] as
special cases. Since the obtained homogenized equation is totally explicit it is
convenient to use. Note that the technique used in this paper is different from
the one employed by Nevard and Keller in [9] by which we can not derive
the explicit homogenized equation for the general problem.

2. Homogenization of interfaces highly oscillating between

two concentric ellipses

2.1. Interfaces highly oscillating between two concentric ellipses

Now we consider the boundary-value problem (1.4)-(1.5) in D = D+∪L∪D−,
where D+, D− are separated by the interface L expressed by

(2.1)

{
x = a1 h(θ/ε) cos θ,

z = b1 h(θ/ε) sin θ,
0 ≤ θ < 2π,

where a1, b1 are given positive numbers, 0 < ε = 2π/N << 1, N is a sufficiently
large positive integer number, h(ϕ), ϕ = θ/ε is a periodic function with period
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1 and its minimum value is 1 and its maximum value is k = a2 : a1 > 1, a2 is
a given positive number. One can see that the (closed) curve L oscillates highly
between two concentric ellipses E1 and E2 (see Fig. 2) defined respectively by

(2.2)
x2

a2
1

+
z2

b2
1

= 1 and
x2

a2
2

+
z2

b2
2

= 1, a2 : a1 = b2 : b1 = k > 1.

The domain D− (D+) lies inside (outside) the closed curve L. We also assume
that any ellipse x2/a2 + z2/b2 = 1, a1 < a < a2, b1 < b < b2, a : b = a1 : b1 =
a2 : b2, has exactly two intersections with the curve L. From (2.1) we have

(2.3) nx : nz = −z′(θ) : x′(θ).

n
0

D+

D-

L

b2

b1
a2a1

E1

E2

Fig. 2. The interface L, expressed by (2.1), oscillates highly between two concentric ellipses
E1 and E2 defined by (2.2).

Remark 1. Through the mapping:

(2.4) X = x/a1, Z = z/b1,

the curve L belonging to the plane (x, z) is mapped to the curve L∗ belonging
to the plane (X,Z) defined by

(2.5) X = h(θ/ε) cos θ, Z = h(θ/ε) cos θ, 0 ≤ θ < 2π

that oscillates highly between two concentric circles X2 + Z2 = 1 and X2 + Z2

= k2, denoted by E∗
1 and E∗

2 (see Fig. 3), respectively. These circles are images
of the ellipses E1 and E2 through the mapping (2.4). In terms of the polar
coordinates r, θ of the plane (X,Z) (i.e., X = r cos θ, Z = r sin θ), the curve L∗

is expressed by r = h(θ/ε). Since x = a1r cos θ, z = b1r sin θ, the generalized
polar coordinates of the plane (x, z) are r, θ.
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Our purpose is to study asymptotic behavior of the boundary-value problems
(1.4) and (1.5) when ε → 0. In particular, we want to find the explicit homog-
enized equation of the problems (1.4) and (1.5), and the associate boundary
conditions in terms of the generalized polar coordinates r, θ.

On view of Remark 1, it is convenient to study the problems (1.4) and (1.5)
in the plane (X,Z). By D∗

+ and D∗
− we denote the images of D+ and D−,

respectively, through the mapping (2.4) (see Fig. 3). The domains D∗
+ and

D∗
− are separated by L∗ which highly oscillates between two concentric cir-

cles: E∗
1 with radius 1 and E∗

2 with radius k, and it is expressed by equation
r = h(θ/ε).

X

Z

E1

E2

0

D+

D-

L
*

*
*

*

*

r

k1

Fig. 3. The curve L∗, expressed by r = h(θ/ε), oscillates rapidly between two concentric
circles E1 : X2 + Z2 = 1 and E2 : X2 + Z2 = k2.

