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Modeling of polymer/clay nanocomposites
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An iterative micromechanical method is presented in order to predict the elastic
constants of composites and nanocomposites including arbitrarily oriented reinforce-
ment particles. The proposed method is capable of introducing into the matrix any
kind of heterogeneity based on its dimension, orientation, mechanical properties and
volume fraction. The efficiency and convergence of solution method is studied by
computing the elasticity tensor of a unidirectional particulate composite. It is then
applied to model the elastic behavior of nylon-6/clay nanocomposite with taking into
consideration the probability distribution of aspect ratio and orientation of effec-
tive particles. The results are validated by comparison with available experimental
data.
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1. Introduction

Ever-increasing industrial demands for new materials withstanding ex-
treme operating conditions, e.g., high temperature, aggressive environment, im-
pact, etc., lead to a gradual replacement of conventional metallics with syn-
thetic composite materials with increasing complexity in micro-structural and
morphological properties. Most of these composites are polydisperse materials
containing various geometric or thermo-mechanical types of fillers. This is the
case, for example, in syntactic foams made of hollow glass microspheres with var-
ious thicknesses embedded in a polymeric matrix, polymer/clay nanocomposites
containing nanoparticles with different aspect ratios (geometric dispersion) or
particulate composites, gathering the desired properties of two or more filling
constituents (thermo-mechanical dispersion).

Numerical methods have become an effective homogenization tool in order to
predict the behavior of such materials, as they allow to simulate microstructures
similar to the real ones, under any type of loading, as well as taking into account
the interactions between micro- and macro- levels [1–7]. Despite of effectiveness of
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these numerical approaches, explicit micromechanical models remain attractive
for their easy implementation and their capacities to test various parameters
with the aim of optimizing their properties.

Most of the micromechanical models are based on the solution of an ellip-
tical inclusion isolated in an infinite elastic matrix suggested by Eshelby [8].
Thus, one can cite the generalized self-consistent model [9, 10], Mori–Tanaka
model [11], the morphological approach [12, 13] or the differential scheme pro-
posed by Norris [14] and Zimmerman [15] based on an iterative procedure.
Some of these approaches, which were initially proposed for monodisperse com-
posites, have been generalized to take into account various behaviors of reinforce-
ments. For example, Budiansky [16] has extended the self-consistent model for
composites with several families of spherical inclusions with different behaviors
and Phan-Thien and Pham [17] have generalized the differential scheme to
model multiphase mediums. Bardella and Genna [18] have suggested also
a multiphase homogenization method from morphological model applied to syn-
tactic foams with different sizes of hollow microspheres.

The enhancement in mechanical properties of nanocomposites has inclined
many authors to develop aforesaid micromechanical models for predicting the
behavior of these materials. Kojima et al. [19] and Shelley et al. [20] used the
rule of mixtures to estimate the elastic modulus of polyamide-6/clay nanocom-
posites. Brune and Bicerano [21] studied the effect of incomplete exfoliation
and deviation of the platelets from perfect biaxial in-plane orientation on the
compressive stiffness of nanocomposites using the Halpin–Tsai [22] equation.
Luo and Daniel [23] applied the Mori–Tanaka method to calculate the mod-
ulus of polymer/clay nanocomposites for various parametric variations related
to material and geometric properties and microstructure/nanostructure mor-
phology. Anoukou et al. [24] presented a self-consistent scheme based on the
double-inclusion model to calculate the overall stiffness tensor of polymer-clay
nanocomposites assuming randomly oriented reinforcements. Introducing the in-
teraction between clay and matrix in their analysis, Mesbah et al. [25] assumed
the presence of an interphase between the two phases (polyamide-6 and clay) and
considered the interphase thickness as a characteristic length scale. They esti-
mated the fraction of interphase region using the approach proposed by Kojima
et al. [19] by means of DSC and DMA tests. They concluded that for randomly
oriented particles, there is no major enhancement of the nanocomposite stiffness
due to the morphological transition from intercalated to exfoliated state. Zaïri
et al. [26] used the same formulation to predict the elastic-plastic behavior of
nylon-6/clay nanocomposites. Anthoulis and Kontou [27] combined Mori–
Tanaka’s [11] theory with the self-consistent model of Budiansky and Wu [28]
to formulate the elastic-plastic response of epoxy/clay nanocomposites, formerly
tested by Luo and Daniel [23].
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Although explicit micromechanical methods are in good agreement for slight-
ly reinforced, weakly contrasted or dispersed composites, they can significantly
differ for highly reinforced or polydisperse composites. Furthermore, their appli-
cations are limited to composites with random [23–29] or unidirectional [23, 25]
filler orientations. To overcome these shortcomings, Zouari et al. [30] proposed
an iterative process of homogenization in order to characterize the mechanical
behavior of composites highly reinforced by spherical inclusions of various types
and dimensions. But their method can only be useful for isotropic composites
containing spherical inclusions.

