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Abstract

The present investigation deals with the study of Green’ functions in orthotropic piezothermoelastic
diffusion  material. With this objective, the two-dimensional general solution in orthotropic
piezothermoelastic diffusion medium is derived at first. On the basis of the general solution, the Green’
function for a point heat source and chemical potential source in the interior of semi-infinite orthotropic
piezothermoelastic diffusion plane by introducing five newely harmonic functions. The components of
displacement, stress, electric displacement, electric potential, temperature change and chemical
potential are expressed in terms of elementary functions. Since all the components are expressed in
terms of elementary functions, it is convenient to use. From the present investigation, a special case of
interest is also deduced to depict the effect of diffusion. The components of stress, electric potential,
temperature change and chemical potential are computed numerically and presented graphically.

Key Words: Green’s function, piezothermoelasic diffusion, electric displacement, electric potential,

semi- infinite.
1. Introduction

Green’s functions or Fundamental solutions play an important role in both applied and theoretical
studied on the physics of solids. Green’s functions can be used to construct many analytical solutions
solving boundary value problems of practical problems when boundary conditions are imposed. They
are essential in boundary element method (BEM) as well as the study of cracks, defects and inclusion.
Many researchers have been investigated the Green’s function for elastic solid in isotropic and
anisotropic elastic media, notable among them are Lord Kelvin [1], Freedholm [2], Synge [3], Pan and
Chou[4], Deeg[5],wang[6] and Chen and Lin[7].
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Lee and lJiang [8] investigated the boundary integral formulation and two-dimensional
fundamental solution for piezoelectric media. Wang and Zheng [9] derived the general solution for
three-dimensional problem in piezoelectric media. Ding et al.[10] investigated the fundamental solution
for piezoelectric media. Ding et al.[11] studied the fundamental solution for plane problem of
piezoelectric materials.

The thermal effect is not considered in the above works. Rao and Sunar[12] pointed out the
temperature variation in the piezoelectric media. Chen et al.[13] derived the general solution for
transversely isotropic piezothermoelatic media. Chen et al.[14] obtained Green’s function of
transversely isotropic pyroelectric media with a penny shaped. Hou et al.[15] constructed Green’s
function for a point heat source on the surface of a semi-infinite transversely isotropic pyroelectric
media.

Diffusion is defined as the spontaneous movement of the particles from a high concentration
region to the low concentration region and it occurs in response to a concentration region and it occurs
in response to a concentration gradient expressed as the change in the concentration due to change in
position. Thermal diffusion utilizes the transfer of heat across a thin liquid or gas to accomplish isotope
separation. Today, thermal remains a practical process to separate isotopes of noble gases (e.g. xexon)
and other light isotopes (e.g. carbon) for research purpose.

Nowacki [16-19] developed the theory of thermoelastic diffusion by using coupled thermoelastic
model. This implies infinite speed of propagation of thermoelastic waves . Sherief et al. [20] developed
the generalized theory of thermoelastic diffusion with one relaxation time which allows finite speeds of
propagation of waves. Recently Kumar and Kansal [21] derived the basic equations for generalized
thermoelastic diffusion (GL model) and discussed the Lamb waves. Kumar and Chawla[22] discussed the
surface wave propagation in an elastic layer lying over a thermodiffusive elastic half-space with
imperfect boundary. Kuang [23] discussed the variational principles for generalized thermodiffusion
theory in pyroelectricity. Kumar and Chawla [24] obtained the fundamental solutions for orthotropic
thermodiffusive elastic media. Recently Kumar and Chawla [25] derived the Green function for two-
dimensional problem in orthotropic thermoelastic diffusion media. However, the important Green’s
function for two-dimensional problem for a steady point heat source in orthotropic piezothermoelastic
diffusion medium has not been discussed so far.

The Green’s function for two-dimensional in orthotropic piezothermoelastic diffusion medium is
investigated in this paper. Based on the two-dimensional general solution of orthotropic thermoelastic
diffusion media, the Green’s function for a steady point heat source in the interior of semi-infinite
orthotropic thermoelastic diffusion material is constructed by four newly introduced harmonic
functions. A special case of interest is also deduced to depict the effect of diffusion.



2 Basic Equations

The basic governing equations of orthotropic piezothermodiffusive elastic materials can be
found in Refs [23].If all the components are independent coordinate vy, so called the plane problem. The
constitutive equations in two-dimensional Cartesian coordinate (x, z) can be expressed as

ou ow oD

O xx 2011&+0135+931§—,51T —byu "
ou oW oD

Uzz=C13&+0335+933§—,33T—b3ﬂ o)
ou ow oD

Oz =Cuq 54'& +915& a)
ou ow od

Dy =€s| —+— |[-éu—
oz oX OX (4)

_g —_—
0z % 0z (5)

where U and W are components of the mechanical displacement in x and z directions,

respectively; Oijj and D, are the components of stress and electric displacement, respectively; fj and b

are material constants.® and T are electric potential and temperature increment,
respectively;cij &jj» Eij and P; are elastic piezoelectric, dielectric, thermal modules, diffusion modules

and pyroelectric contants , respectively.