In terms of the variables X,Z, Eqs. (1.4) and (1.5) take the form:

(2.6)
1

a2
1

(σ11UX)X +
1

a1b1

[
(σ12UZ)X + (σ12UX)Z

]

+
1

b2
1

(σ22UZ)Z − λU = f, (X,Z) /∈ L∗,

(2.7) [U ]L∗ = 0,

[(
σ11

a1
UX+

σ12

b1
UZ

)
z′(θ)−

(
σ12

a1
UX+

σ22

b1
UZ

)
x′(θ)

]
L∗

= 0,

here φX := ∂φ/∂X, φZ := ∂φ/∂Z. Since X = r cos θ, Z = r sin θ, we have:

(2.8)





∂

∂X
= cos θ

∂

∂r
−

sin θ

r

∂

∂θ
,

∂

∂Z
= sin θ

∂

∂r
+

cos θ

r

∂

∂θ
.
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Introducing (2.8) into (2.6) yields:

(2.9) (σMUr)r +
1

r2

[
k3(σ11Uθ)θ + k4(σ22Uθ)θ − k9(σ̃Uθ)θ

]

+
1

r
σT Ur +

2

r2
σKUθ

−
1

r

[
k5

[
(σ11Uθ)r + (σ11Ur)θ

]
− k6

[
(σ22Uθ)r + (σ22Ur)θ

]

+ k7

[
(σ12Uθ)r + (σ12Ur)θ

]
− k8

[
(σ12Uθ)r + (σ12Ur)θ

]
]
− λU = f,

where φr := ∂φ/∂r, φθ := ∂φ/∂θ and

k1 =
cos2 θ

a2
1

, k2 =
sin2 θ

b2
1

, k3 =
sin2 θ

a2
1

,

k4 =
cos2 θ

b2
1

, k5 =
sin θ cos θ

a2
1

, k6 =
sin θ cos θ

b2
1

,

k7 =
sin2 θ

a1b1
, k8 =

cos2 θ

a1b1
, k9 =

sin θ cos θ

a1b1
,

σM = k1σ11 + k2σ22 + k9σ̃, σT = k3σ11 + k4σ22 − k9σ̃,

σK = k5σ11 − k6σ22 + (k7 − k8)σ12, σ̃ = 2σ12.

(2.10)

Note that k3 = 1− k1, k4 = 1 − k2, k8 = 1 − k7. Similarly, in terms of the polar
coordinates (r, θ) of the plane (X,Z), the continuity condition (2.7) is of the
form:

[U ]L∗ = 0,
[
σ11Ur

(
−k1 −

k5h
′

εr

)
+ σ12Ur

(
−k9 −

k7h
′

εr

)
+ σ12Ur

(
−k9 +

k8h
′

εr

)

+ σ22Ur

(
−k2 +

k6h
′

εr

)
+ σ11Uθ

(
k5

r
+

k3h
′

εr2

)
+ σ12Uθ

(
−

k8

r
−

k9h
′

εr2

)

+ σ12Uθ

(
k7

r
−

k9h
′

εr2

)
+ σ22Uθ

(
−

k6

r
+

k4h
′

εr2

)]

L∗

= 0.

(2.11)

Equation (2.11)2 is derived by using (2.1) and (2.8) in (2.7)2, then dividing the
resulting equation by a1b1 and noting that r = h(θ/ε) on L∗.
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2.2. Explicit homogenized equation

Following Bensoussan et al. [7], Sanchez-Palencia [8] we can suppose
that U(r, θ, ε) = u(r, θ, ϕ, ε). Then we have

(2.12) Uθ = uθ +
1

ε
uϕ,

here φϕ := ∂φ/∂ϕ. Using (2.12) in Eq. (2.9) and (2.11)2 leads to

(2.13)
1

ε2r2

[
k3(σ11uϕ)ϕ+k4(σ22uϕ)ϕ−k9

(
σ̃uϕ

)
ϕ

]

+
1

εr2

[
k3

[
(σ11uϕ)θ+(σ11uθ)ϕ

]
+k4

[
(σ22uϕ)θ+(σ22uθ)ϕ

]
−k9

[(
σ̃uϕ

)
θ
+

(
σ̃uθ

)
ϕ

]
]

+
1

r2

[
k3(σ11uθ)θ+k4(σ22uθ)θ−k9

(
σ̃uθ

)
θ

]

−
1

εr

[
k5

[
(σ11ur)ϕ+(σ11uϕ)r

]
−k6

[
(σ22ur)ϕ+(σ22uϕ)r

]
+k7

[
(σ12ur)ϕ+(σ12uϕ)r

]

−k8

[
(σ12ur)ϕ+(σ12uϕ)r

]]

−
1

r

[
k5

[
(σ11ur)θ+(σ11uθ)r

]
−k6

[
(σ22ur)θ+(σ22uθ)r

]
+k7

[
(σ12ur)θ+(σ12uθ)r

]