Regarding these remarks, the aim of this work is to extend the foregoing
iterative approach in order to predict the behavior of more general particulate
composites, specifically polymer/clay nanocomposites.

Contrary to what may appear at first glance, the proposed method is pre-
ferred over the conventional differential method, because it is capable of pre-
dicting the behavior of particulate composites with any degree of heterogeneity,
material symmetry and reinforcement. Furthermore, it can handle any distribu-
tion function for physical and structural parameters of composite, including level
of filler-matrix interfacial bonding, aspect ratio and orientation of reinforcement
particles.

This paper is organized as follow: Section 2 briefly discusses the general pro-
cess of micromechanical iterative approach. In Section 3, the implementation is
validated and the convergence of the process is analyzed. Section 4 presents iter-
ative modeling procedure of intercalated polymer/clay nanocomposites assum-
ing nanoparticles as Eshelby’s inclusions with effective mechanical properties.
In Section 5, available experimental results for a fully exfoliated nylon-6/clay
nanocomposite are presented to assess results of proposed method. Final section
is dedicated to discussion about the results and conclusion.

2. Iterative method for polydisperse composite materials

Following a similar principle to the differential scheme introduced by Nor-
ris [14] and iterative homogenization process applied by Zouari et al. [30], the
proposed iterative approach consists of gradually introducing filler constituents
of a polydisperse composite with m types of heterogeneities into its matrix. To
this end, firstly each filler type is divided into n equal parts, each with volume
fraction Vi/n. At the initial step, the first part of the first filler type is added
to the matrix. Then, the equivalent elasticity tensor of this first virtual medium
is obtained by any micromechanical homogenization method such as Eshelby,
Mori–Tanaka, self-consistent [31], Hashin [32] and Halpin–Tsai [22]. This ho-
mogeneous medium constitutes the matrix of the intermediate composite which
is again homogenized at the next step. This process is reiterated m times by
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adding the first element of each filler type at each iteration. The overall proce-
dure is then repeated n times for jth elements of all filler types until the final
volume fraction of filler is reached. The computed elasticity tensor at this step
results in the effective elasticity tensor of the polydisperse composite.

The filler volume fraction, relevant to iteration j could be obtained from in

(2.1) Vj =
Vf

jVf +mn(1 − Vf )
, j = 1, 2, . . . ,mn.

Equation (2.1) is obtained for the case when all filler components have the
same volume fraction.

The homogenization method applied in this study is based on the standard
Mori–Tanaka approach with the following formulation [33]:

(2.2)
L̄ = (VmLm + VfLfTf )(VmI + VfTf )−1,

Tf = [I + SL
−1
m (Lf − Lm)]−1,

where I is the fourth-order identity matrix, S is the Eshelby tensor, and Vm

and Vf are matrix and filler volume fractions, respectively. L̄, Lm and Lf are
elasticity tensors for composite, matrix and filler, respectively.

As stated in Eqs. (2.2), the effective elasticity tensor at jth iteration will be
obtained as

(2.3)
L̄

(j+1) = [(1 − Vj)L̄
(j) + VjL

(j)
f T

(j)
f ][(1 − Vj)I + VjT

(j)
f ]−1,

T
(j)
f = [I + S

(j)(L̄(j))−1(L
(j)
f − L̄

(j))]−1, j = 1, 2, . . . ,mn,

where L̄
(1) = Lm and L̄

(j) and L̄
(j+1) are elasticity tensors of intermediate matrix

corresponding to jth and (j + 1)th iterations.
It is noticeable that the coordinate systems (CS) used for computation of

Eshelby’s tensor and elasticity tensors of matrix and inclusion should be the
same. To meet this condition, the CS attached to the inclusion is considered
as the reference CS at each iteration. Thus, variation in direction of inclusion
at each iteration requires transformation of matrix elasticity tensor obtained in
previous step. The flowchart of this iterative procedure is shown in Fig. 1.