The mechanical, electric, heat equilibrium and mass diffusions equations for static problem, in the
absence of body forces, free charges heat sources and mass diffusive sources
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Substituting equation (1)-(5) into equations (6)-(7) and applying the dimensionless quantities defined by

(10) on resulting equations, after suppressing the primes, we obtain
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The equations (11)-(15) can be written as
D{u,w,®, T, u}' =0 (16)
where D is the differential operator matrix given by
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Equation (16) is a homogeneous set of differential equations in U,w,®, T, & .The general solution by

the operator theory as follows
u=~A,F, w=A,F, O =AsF,  T=AF u=AsF(=12345) (18)

The determinant of the matrix D is given as
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Where a,b,c,d are given in Appendix A. The function F in equation (18) satisfies the following

homogeneous equation
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It can be seen that if i was set to 1 or 2 in equation (18),one can gets two sets of general solution with
P=0,T =0 and x =0, which are actually to those for pure elasticity (Elliott [26]; and Ding et al [27]);

i=12and 3 correspondence to the solution for piezoelectric discussed by (Ding and Liang [28]
);1 =4 correspondence to the general solution W;(say) with z = Owhich is identical to that for

piezothermoelaticity. Taking I =5 correspondence to the general solution W2 (say) with T =0.

Due to the linear nature of the piezothermoelastic diffusion theory adopting in this paper, follows the

same procedure as adopted by Xiang et el.[29,30] superposing Wl and W2 leads to
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where the coefficients a,,b,, ¢,,d, (k =1,2,3,4,5) and I, |, are the expression given in appendix B.

The general solutions of equations of (16) in terms of F can be rewritten as
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As known from the generalized Almansi [31] theorem, the function F can be expressed in terms of five

harmonic functions

1 F=KR+F +FK+F +F for distinct s;(j =1,2,3,4,5)
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where Fj satisfies the following harmonic equation
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The general solution for the case of distinct roots, can be derived as follows
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Equation (26) can be further simplified by taking
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Making use of (27) in equation (26) yield
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Applying the dimensionless quantities defined by (7) on equations (1)-(5), after suppressing the primes,

with the aid of (28) we obtain
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Substituting equation (30) from into equation (1)-(5), with the aid of (5)-(6) gives
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By virtue of the above equations, the general solution (30) can be simplified as
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4. Green’s Function for a point heat source in the interior of a semi-infinite orthotropic

piezothermodiffusion elastic plane

As shown in Fig.1 We consider an orthotropic semi infinite piezothermodiffusion elastic planeZ >0. A

point heat source H and chemical potential source P is applied at the point (0, h)in two dimensional

Cartesian coordinate (x, z) and the surface z=0 is free, thermally insulated and impermeable boundary.

In Cartesian coordinate system, the general solution given by equation (28) and (32) in this semi-infinite

plane is derived in this section.

In rest part of the paper, following notations are introduced

Z':sz, hk=5kh, ij:Zj-l—hk,

rjk: X2+ijk! ij ZZJ'—hk, ij: X2+Zj2k, (j,k:1,2,3,4) (34)



By virtue of trial and error method, Green’s function in the semi-infinite plane are assumed in the
following form
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where
Aj and A, (J,k =1,2,3,4,5) are thirty constants to be determined.
The boundary conditions at the surface Z=0 are
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Substituting Equation (30) in to equation (24) and (28), we obtain
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Considering the continuity on plane Z =h forw, ®, 7, and D, gives the following expressions
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Equations (38)-(41) can be written in combined form as
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Substitution Wyy; (m=1,2) from equation (33) in to (43) gives
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By virtue of the equations (42),(44)and (45) can be simplified to one equation
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Considering the mechanical, electric, thermal equilibrium and chemical potential per unit mass for a

rectangle of 0 <Z<aand —b < x<b(b>0),four equations can be obtained
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Some useful integrals are listed as follows
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It is noticed that the integrals (48 f, h) is not continuous at Z = h, following expression should be used
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Substituting equation (37) into equation (47 a,b) and using the integrals (48 a,b), yields
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On simplify, we obtain I; =0and I, =0
i.e. equations (50), and 47(a, b) are satisfied automatically.

Making use of equation (37d) in equation (47c), and using the integrals (48 e,f) with the aid of (49 a) and

S4 = +/ 4 [ A3 in the resulting equation, we obtain
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Substituting the value of x from equation (37e) in equation (47d), and using the integrals (48 g,h) with

the aid of (49 d) and Sg = /Dy / D3 in the resulting equation, we obtain

> P
Al + z Ayl = D )
- P | 2 (56)
D,
where
. 2=a, x=b ) x=b z=h~ ) wp F=%2
lg =— (tan‘l(_—)j - (tan‘l(_—)] + (tan‘l(_—)j =2z
255 z=a |, 255 Jx=—b 7=a, 255 Jy=—b -

(57a)



x=b 7% z=a, x=b
1, = [(tan -1(i)] ] - Htan -1 (i)j ] -0
25k Jy—b Z5k 2= |,y
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At the surface Z =0, equation (16) reduces to
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Thus the thirty constant Aj and Ajk (J,k =12,3,4,5) can be determined by thirty equations including

equations (42), (46), (55), (58) and (60)-(63).