−k8

[
(σ12ur)θ+(σ12uθ)r

]]
+

2

r2
σKuθ+

2

εr2
σKuϕ+

1

r
σT ur+(σMur)r−λu = f,

and

[u]L∗ = 0,
[
σ11ur

(
−k1−

k5h
′

εr

)
+σ12ur

(
−k9−

k7h
′

εr

)
+σ12ur

(
−k9+

k8h
′

εr

)

+σ22ur

(
−k2+

k6h
′

εr

)
+σ11uθ

(
k5

r
+

k3h
′

εr2

)
+σ12uθ

(
−

k8

r
−

k9h
′

εr2

)

+σ12uθ

(
k7

r
−

k9h
′

εr2

)
+σ22uθ

(
−

k6

r
+

k4h
′

εr2

)
+σ11uϕ

(
k5

εr
+

k3h
′

ε2r2

)

+σ12uϕ

(
−

k8

εr
−

k9h
′

ε2r2

)
+σ12uϕ

(
k7

εr
−

k9h
′

ε2r2

)
+σ22uϕ

(
−

k6

εr
+

k4h
′

ε2r2

)]

L∗

= 0.

(2.14)
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Following Vinh and Tung [10, 11, 12],

(2.15) u = V + ε(N1V + N11Vr + N12Vθ)

+ ε2(N2V + N21Vr + N22Vθ + N211Vrr + N212Vrθ + N222Vθθ) + O(ε3),

where V = V (θ, r) (being independent of ϕ), N i, N ij , N ijk, . . . are functions of
ϕ and r (not depending on θ) and they are ϕ-periodic with period 1. The func-
tions N i, N ij , N ijk, . . . are chosen so that the equation (2.13) and the continuity
conditions (2.14) are satisfied.

From (2.15), it is clear that the continuity (2.14)1 is satisfied if

(2.16) [N i]L∗ = 0, [N ij ]L∗ = 0, [N ijk]L∗ = 0, . . . .

Substituting (2.15) into (2.13) and (2.14)2 yields equations which we call (e1)
and (e2), respectively. In order to make the coefficients of ε−1 and ε0 of (e1) zero
we take

(2.17)
1

r2
(σT N1

ϕ)ϕV +

(
1

r2
σT N11

ϕ −
1

r
σK

)

ϕ

Vr +
1

r2

(
σT (N12

ϕ + 1)

)

ϕ

Vθ = 0

and

(2.18)

{
1

r2
(σT N2

ϕ)ϕ −
1

r

[
(σKN1

ϕ)r + (σKN1
r )ϕ

]
+

2

r2
σKN1

ϕ

}
V

+

{
1

r2
(σT N21

ϕ )ϕ −
1

r

[
σKN1

ϕ + (σKN1)ϕ + (σKN11
ϕ )r + (σKN11

r )ϕ

]

+
2

r2
σKN11

ϕ +
1

r
σT

}
Vr

+

{
1

r2

[
(σT N1)ϕ + σT N1

ϕ

]
−

1

r

[
(σKN12

ϕ )r + (σKN12
r )ϕ

]

+
2

r2
σK(N12

ϕ + 1) +
1

r2
(σT N22

ϕ )ϕ

}
Vθ

+

{
1

r2

[
(σT N11)ϕ + σT N11

ϕ + (σT N212
ϕ )ϕ

]

−
1

r

[
σK(N12

ϕ + 1) + σK + (σKN12)ϕ

]}
Vrθ

+

{
1

r2
(σT N211

ϕ )ϕ −
1

r

[
σKN11

ϕ + (σKN11)ϕ

]}
Vrr

+
1

r2

{
(σT N222

ϕ )ϕ + (σT N12)ϕ + σT (N12
ϕ + 1)

}
Vθθ + (σMVr)r − λV = f.
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Note that σT , σK , σM are independent of r and ϕ in each domain D+ and D−.
Vanishing of the coefficients of ε−1 and ε0 of (e2) gives

(2.19)
h′

r2
[σT N1

ϕ]L∗V +
h′

r

[
1

r
σT N11

ϕ − σK

]

L∗

Vr +
h′

r2
[σT (N12

ϕ + 1)]L∗Vθ = 0,

and

(2.20)

[
h′

r
σKN1

r −
1

r
σKN1

ϕ −
h′

r2
σT N2

ϕ

]

L∗

V

+

[
h′

r
σK(N11

r + N1) + σM −
1

r
σKN11

ϕ −
h′

r2
σT N21

ϕ

]

L∗

Vr

+

[
h′

r
σKN12

r −
1

r
σK(N12

ϕ + 1) −
h′

r2
σT (N22

ϕ + N1)

]

L∗

Vθ

+

[
h′

r
σKN12 −

h′

r2
σT (N212

ϕ + N11)

]

L∗

Vrθ +

[
h′

r
σKN11 −

h′

r2
σT N211

ϕ

]

L∗

Vrr

−
h′

r2
[σT (N12 + N222

ϕ )]L∗Vθθ = 0.

