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This paper presents a new model to consider the thermal effects, Pasternak’s
shear foundation, transverse shear deformation and rotary inertia on vibration anal-
ysis of a single-walled carbon nanotube. Nonlocal elasticity theory is implemented to
investigate the small-size effect on thermal vibration response of an embedded car-
bon nanotube. Based on Hamilton’s principle, the governing equations are derived
and then solved analytically, in order to determine the nonlocal natural frequencies.
Results show that unlike the Pasternak foundation, the influence of Winkler’s con-
stant on nonlocal frequency is negligible for low temperature changes. Moreover, the
nonlocal frequencies are always smaller as compared to their local counterparts. In
addition, in high shear modulus along with an increase in aspect ratio, the nonlocal
frequency decreases.
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1. Introduction

Since carbon nanotubes (CNTs) were discovered by Iijima [1], they
have aroused great interest in the scientific community because of their ex-
ceptional mechanical, electronic, electrochemical, and thermal properties [2–4].
These outstanding properties of CNTs led to their usage in the emerging field of
nanoelectronics, nanodevices, nanocomposites, etc. It has been shown that the
CNTs with extremely high elastic modulus and low mass density can serve as ter-
ahertz (THz) nanoresonators [5–8] in nanoelectromechanical systems (NEMS).
For example, the stiffness of CNTs is 100 times as that of steel, but the weight
is one- sixth as that of the steel [9]. They are thermally stable up to 2800◦C in
vacuum, with a thermal conductivity which is twice as large as diamond, and
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having an electric-current – carrying capacity about 1000 times greater than
copper wire [10].

There are three major categories for simulating the properties of CNTs: ex-
periments, molecular dynamic simulations (MD) and continuum mechanics. Con-
sidering the limited applications of MD and difficulties in conducting controlled
experiments for such small scales, continuum modeling is considered to be an
appropriate method of investigating the mechanical and dynamical properties
of CNTs [11]. In addition, due to difficulties in experimental characterization
of nanotubes as well as time-consuming and computationally expensive atom-
istic simulation, elastic continuum models have been widely used to study the
vibration behavior of CNTs [12]. Extensive studies have been conducted on the
mechanical properties of CNTs such as static bending [13, 14], free vibration and
dynamic response [15–19], buckling [20, 21] and post buckling [22]. Some works
are cited herein. Yoon et al. [15] studied the vibration behavior of multi-walled
carbon nanotubes embedded in an elastic medium using multiple-elastic beam
model. Lu et al. [23] investigated the wave propagation and vibration properties
of single- or multi-walled CNTs based on nonlocal beam model. Wang et al. [24]
presented analytical solutions for the free vibration of nonlocal Timoshenko’s
beam models. Wang et al. [16] used Timoshenko’s beam model and differential
quadrature (DQ) method for free vibration analysis of multi-walled carbon nan-
otubes. Zhang et al. [25] developed a double-elastic beam model for transverse
vibration of double-walled carbon nanotubes under axial compressive axial load
using Euler–Bernoulli’s beam theory. Reddy [26] has provided a comprehensive
overview of the use of nonlocal theories for modeling beam bending, buckling and
vibration. The vibration analysis of SWCNT is mainly focused on the fundamen-
tal mode [5]. Ghorbanpour Arani et al. [27] presented a nonlocal elastic shell
model for buckling analysis of a DWCNT with using the two-parameter founda-
tion. However, only a limited portion of literature is concerned with the vibra-
tion analysis of carbon nanotubes considering the thermal effect and Pasternak’s
foundation.

The present study is concerned with the derivation of the governing equa-
tions for vibration of single-walled carbon nanotubes modeled as nonlocal Tim-
oshenko’s beam theory, using separation of variables approach. The effects of
transverse shear deformation and rotary inertia are considered within the frame-
work of this model. The surrounding elastic medium is described as the Winkler
and Pasternak’s type foundation. The Hamilton principle is employed to derive
the governing equation and boundary conditions. A direct technique is then used
to obtain the natural frequency of nonlocal SWCNT with immoveable support.
The influences of nonlocal parameter, Winkler and Pasternak’s parameters, tem-
perature change, aspect ratio and vibration mode on the free vibration of the
SWCNT are discussed in detail.
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2. Nonlocal nanobeam model for linear analysis of SWCNT

Classical continuum models such as beam and shell models do not admit
intrinsic size dependence on the elastic solutions of inclusion and nonhomo-
geneities. For small-scale length, the applicability of classic continuum models
has become questionable. Furthermore, size-dependent continuum mechanic is
used because at small scale length, the material microstructures such as lattice
spacing between individual atoms become increasingly significant and thus their
effect can no longer be ignored [28]. The weakness of the classical continuum
models such as small-scale effect is modified by nonlocal elasticity. Nonlocal
continuum field theories are concerned with the physics of material bodies. The
nonlocal theory generalizes the classical field theory in two respects: first, the
energy balance law is considered valid for the entire body and second, the state
of the body at a material point is described by response functional [29].