5. Special case: In the absence of chemical potential per unit mass, equations (37a)-(37j) reduce to
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7, =5;1,8, = f% ,and s, (J =1,2,3) are three roots (with positive real part) of the equation (23).
3

Considering the continuity on plane Z =h forw,®,7,, and D, and using equation (64)-(64f) with the

aid of s, = }% and A, = S gives the following expressions in the absence of diffusion
3 A
27Py, | F
\ 4

= (m=1, 2) (65)
4
ZSJ' Aj =0 (66)
j=1
4
— WA+ D swy A =0,
k=1 (67)
4

Win Aj + D Wi Ay =0, j=1234

k=1 (68)
Ay Ay =0, Ay =0, m=12 k=123 (69)

The twenty constants  A; and Ajy (j,k =1,2,3,4) can be determined by twenty equations including

equations (65)- (69), (67) by using the method of crammer rule.

The above results are similar as obtained by Xiong et al [32].



6. Numerical Results and Discussion:

In order to determine the constants A, A (J,k =12,3,4,5) ,the method of Crammer's rule has been

used to solve the system of non-homogeneous equations. We have used the MATLAB 7.04 software TO

computing the values of A;, A, (], k =1,2,3,4,5) for computer programme.

The material chosen for numerical calculations is Cadmium Selenide (Cdse), which is orthotropic

material. The physical data for piezo-thermoelastic as given in Sharma [38]

Cyy = 74.1x10°Nm?,c,, =45.2x10°Nm?,c,, =39.3x10°Nm~ ¢, =83.6x10° Nm?,
C,, =13.2x10°Nm?, Ty = 298K, B, =6.21x10% C2/Nm?, B3 =5.51x10° C?/Nm?,
K, =9Wm K Ky =7wm™K

e13 =—0.160x103cm ™2, g3 =34x103cm ™2, e;s =—0.138x103cm ™2

£11 =8.26x107 " NM2/K £33 =9.03x10* Nm2/K , ps =-2.9x10% cm /K,

Behaviour of components of stress, electric potential, temperature change and chemical
potential per unit mass

Figure (2)-(4) shows variation of components of displacement (Tss, Tsi), electric potential (®)
temperature change (T) and chemical potential per unit mass () w.r.t. distance x. The without center

symbol lines correspond to piezothermoelastic (PTE) and the centre symbol on these lines correspond to
piezothermoelastic diffusion (PTDE).

Fig. 2 shows that the values of normal stress (Ts3) increase for both cases PTE and PTDE. It is noticed that
for smaller values of x, the values of Ts; for the case of PTE remain more (in comparison PTDE), but for
higher values of x reverse behavior occurs.

Fig. 3 shows that for smaller values of x, the values of tangential stress (Ts;) for the cases of PTE (Z=5)
and PTDE (Z=5) increase, but for higher values of x, it decreases whereas for the cases PTE (Z=10) and
PTDE (Z=10), the values of Ts; decrease initially, but for higher values of ¥, it increases. It is noticed that
the values of T3, in case of PTDE remain more (in comparison with PTE).



Fig. 4 shows that for smaller values of x, the values of electric potential (®) slightly decrease for both
cases PTE and PTDE, but for higher values of x, the values of @ in case of PTE(z=5,z=10) decrease,
whereas for the case of PTDE(z=5,z=10) ,it slightly increases. It is noticed that the values of @ in case of
PTE (z=10) remain more (in comparison with PTE (z=5), PTDE(z=5,z=10)).

Fig. 5 shows that the values of temperature change (T) increase for both cases PTE (z=5, z=10) for
comparison, it is noticed that the values of T in case of PTE (z=10) remain more (in comparison with PTE
z=5) for smaller values of x, but for higher values of x, the values of T in case of PTE (z=5) remain more,
but there is minor difference in both values.

Fig. 6 shows that the values of chemical potential () increase for both cases PTDE (Z=5,z=10) and for
comparison it is noticed that the values of g remain more in case of PTDE(z=10) (in comparison with

z=5) for smaller values of x, but for higher values of x reverse behavior occur.

Conclusion: The Green's function for two dimensional problem in orthotropic
piezothermoelastic diffusion madium has been derived. With this objective, the two-dimensional
general solution in orthotropic piezothermodiffusion elastic medium has been derived at first. Based on
the obtained two dimensional general solution, Green’ functions for a point heat source and chemical
potential source in the interior of semi-infinite orthotropic piezothermodiffusion elastic plane is
constructed by five newely introduced harmonic functions. The components of displacement, stress,
electric displacement, electric potential, temperature change and chemical potential are expressed in
terms of elementary functions. Since all the components are expressed in terms of elementary
functions, it is convenient to use. The components of displacement, electric potential, temperature
change and chemical potential are computed numerically and depicted graphically. From the present
investigation, a special case of interest is also deduced to depict the effect of diffusion. Significant
diffusion effect is observed on components of stress and electric potential.
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Fig. 1. A semi-infinite piezothermodiffusive elastic plane applied by a point heat source of strength H
and chemical potential source of strength P
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