To make (2.17) and (2.19) satisfied, the functions N1, N11, N12 are chosen as
follows (taking into account (2.16)):

(σT N1
ϕ)ϕ = 0, 0 < ϕ < 1, ϕ 6= ϕ1, ϕ2,

[σT N1
ϕ]L∗ = 0, [N1]L∗ = 0, N1(r, 0) = N1(r, 1) = 0,(2.21)

(σT [N12
ϕ + 1])ϕ = 0, 0 < ϕ < 1, ϕ 6= ϕ1, ϕ2,

[σT (N12
ϕ + 1)]L∗ = 0, [N12]L∗ = 0, N12(r, 0) = N12(r, 1) = 0,(2.22)

(
1

r
σT N11

ϕ − σK

)

ϕ

= 0, 0 < ϕ < 1, ϕ 6= ϕ1, ϕ2,

[(
1

r
σT N11

ϕ − σK

)]

L∗

= 0, [N11]L∗ = 0, N11(r, 0) = N11(r, 1) = 0,(2.23)

where ϕ1 and ϕ2 (0 < ϕ1 < ϕ2 < 1) are two roots of the equation h(ϕ) = r
for ϕ in the interval (0, 1) in which r, as a parameter, belongs to the domain
(1, k). The functions ϕ1(r) and ϕ2(r) are two inverse branches of the function
r = h(ϕ). Note that, from a mentioned above assumption, any circle X2+Z2 = c2

(1 < c < k) has exactly two intersections with the curve L∗.
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From (2.21)–(2.23), it is not difficult to show that

N1 ≡ 0, 〈σT N11
ϕ 〉 = r

(
〈σK〉 − 〈σ−1

T 〉−1

〈
σK

σT

〉)
, 〈σT (N12

ϕ + 1)〉 = 〈σ−1
T 〉−1,

σT N11
ϕ = r

(
σK − 〈σ−1

T 〉−1

〈
σK

σT

〉)
, σT N12

ϕ = 〈σ−1
T 〉−1 − σT ,(2.24)

where:

(2.25) 〈g〉 =

1∫

0

gdϕ = (ϕ2 − ϕ1)g+ + (1 + ϕ1 − ϕ2)g−,

g+ and g− are the values of g in D∗
+ and D∗

−, respectively. Note that from
(1.8) it follows σT > 0. Taking into account the fact N1 ≡ 0, Eq. (2.18) now is
simplified to

(2.26)
1

r2
(σT N2

ϕ)ϕV +

{
1

r2
(σT N21

ϕ )ϕ −
1

r

[
(σKN11

ϕ )r + (σKN11
r )ϕ

]

+
2

r2
σKN11

ϕ +
1

r
σT

}
Vr

+

{
2

r2
σK(N12

ϕ + 1) +
1

r2
(σT N22

ϕ )ϕ −
1

r

[
(σKN12

ϕ )r + (σKN12
r )ϕ

]}
Vθ

+

{
1

r2

[
(σT N11)ϕ+σT N11

ϕ +(σT N212
ϕ )ϕ

]
−

1

r

[
σK(N12

ϕ +1)+σK +(σKN12)ϕ

]}
Vrθ

+

{
1

r2
(σT N211

ϕ )ϕ −
1

r

[
σKN11

ϕ + (σKN11)ϕ

]}
Vrr

+
1

r2

{
(σT N222

ϕ )ϕ + (σT N12)ϕ + σT (N12
ϕ + 1)

}
Vθθ + (σMVr)r − λV = f.