The nonlocal elasticity theory is developed by Eringen [30, 31] and Eringen
and Edelen [32]. According to theory of nonlocal elasticity, the stress at point
x in a body depends not only on the strain at point x (hyper elastic case) but
also on those at all other points of the body. Thus, the nonlocal stress tensor σ
at point x is expressed as

σij =

∫

V

λ(|x′ − x|, τ)εkl(x
′)Cijkl dV (x′),(2.1)

εij =
1

2
(ui,j + uj,i).(2.2)

The terms σij , εkl and Cijkl are the stress, strain and fourth order elasticity
tensor, respectively. λ(|x′ − x|, τ) is the Kernel function or nonlocal modulus or
attenuation function incorporating into constitutive equations, |x′−x| represents
the distance in Euclidean form and τ is the material constant that depends on
the internal (e.g., lattice parameter, granular size, distance between C-C bonds)
and external characteristic length (e.g., wave length). Material constant τ is
defined as e0a/l where e0 is a constant for adjusting the model in matching
with experimental results. Also, a, l denotes the internal and external length
parameters, respectively. The Kernel function is given by Eringen as

(2.3) λ(|x|, τ) = (2πl2τ2)−1κ

(√
x0x

lτ

)

,

where κ is the modified Bessel function. By the combination of Eqs. (2.1) and
(2.3) we obtain

(2.4) (1 − τ2l2∇2)σ = t, τ =
e0a

l
,

where t = C : ε and ‘:’ represents the double dot product. For a beam type
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structure, the thickness and width are much smaller than its length. Therefore,
for beams with transverse motion in x−z plane, the nonlocal constitutive relation
can be approximated to one-dimensional form as

σxx − µ
∂2σxx

∂x2
= Eεxx,(2.5)

σxz − µ
∂2σxz

∂x2
= Gγxz,(2.6)

µ = (e0a)
2,(2.7)

where E and G are Young’s and shear modulus, respectively, γxz is the shear
strain, σxx and σxz are normal and shear stresses and µ is the scale coefficient
or nonlocal parameter.

3. Governing differential equations

The displacement field equation based on Timoshenko’s beam theory is given
as

u1 = u(x, t) + zϕ(x, t),(3.1)

u2 = 0,(3.2)

u3 = w(x, t),(3.3)

where u1 and u3 are the axial and transverse displacement of the point (x, 0) on
the mid-plane (i.e., z = 0) of the beam and ϕ(x, t) denotes the rotation of the
cross-section beam. The nonzero strains according to Timoshenko’s beam theory
are expressed as

εxx =
∂u(x, t)

∂x
+ z

∂ϕ(x, t)

∂x
,(3.4)

εxz =
∂w(x, t)

∂x
+ ϕ(x, t),(3.5)

where εxx is the axial strain. In all theories, the axial force-strain relation is the
same and it is given by

(3.6) N − µ
∂2N

∂x2 = EA
∂u(x, t)

∂x
.

In the Timoshenko beam theory, the constitutive relations based on (2.5) and
(2.7) are given by

M − µ
∂2M

∂x2 = EI
∂ϕ(x, t)

∂x
,(3.7)

Q− µ
∂2Q

∂x2 = KSGAγxz,(3.8)
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where KS is the shear correction factor to compensate for the error due to this
constant shear stress assumption. A value of 0.877 was used for KS by Reddy
and Pang [33]. The strain energy of beam, U is given by

(3.9) U =

∫

V

U0 dV =
1

2

∫

V

σijεij dV =
1

2

l
∫

0

∫

A

(σxxεxx + σxzγxz) dAdx,

where U0 is the strain energy per unit volume or simply the strain energy density
and A is the cross sectional area of the beam. By introducing Eqs. (3.4) and (3.5)
into Eq. (3.9), the strain energy U can be represented as

(3.10) U =
1

2

l
∫

0

∫

A

{σxx(
∂u(x, t)

∂x
+ z

∂ϕ(x, t)

∂x

)

+ σxz

(

∂w(x, t)

∂x
+ ϕ(x, t)

)}

dAdx.