Fig. 1. Flowchart of micromechanical iterative process.



Modeling of polymer/clay nanocomposites. . . 545

3. Implementation and convergence study of iterative process

3.1. Modeling of monodisperse composites

Zouari et al. [30] applied the same approach for the simple case of monodis-
perse composite with identical spherical reinforcements. They coupled the iter-
ative process with some micromechanical methods including strain (DA-strain)
and stress approaches (DA-stress), Hashin’s lower bound (Hashin-LB), Hashin’s
upper bound (Hashin-UB), Hashin’s spherical composite (Hashin-SC), the three-
phase method (3 phases), the differential schema (Diff) and the Mori–Tanaka ap-
proach (MT). The mechanical properties, used in this study, were Em = 3.5 GPa
and Ef = 72 GPa for Young’s modulus, and νm = 0.4, νf = 0.22 for Pois-
son’s ratio of matrix and filler, respectively. According to their findings, be-
fore applying the iterative process, all homogenization methods lead to differ-
ent predictions, particularly in high degrees of reinforcement. But the coupling
of the iterative homogenization process with various explicit methods leads
to a unified prediction for the effective behavior after a sufficient number of
iterations.

To validate our MAPLE code written for the present iterative procedure, the
above problem is resolved by using the Mori–Tanaka method. In the continua-
tion, the convergence trends of predicted Young’s and shear moduli, are assessed
in Figs. 2a and 2b, respectively. As it is shown, more iterations are required to
get convergence at high volume fractions of filler.

a) b)

Fig. 2. Convergence trend of normalized effective properties for different values of filler volume
fraction: a) Young’s modulus, b) shear modulus. The reference data [30] for shear modulus

are indicated by ×.

3.2. Modeling of unidirectional composites

To study the effect of reinforcement volume fraction, aspect ratio and phase
contrast on the predictions of both conventional (non-iterative) and iterative
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Mori–Tanaka’s methods, a unidirectional particulate composite is considered in
this section. The reinforcement particles are assumed as ellipsoidal inclusions
with the following representative equation:

(3.1)

(

x1

a1

)2

+

(

x2

a2

)2

+

(

x3

a3

)2

= 1, a1 = a2,

where a1, a2 and a3 are the semi-axes of the ellipsoid.
Thus, the aspect ratio will be defined as α = a1/a3. Assuming the value

of 0.3 for Poisson’s ratio of both matrix and filler, the convergence trend of
solution for different values of filler volume fraction Vf , filler aspect ratio α, and
elastic moduli ratio Ef/Em are plotted in Figs. 3–5, respectively. It is concluded

a) b)

Fig. 3. Convergence trend of normalized effective longitudinal Young’s modulus for different
values of filler volume fraction and aspect ratio: a) Ef/Em = 10, b) Ef/Em = 100.

a) b)

Fig. 4. Convergence trend of normalized effective lateral Young’s modulus for different
values of filler volume fraction and aspect ratio: a) Ef/Em = 10, b) Ef/Em = 100.
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a) b)

Fig. 5. Convergence trend of normalized effective in-plane shear modulus for different values
of filler volume fraction and aspect ratio: a) Ef/Em = 10, b) Ef/Em = 100.

that the number of iterations required for convergence is directly related to the
degree of reinforcement and elastic moduli ratio, but inversely to the filler aspect
ratio.

4. Micromechanical modeling of intercalated polymer/clay
nanocomposite

4.1. Structure of intercalated nanoclay

The hierarchical structure of the intercalated nanoclay is shown in Fig. 6
which is used as an effective continuum particle in most of the analytical/nume-
rical micromechanical models [23–29, 34, 35]. This equivalent model is defined
as a multi-layer stack containing N single silicate layers, each with effective
thickness ds and uniform inter-layer spacing d001. Separating sheets are so-called
gallery layers comprising both surfactants and polymer chains that have pen-
etrated the inter-silicate layers during the synthesis process of nanocomposite.
The overall particle thickness t can be related to the nanoclay structural param-
eters N , d001, and ds as follows:

(4.1) t = (N − 1)d001 + ds.