In order to satisfy (2.20) we take (noting that N1 ≡ 0 by (2.24)1):
[
σT N2

ϕ

]
L∗

= 0,
[{

σM +
h′

r
σKN11

r −
1

r
σKN11

ϕ −
h′

r2
σT N21

ϕ

}]

L∗

= 0,

[{
h′

r
σKN12

r −
1

r
σK(N12

ϕ + 1) −
h′

r2
σT N22

ϕ

}]

L∗

= 0,(2.27)

[
1

r
σKN12 −

1

r2
σT (N11 + N212

ϕ )

]

L∗

= 0,

[
1

r
σKN11 −

1

r2
σT N211

ϕ

]

L∗

= 0,
[
σT (N12 + N222

ϕ )
]
L∗

= 0.
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By integrating equation (2.26) along the circle r = const, 1 < r < k from ϕ = 0
to ϕ = 1 and taking into account the fact 〈(σMVr)r〉 = 〈σM 〉Vrr we have

(2.28) A0V + A1Vr + A2Vθ + A11Vrr + A12Vrθ + A22Vθθ − 〈λ〉V = f,

where:

(2.29)

A0 =
1

r2

〈
(σT N2

ϕ)ϕ〉,

A1 =

〈
1

r2
(σT N21

ϕ )ϕ −
1

r
(σKN11

r )ϕ

〉
−

1

r

〈
(σKN11

ϕ )r

〉

+
2

r2

〈
σKN11

ϕ

〉
+

1

r
〈σT 〉,

A2 =

〈
1

r2
(σT N22

ϕ )ϕ −
1

r
(σKN12

r )ϕ

〉
+

2

r2

〈
σK(N12

ϕ + 1)
〉

−
1

r

〈
(σKN12

ϕ )r

〉
,

A11 =

〈
1

r2
(σT N211

ϕ )ϕ −
1

r
(σKN11)ϕ

〉
−

1

r

〈
σKN11

ϕ

〉
+ 〈σM 〉,

A12 =

〈
1

r2

[
(σT N11)ϕ + (σT N212

ϕ )ϕ

]
−

1

r
(σKN12)ϕ

〉
+

1

r2

〈
σT N11

ϕ

〉
,

−
1

r

[〈
σK(N12

ϕ + 1)
〉

+ 〈σK〉
]
,

A22 =
1

r2

[〈
(σT N222

ϕ )ϕ + (σT N12)ϕ

〉
+

〈
σT (N12

ϕ + 1)
〉]

.

From (2.27)1, (2.27)4, (2.27)5 and (2.27)6 it is clear that

(2.30)

〈
(σT N2

ϕ)ϕ

〉
= 0,

〈
1

r2
(σT N211

ϕ )ϕ −
1

r
(σKN11)ϕ

〉
= 0,

〈
1

r2

[
(σT N11)ϕ + (σT N212

ϕ )ϕ

]
−

1

r
(σKN12)ϕ

〉
= 0,

1

r2

〈
(σT N222

ϕ )ϕ + (σT N12)ϕ

〉
= 0,

therefore from (2.29)1, (2.29)4–(2.29)6:

(2.31)

A0 = 0, A11 = −
1

r

〈
σKN11

ϕ

〉
+ 〈σM 〉,

A12 =
1

r2

〈
σT N11

ϕ

〉
−

1

r

[〈
σK(N12

ϕ + 1)
〉

+ 〈σK〉
]
,

A22 =
1

r2

〈
σT (N12

ϕ + 1)
〉
.
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In order to evaluate A1, A2 we use the following equality (see Eq. (26) in [12]):

(2.32) 〈Fr〉 + d δF = 〈F 〉r,

where

(2.33) d = [1/h′(ϕ2) − 1/h′(ϕ1)], δF = (F+ − F−),

and F+, F− are the (constant-in ϕ) values of F in D+, D−, respectively.
Taking into account (2.27)2 we have

(2.34)

〈
1

r2
(σT N21

ϕ )ϕ −
1

r
(σKN11

r )ϕ

〉
= d

[
δσM −

1

r
δ(σKN11

ϕ )

]
.

Applying (2.32) for F = σKN11
ϕ we have

(2.35) −
1

r

〈
(σKN11

ϕ )r

〉
= −

1

r

〈
σKN11

ϕ

〉
r
+

1

r
dδ(σKN11

ϕ ).

Substituting (2.34) and (2.35) into (2.29)2 yields:

(2.36) A1 = dδσM −
1

r

〈
σKN11

ϕ

〉
r
+

2

r2

〈
σKN11

ϕ

〉
+

1

r
〈σT 〉.