With the integration of Eq. (3.10) in range of A, the strain energy is written as
follows:

(3.11) U =
1

2

l
∫

0

{

N
∂u(x, t)

∂x
+M

∂ϕ(x, t)

∂x
+Q

(

∂w(x, t)

∂x
+ ϕ(x, t)

)}

dx,

where the normal resultant force N , bending moment M and transverse shear
force Q are calculated from

(3.12) N =

∫

A

σxx dA, M =

∫

A

σxxz dA, Q =

∫

A

σxz dA.

The kinetic energy calculated from

K =

∫

V

ρ

2

(

∂u

∂t

)2

dV(3.13)

=
1

2

l
∫

0

∫

A

ρ

{(

∂u(x, t)

∂t
+ z

∂ϕ(x, t)

∂t

)2

+

(

∂w(x, t)

∂t

)2}

dAdx.

The general form of kinetic energy comes in the form below:

(3.14) K =

l
∫

0

{

ρA

2

(

∂u(x, t)

∂t

)2

+
ρI

2

(

∂ϕ(x, t)

∂t

)2

+
ρA

2

(

∂w(x, t)

∂t

)2}

dx

In Eq. (3.14), the following relations are considered:
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(3.15)

∫

A

z dA = 0,

∫

A

z2 dA = I,

where I is the second moment of area about y-axis and ρ is the mass density of
beam material. Thus, the result is that the x-axis is taken along the geometric
center of the beam. The potential energy is equal to work done by external forces
and is given by

(3.16) V = WE

= −1

2

l
∫

0

{

f(x, t)u(x, t) + q(x, t)w(x, t) + N̄

(

∂w(x, t)

∂x

)2

+ few(x, t)

}

dx.

Indeed, Eq. (3.16) is an extended form of potential energy in [34]. In this equa-
tion, the effects of thermal field and two-parameter elastic medium are consid-
ered. In the above equation, negative sign indicates that the work is done on the
body; f(x, t) and q(x, t) are the axial and transverse distributed forces (mea-
sured per unit length), N̄ is applied compressive force and fe is the density of
reaction force of elastic foundation expressed as

(3.17) fe = KWw(x, t) −KG∇2w(x, t).

The terms KW and KG represent the Winkler and shear modulus (shear layer
foundation stiffness) of the elastic medium, respectively. It is assumed that the
shearing layer stiffness of the foundation is one-tenth of the value of Winkler’s
modulus [35]. The equations of motion of the nonlocal SWCNTs embedded in
an elastic medium can be derived from the Hamilton principle

(3.18) δ

t1
∫

0

[K − (U + V )] dt = 0.

By using calculus of variation and substituting Eqs. (3.11), (3.14) and (3.16)
into Eq. (3.18), the Hamilton principle can be represented as

(3.19) 0 =

t
∫

0

l
∫

0

{

m0

(

∂u

∂t

∂δu

∂t
+
∂w

∂t

∂δw

∂t

)

+m2
∂ϕ

∂t

∂δϕ

∂t
−N

∂δu

∂x
−M

∂δϕ

∂x

−Q

(

∂δw

∂x
+ δϕ

)

+ f(x, t)δu+ q(x, t)δw + N̄

(

∂w

∂x

∂δw

∂x

)

+ feδw

}

dx dt.

The mass inertia m0 and m2 are defined by

m0 =

∫

A

ρ dA = ρA,(3.20)
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m2 =

∫

A

ρz2 dA = ρI.(3.21)

When integrating by parts of Eq. (3.19) and setting the coefficient of δu, δϕ and
δw to zero

δu = 0;
∂N

∂x
+ f(x, t) = m0

∂2u

∂t2
,(3.22)

δw = 0;
∂Q

∂x
+ q(x, t) −KWw +KG

∂2w

∂x2 − N̄
∂2w

∂x2 = m0
∂2w

∂t2
,(3.23)

δϕ = 0;
∂M

∂x
−Q = m2

∂2ϕ

∂t2
.(3.24)

It is assumed that the axial and transverse distributed forces are equal to zero

(3.25) f(x, t) = q(x, t) = 0.