Fig. 6. Schematic continuum representation for the hierarchical structure of intercalated
nanoclay.
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In order to use the Eshelby-based micromechanical models, the effective par-
ticle is considered as a high-aspect-ratio ellipsoidal inclusion (ideally known as
penny shape) described by Eq. (3.1) as follows: a1 = a2 ≫ a3.

According to the hierarchical structure of intercalated nanoclay, the volume
fraction of effective intercalated particles could be obtained using the following
equation:

(4.2) Vf = V ′
f

(

1 +
N − 1

N

d001

ds

)

,

where V ′
f is the total volume fraction of filler in the nanocomposite. Since the

filler content in experimental studies is specified based on the ratio of its weight
to total composite weight, it is necessary to relate the weight fraction of filler
Wf to its volume fraction through

(4.3) V ′
f =

Wf/ρf

Wf/ρf + (1 −Wf )/ρm
,

where ρmand ρf are the matrix and filler densities, respectively.

4.2. Mechanical properties of the effective clay particle

The elastic constants of the effective particle could be obtained using the
following equilibrium and continuity conditions:

(4.4)
σ
avg
ij = Vgσ

g
ij + Vsσ

s
ij , εg

ij = εs
ij for i, j = 1, 2,

ε
avg
3i = Vgε

g
3i + Vsε

s
3i, σg

3i = σs
3i for i = 1, 2, 3,

where σ
avg
ij and ε

avg
ij are the average stress and strain components in the nan-

oclay representative element, and Vs and Vg are volume fractions of the silicate
and gallery layers in the intercalated nanoclay, respectively. Superscripts s and g
refer to silicate layers and intra-gallery, respectively.

Assuming orthotropic properties for both, silicate layers and intra-gallery,
average stresses and strains in each layer as well as the effective particle can be
related by Hook’s low: σ = Cε where

(4.5) C
−1 =
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Substituting Hook’s low into Eq. (4.4) results in the stiffness tensor of the
effective particle with orthotropic symmetry which could be written in Voigt’s
notation as:

(4.6) C =

























C11 C12 C13 0 0 0

C12 C22 C23 0 0 0

C13 C23 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C55 0

0 0 0 0 0 C66

























.

The elements of fourth-order elasticity tensor L are related to the components
of stiffness tensor through

Lijkl = CikδIJδKL + C(3+m)kδKL(1 − δIJ) + Ci(3+n)δIJ(1 − δKL)(4.7)

+ C(3+m)(3+n)(1 − δIJ)(1 − δKL),

where m 6= i, j and n 6= k, l for i, j, k, l,m, n = 1, 2, 3.
Upper case indices in above equation take the same numbers as the corre-

sponding lower case ones, but are not summed with them.

5. Results and discussion

The results of present method are compared with the experimental data given
by Weon and Sue [36] for a nylon-6/clay nanocomposite with distribution of
clay platelet aspect ratio and orientation.

5.1. Filler aspect ratio and orientation

Weon and Sue [36] have altered the aspect ratio and orientation of the
clay nanoparticles using a large-scale simple shear process, called equal channel
angular extrusion (ECAE) [37, 38]. They categorized the samples before and
after ECAE as follow: reference, received a single ECAE pass (A1) and received
two ECAE passes with a 180◦ rotation of specimen between the passes (C2).
They applied a semi-automated image analysis technique to quantify the effect
of ECAE on morphological properties of nanoparticles and found that the modu-
lus, strength, and heat distortion temperature of nanocomposites would increase
with the increase of the clay aspect ratio and degree of orientation. Figures 7a
and 7b of [36] illustrate the statistical distribution of the nanoclay platelet as-
pect ratio and degree of orientation for samples of the reference, A1 and C2
nanocomposites, respectively.
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To use illustrated data, some of the most common density functions (i.e.,
normal, log-normal, exponential, and weibull) are examined to see which could
better reproduces data according to density distribution, range of variation, and
the values of mean and standard deviation observed in these figures.