Similarly, from (2.27)3 it follows:

(2.37)

〈
1

r2
(σT N22

ϕ )ϕ −
1

r
(σKN12

r )ϕ

〉
= −

1

r
d δ[σK(N12

ϕ + 1)],

and applying (2.32) for F = σKN12
ϕ we have

(2.38) −
1

r

〈
(σKN12

ϕ )r

〉
= −

1

r

〈
σKN12

ϕ

〉
r
+

1

r
dδ(σKN12

ϕ ).

Therefore, on view of (2.29)3, (2.37) and (2.38), A2 is expressed by

(2.39) A2 = −
1

r
dδσK −

1

r

〈
σKN12

ϕ

〉
r
+

2

r2

〈
σK(N12

ϕ + 1)
〉
.

From (2.25) one can see that

(2.40) dδσM = 〈σM 〉r, dδσK = 〈σK〉r.

From (2.24) it follows:

〈σKN11
ϕ 〉 = r

[
〈σ2

Kσ−1
T 〉 − 〈σKσ−1

T 〉2〈σ−1
T 〉−1

]
,

〈σKN12
ϕ 〉 = 〈σKσ−1

T 〉 〈σ−1
T 〉−1 − 〈σK〉.(2.41)



Explicit homogenized equation of a boundary-value problem 473

Introducing (2.40) and (2.41) into (2.31), (2.36) and (2.39) and taking into ac-
count (2.24) lead to

A1 = 〈σM 〉r +
1

r
〈σT 〉 − r

[
1

r

{
〈σ2

Kσ−1
T 〉 − 〈σKσ−1

T 〉2 〈σ−1
T 〉−1

}]

r

,

A2 = −r

[
1

r2

{
〈σKσ−1

T 〉 〈σ−1
T 〉−1

}]

r

,

A11 = 〈σM 〉 − 〈σ2
Kσ−1

T 〉 + 〈σKσ−1
T 〉2 〈σ−1

T 〉−1,

A12 = −
2

r
〈σKσ−1

T 〉 〈σ−1
T 〉−1,

A22 =
1

r2
〈σ−1

T 〉−1.

(2.42)

The desired explicit homogenized equation finally takes the form:

A1Vr + A2Vθ + A11Vrr + A12Vrθ + A22Vθθ − 〈λ〉V = f,

1 < r < k, 0 ≤ θ < 2π,(2.43)

in which the coefficients A1, A2, A11, A12, A22 are given by (2.42). In the domains
0 < r < 1, 0 ≤ θ < 2π and r > k, 0 ≤ θ < 2π (of the plane (x, z)) are satisfied
the following equations:

σ+
MVrr −

2

r
σ+

KVrθ +
1

r2
σ+

T Vθθ +
1

r
σ+

T Vr

+
2

r2
σ+

KVθ − λ+V = f, r > k, 0 ≤ θ < 2π,

(2.44)

σ−
MVrr −

2

r
σ−

KVrθ +
1

r2
σ−

T Vθθ +
1

r
σ−

T Vr

+
2

r2
σ−

KVθ − λ−V = f, 0 < r < 1, 0 ≤ θ < 2π,

which come from (2.9). Note that Eq. (2.44)1 [(2.44)2] can be obtained from
Eq. (2.43) by replacing σK , σM and σT by σ+

K , σ+
M and σ+

T [by σ−
K , σ−

M and σ−
T ],

respectively. In addition to Eq. (2.43) and Eq. (2.44) the continuity conditions
are required on the ellipses E1 and E2, namely:

[V ]Ei
= 0,

[
(〈σM 〉 − 〈σ2

Kσ−1
T 〉 + 〈σ−1

T σK〉2〈σ−1
T 〉−1)Vr

−
1

r
〈σ−1

T σK〉〈σ−1
T 〉−1Vθ

]

Ei

= 0, i = 1, 2.

(2.45)
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The ellipses E1 and E2 correspond to r = 1 and r = k, respectively. Note that the
continuity condition (2.45)2 originates from the condition: [qn]Ei

= 0, i = 1, 2,
n is the normal unit for Ei, or equivalently:

(2.46)

[
σMur −

σK

r
(uθ + ε−1uϕ)

]

Ei

= 0, i = 1, 2.