Differentiating Eq. (3.24) once related to x and substituting it into Eq. (3.23),
according to Eqs. (3.7) and (3.8) we obtain the nonlocal bending moment, M,
and shear force Q in the Timoshenko beam theory

M = EI
∂ϕ

∂x
+ µ

[

N̄
∂2w

∂x2 +KWw −KG
∂2w

∂x2 +m0
∂2w

∂t2
+m2

∂3ϕ

∂x∂t2

]

,(3.26)

Q = KSGA

(

∂w

∂x
+ ϕ

)

+ µ
∂

∂x

[

N̄
∂2w

∂x2 +KWw −KG
∂2w

∂x2 +m0
∂2w

∂t2

]

.(3.27)

By substituting Eqs. (3.26) and (3.27) into Eq. (3.19), we obtain the complete
form of Hamilton’s principle

(3.28) 0 =

t
∫

0

L
∫

0

{

m0

(

∂u

∂t

∂δu

∂t
+
∂w

∂t

∂δw

∂t

)

+m2
∂ϕ

∂t

∂δϕ

∂t
−EA

∂u

∂x

∂δu

∂x

− µm0

(

∂3u

∂x∂t2

)

∂δu

∂x
− EI

∂ϕ

∂x

∂δϕ

∂x
− µ

[

N̄
∂2w

∂x2
+KWw −KG

∂2w

∂x2 +m0
∂2w

∂t2

+m2
∂3ϕ

∂x∂t2

]

∂δϕ

∂x
−KSGA

(

∂w

∂x
+ ϕ

)(

∂δw

∂x
+ δϕ

)

+ N̄

(

∂w

∂x

∂δw

∂x

)

− µ
∂

∂x

[

N̄
∂2w

∂x2 +KWw −KG
∂2w

∂x2 +m0
∂2w

∂t2

](

∂δw

∂x
+ δϕ

)

+

(

KWw −KG
∂2w

∂x2

)

δw

}

dx dt.
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In the same way, the complete form of equations of motion and natural
boundary conditions are obtained as follows:

δu = 0; EA
∂2u

∂x2 + µm0

(

∂4u

∂x2∂t2

)

= m0
∂2u

∂t2
,(3.29)

δϕ = 0; EI
∂2ϕ

∂x2 −KSGA

(

∂w

∂x
+ ϕ

)

+ µm2
∂4ϕ

∂x2∂t2
= m2

∂2ϕ

∂t2
,(3.30)

δw = 0;
∂

∂x

[

KSGA

(

∂w

∂x
+ ϕ

)]

+KWw −KG
∂2w

∂x2 − N̄
∂2w

∂x2 ,(3.31)

+ µ
∂2

∂x2

[

N̄
∂2w

∂x2 +KWw −KG
∂2w

∂x2 +m0
∂2w

∂t2

]

= m0
∂2w

∂t2
.

The natural boundary conditions of Eqs. (3-29), (3-30) and (3-31) are, re-
spectively

(

EA
∂u

∂x
+ µm0

∂3u

∂x∂t2

)

δu

∣

∣

∣

∣

L

0

= 0,(3.32)

{

KSGA

(

∂w

∂x
+ ϕ

)

− N̄
∂w

∂x
(3.33)

+ µ
∂

∂x

[

N̄
∂2w

∂x2 +KWw −KG
∂2w

∂x2 +m0
∂2w

∂t2

]}

δϕ

∣

∣

∣

∣

L

0

= 0,

{

EI
∂ϕ

∂x
+µ

[

N̄
∂2w

∂x2 +KWw−KG
∂2w

∂x2 +m0
∂2w

∂t2
+m2

∂3ϕ

∂x∂t2

]}

δw

∣

∣

∣

∣

L

0

= 0.(3.34)

Here N̄ represents the axial force on the CNTs and it is expressed as

(3.35) N̄ = Nm +Nθ,

where Nm is the axial force due to the mechanical loading prior to buckling and
Nθ is the axial force due to the influence of temperature change. Here, the theory
of thermal elasticity mechanics is adopted because Young’s modulus of SWCNT
is insensitive to temperature change in the tube. In fact, Young’s modulus has a
constant value when the temperature is lower than approximately 1100 K, but
decreases rapidly at higher temperature [36]. In addition, the change of Pois-
son’s ratio with temperature is studied in [37]. It is obvious that Poisson’s ratio
increases with temperature, although the augmentation is limited and can be
considered constant at temperatures between 300–1200 K. On the other hand,
according to the relation G = E/(2(1 + υ)) and constant values of E and υ, it is
clear that the shear modulus G is constant. Moreover, the temperature depen-
dence of radial and axial coefficient of thermal expansion is investigated in [38]
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and concludes that all coefficients vary nonlinearly with temperature and are
negative at low or room temperature and become positive at high temperature.
Thus, researchers usually use the constant value of −1.6 × 10−6 for coefficient
of thermal expansions at low or room temperatures [12, 39–43], based on the
work [44].