Statistical distribution of the nanoclay platelet aspect ratio α can be best
expressed using the log-normal probability density function (pdf) below:

(5.1) pdf (α) =
e−(ln(α)−µ)2/2σ2

ασ
√

2π
,

where µ and σ are mean value and standard deviation of platelet aspect ratio.
Also, statistical distribution of the degree of platelet orientation θ could be

represented by the Weibull density function defined as

(5.2) pdf (θ) =

κ

(

θ

λ

)κ−1

e−(θ/λ)κ

λ
,

where λ and κ are related to mean value and standard deviation via the following
equations:

(5.3) µ = λΓ

(

1 +
1

k

)

, σ = λ

√

Γ

(

1 +
2

k

)

− Γ

(

1 +
1

k

)2

,

where Γ is the gamma function defined by Γ (x) =
∫ ∞
0 sx−1e−sds.

Values of the statistical parameters are listed in Table 1. Probability distri-
bution diagrams of nanoclay platelet aspect ratio and degree of orientation are
drawn in Figs. 7a and 7b, based on the values of Table 1.

a) b)

Fig. 7. Probability distribution diagrams of the annealed nanocomposites: a) platelet aspect
ratio, b) platelet degree of orientation.
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Table 1. Statistical parameters corresponding to probability distribution of clay
aspect ratio α and orientation θ for different samples tested by Weon and Sue [36].

Sample

Aspect ratio
(log-normal)

Orientation

(weibull)

µ σ κ λ

Reference 132 33 1.205 0.223

A1 87 26 1.717 0.196

C2 78 21 1.642 0.468

5.2. Mechanical properties of a fully exfoliated nylon-6/clay nanocomposite

The material and structural properties of constituents of the nanocomposite
samples produced by Weon and Sue [36] are listed in Table 2. The discretized
distribution of filler orientation and aspect ratio could be obtained by dividing
the area under the pdf curves into equal areas. The predicted elastic modulus is
compared with the experimental data in Table 3 which shows a good agreement

Table 2. Properties of the constituents of nanocomposite samples tested by
Weon and Sue [36].

Enylon

(GPa)
Esilicate

(GPa)
νnylon νsilicate

ρnylon

(g/cm3)
ρsilicate

(g/cm3)
ds (nm) N Wf

3.14 400 0.35 0.2 1.14 2.6[34] 0.94 1 0.02

Table 3. Predicted values of elastic moduli of nanocomposite samples tested by
Weon and Sue [36].

Sample Study
Number of

distributed angles (θ)

Number of distributed

values of aspect ratio (α)
Ē1/Em

Reference Weon and Sue [36] 1.487

present 5 5 1.425

10 10 1.439

15 15 1.442

A1 Weon and Sue [36] 1.302

present 5 5 1.354

10 10 1.363

15 15 1.367

C2 Weon and Sue [36] 1.210

present 5 5 1.237

10 10 1.236

15 15 1.235
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of the results. It is noticeable that the results are based on the assumption
that the intra-gallery material has the same properties as that of the polymeric
matrix.

6. Conclusion

An iterative process of micromechanical homogenization is proposed in this
paper in order to characterize the mechanical behavior of nanoclay compos-
ites. This process is based on successively introducing a small fraction of het-
erogeneities until reaching the final reinforcement’s volume fraction. The main
feature of the present method is the possibility to define various kinds of inhomo-
geneity with different dimensional, micro-structural and mechanical properties
within the matrix. Furthermore, any probability density function could be de-
fined for the distribution of dimensions and orientations of filler particles.

As was shown in the literature, since the filler volume fraction at each iter-
ation is small, all explicit homogenizations converge to the same prediction for
the effective behavior, regardless of the filler volume fraction or the contrast be-
tween phases. Therefore, Mori–Tanaka’s method was chosen as one of the most
authentic micromechanical models used to predict the mechanical properties of
composites and nanocomposites. Applying the iterative process for a unidirec-
tional particulate composite revealed a significant difference from non-iterative
approach especially for high volume fraction of filler component. It was also con-
cluded that the number of iterations needed to obtain the convergence depends
on the filler volume fraction and aspect ratio as well as the contrasts in the
properties of the composite constituents.

The proposed approach is then applied for modeling nylon-6/clay nanocom-
posite taking into account the hierarchical structure of intercalated nanoclay
and the probability distribution of aspect ratio and orientation of effective par-
ticles which shows a good agreement in comparison with available experimental
data.
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