Introducing (2.15) into (2.46) yields an equation denoted by (e3). Equating to
zero the coefficient of ε0 of (e3) provides

(2.47)

[(
σM −

1

r
σKN11

ϕ

)
Vr −

1

r
σK(N12

ϕ + 1)Vθ

]

Ei

= 0, i = 1, 2.

Integrating (2.47) along the lines r = 1 and r = k from ϕ = 0 to ϕ = 1 and
using (2.41) we arrive at (2.45)2.

When the ellipses E1 and E2 become the circles with radii a1 (= b1) and
a2 (= b2) and σ12 = 0, σ11 = σ22 = σ, we have: σM = σT = σ/a2

1, σK = 0;
therefore, by using (2.42):

(2.48) A1 =
1

a2
1r

[
r〈σ〉

]
r
, A2 = 0, A11 =

1

a2
1

〈σ〉, A12 = 0, A22 =
1

a2
1r

2
〈σ−1〉−1.

With (2.48) the homogenized equation (2.43) and the continuity condition (2.45)
are simplified respectively to

(2.49)
1

r

(
r〈σ〉Vr

)
r
+

1

r2
〈σ−1〉−1Vθθ − 〈λ〉V = f,

and

(2.50) [V ]Ei
= 0,

[
〈σ〉Vr

]
Ei

= 0, i = 1, 2,

where (r, θ) are the polar coordinates in the (x, z)-plane. The homogenized equa-
tion (2.49) and the continuity condition (2.50) coincide with Eq. (4.6) and its
associate continuity condition in [9] obtained by Nevard and Keller in a dif-
ferent way.

3. Homogenization of interfaces highly oscillating

between to straight lines

Applying Theorem 1 of the paper [10] for the matrices Aij = (σij)1×1, u =
U exp(iω t), F = −f exp(iωt), λ = −ρω2 (ρ and ω being some fixed positive
numbers, i2 = −1) we arrive immediately at the explicit homogenized equation
and the associate continuity condition of the problems (1.4)–(1.5) for the case
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when L highly oscillates between two straight lines z = −A and z = 0 (Fig. 1),
namely:

(3.1) 〈σ−1
11 〉

−1Vxx + 〈σ−1
11 〉

−1〈σ−1
11 σ12〉Vxz +

[
〈σ−1

11 〉
−1〈σ−1

11 σ12〉Vx

]
z

+
[{
〈σ22〉 + 〈σ−1

11 〉
−1〈σ−1

11 σ12〉
2 − 〈σ−1

11 σ2
12〉

}
Vz

]
z
− 〈λ〉V = f, −A < z < 0,

and

(3.2)

[
〈σ−1

11 〉
−1〈σ−1

11 σ12〉Vx + {〈σ22〉 + 〈σ−1
11 〉

−1〈σ−1
11 σ12〉

2 − 〈σ−1
11 σ2

12〉}Vz

]
L̄

= 0,

[V ]L̄ = 0, L̄ is lines z = −A, z = 0.

Note that, since the matrix (σij)2×2 is positive definite, σ11 > 0. When σ12 = 0,
σ11 = σ22 = σ, Eqs. (3.1) and (3.2) are simplified to

(3.3)
〈σ−1〉−1Vxx +

[
〈σ〉Vz

]
z
− 〈λ〉V = f, −A < z < 0,

[V ]L̄ = 0, [〈σ〉Vz]L̄ = 0, L̄ is lines z = −A, z = 0.

that coincide with the ones obtained by Nevard and Keller [9].

4. Conclusions

By using the homogenization method and the techniques introduced recently
in [10, 11, 12], the authors derive the homogenized equation and the associate
continuity condition in the explicit form of a boundary-value problem, originat-
ing from various problems in practical applications, in two-dimensional domains
separated by an interface which highly oscillates between two concentric ellipses
and between two straight lines. The obtained results recover the ones derived
by Nevard and Keller [9] as special cases. Since the obtained homogenized
equation and the associate continuity conditions are explicit, they are convenient
to use.

Finally, one can see that the technique presented in this paper is still ap-
plicable for the case when the scalars σij and λ are square matrices of order
n ≥ 1, U is a unknown n-dimensional vector and f is a given n-dimensional
vector. Therefore, by this technique we can extend the results obtained in [12] to
the case when the interface L highly oscillating between two concentric ellipses
instead of two concentric circles.
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