Therefore, the high thermal conductivity of CNTs leads to the uniform and
constant axial force Nθ as below [45]

(3.36) Nθ = − EA

1 − 2υ
αxθ,

where αx is the coefficient of thermal expansion in the direction of x-axis, υ is
Poisson’s ratio and θ denotes the change in temperature. Here, changes for low
temperature environment will be considered.

For calculating Nm, we have

(3.37) Nm =

∫

A

σmdA =

∫

A

E

(

∂u

∂x
+ z

∂ϕ

∂x

)

dA = EA(u)|l0.

Therefore, by considering the boundary conditions for immoveable supports,
u(0, t) = u(l, t) = 0, the axial force due to mechanical loading will be zero.

4. Analytical solution

By the application of the separation of variables, we can assume trigonomet-
ric solutions of the form ϕ(x, t) = φ(x)eiωt and w(x, t) = W (x)eiωt for vibration
analysis of SWCNTs, where ϕ(x) and W (x) are the mode shapes and ω is the fre-
quency of natural vibration [33]. Therefore, with substituting ϕ(x, t) and w(x, t)
into Eqs. (3.30) and (3.31) we obtain

d

dx

(

EI
dϕ

dx

)

−KSGA

(

dW

dx
+ φ

)

+m2ω
2

(

ϕ− µ
d2ϕ

dx2

)

= 0,(4.1)

d

dx

[

KSGA

(

dW

dx
+ ϕ

)]

+KWW −KG
d2W

dx2 − N̄
d2W

dx2 + µN̄
d4W

dx4(4.2)

+ µKW
d2W

dx2 − µKG
d4W

dx4 − µm0ω
2d

2W

dx2 +m0ω
2W = 0.

To eliminate φ from Eqs. (4.1) and (4.2), we solve Eq. (4.1) for dϕ/dx as follows:

(4.3)
dϕ

dx
= −

(

m0ω
2 +KW

KSGA

)

W + µ

(

KG − N̄

KSGA

)

d4W

dx4

−
(

1 − N̄ +KG − µKW + µm0ω
2

KSGA

)

d2W

dx2 .
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Differentiating Eq. (4.1) once, and substituting for dφ
dx from Eq. (4.3) and by

some simplifications, we obtain

(4.4) A
d6W

dx6 +B
d4W

dx4 + C
d2W

dx2 +DW = 0,

where

(4.5)

A = µ(EI − µm2ω
2)

(

N̄ −KG

KSGA

)

,

B = (EI − µm2ω
2)

(

1 − N̄ +KG − µKW + µm0ω
2

KSGA

)

+ µ

(

N̄ −KG

KSGA

)

(m2ω
2 −KSGA),

C = (m2ω
2 −KSGA)

(

1 − N̄ +KG − µKW + µm0ω
2

KSGA

)

+KSGA

+ (EI − µm2ω
2)

(

m0ω
2 +KW

KSGA

)

,

D = (m2ω
2 −KSGA)

(

m0ω
2 +KW

KSGA

)

.

This is sixth-order governing differential equation which requires six boundary
conditions. It is noticeable that by ignoring the thermal and elastic medium
parameters, the constitutive differential equation in [33] is derived. Considering
the boundary conditions for simply-supported SWCNT with immoveable ends
as

w(0, t) = w(l, t) = 0,(4.6)

M = 0 at x = 0 and x = l.(4.7)

By substituting ϕ(x, t) and w(x, t) into Eqs. (3.33) and (3.34), the natural bound-
ary conditions for linear vibration are derived as below:

{

KSGA

(

dW

dx
+ ϕ

)

− N̄
dW

dx
+ µN̄

d3W

dx3 − µm0ω
2dW

dx

}
∣

∣

∣

∣

l

0

= 0,(4.8)

{

EI
dφ

dx
+ µ

[

N̄
d2W

dx2 +KWW −KG
d2W

dx2 −m0ω
2W −m2ω

2 dφ

dx

]}
∣

∣

∣

∣

l

0

= 0.(4.9)

The general solution can be considered as follows:

(4.10) W (x) =
∞
∑

m=1

sin
mπ

l
x.
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The above solution can satisfy all boundary conditions. With substituting this
solution into Eq. (38) and by some simplifications, one can obtain

(4.11)
∞
∑

m=1

{

−A
(

mπ

l

)6

+B

(

mπ

l

)4

− C

(

mπ

l

)2

+D

}

sin
mπ

l
x = 0.

With substituting Eq. (4.5) into Eq. (4.11), we calculate the natural frequencies
for different cases. The constitutive equation in general form is written as follows:

(4.12) −
[

µ(EI − µm2ω
2)

(

N̄ −KG

KSGA

)](

mπ

l

)6

+

[

(EI − µm2ω
2)

(

1 − N̄ +KG − µKW + µm0ω
2

KSGA

)

+ µ

(

N̄ −KG

KSGA

)

(m2ω
2 −KSGA)

](

mπ

l

)4

−
[

(EI − µm2ω
2)

(

m0ω
2 +KW

KSGA

)

+KSGA+ (m2ω
2 −KSGA)

+

(

1 − N̄ +KG − µKW + µm0ω
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= 0.

5. Results and discussions

Here, we present numerical solutions for the vibration of SWCNTs, consid-
ering the effects of thermal field and Pasternak’s elastic medium. The effective
properties of SWCNTs are taken as in [33]. Young’s modulus E = 1000 Gpa,
Poisson’s ratio υ = 0.19, mass density ρ = 2300 kg/m3, KS = 0.877 and
G = 420 Gpa are applied in the analysis. The diameter of the SWCNT is as-
sumed as 1.0 nm. In the following, six different cases are studied in order to
consider the different parameters.

Case 1. µ = 0, KG = 0, KW = 0, N̄ = 0. In this case, the natural frequency
for classic problem is calculated. The Winkler and shear moduli are equal to
zero. The axial compressive force is not considered in this case. The changes
of natural frequencies with aspect ratios for different mode numbers are shown
in Fig. 1.

Figure 1 depicts that with increasing in aspect ratio (L/d), the natural fre-
quencies decrease, but with increasing in mode number (m), the natural frequen-
cies increase. This is the most basic case that has been considered.
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Fig. 1. Variation of natural frequency with aspect ratio L/d for different change in mode
number m for SWCNT (KW = KG = N̄ = 0).

Case 2. KG = 0, KW = 0, N̄ = 0. In the nonlocal cases, with increasing
in aspect ratio, the values of natural frequencies increase. However, they are
always lower than local frequencies (Fig. 1). The effects of nonlocal parameter
for different aspect ratios on natural frequencies are illustrated in Fig. 2.

Fig. 2. Change of natural frequency with aspect ratio L/d for different change in nonlocal
parameter.

It is concluded that by increasing the nonlocal parameter (µ), in different as-
pect ratios, the natural frequencies decrease. The variation of natural frequencies
with aspect ratios for different mode number is presented in Fig. 3.



Thermal vibration analysis of carbon nanotubes 593

Fig. 3. Mode number effect on natural frequency of a SWCNT for different aspect ratio L/d
and µ = 0.5.

It can be shown that by increasing in mode number, unlike the case 1, the
natural frequencies significantly reduce.

Case 3.KG = 0, N̄ = 0. In the absence of Pasternak’s foundation and thermal
effect, we consider the effect of Winkler’s modulus in constitutive equation. The
scale coefficients are taken as e0a ≤ 2 [40]. Figure 4 illustrates the effect of KW

on natural frequency with different nonlocal parameter for different aspect ratios.

Fig. 4. Variation of natural frequency with aspect ratio L/d for different nonlocal
parameters (KW = 103 N/m2, m = 1).
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It is obvious that by increasing in nonlocal parameter (µ), the natural fre-
quencies decrease, but with increasing in aspect ratio (L/d), the natural frequen-
cies increase. In this case, by using Winkler’s foundation, the natural frequencies
are slightly reduced with respect to case 2. Figure 5 shows the effect of mode
number m on natural frequency for constant aspect ratio and Winkler modu-
lus parameter. It is noticeable that increasing the mode number and nonlocal
parameter has the effect of decreasing the natural frequencies.

Fig. 5. Effect of mode number on natural frequency for different nonlocal parameters µ
(KW = 103 N/m2 L/d = 50).

Fig. 6. The effect of shear modulus parameter KG on natural frequency of a SWCNT for
different aspect ratios L/d (KW = 102 N/m2, m = 1, µ = 0.5).
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Case 4. N̄ = 0. Figure 6 shows the effect of Pasternak’s foundation on the
natural frequency of SWCNT in the absence of thermal field. In this case, we
assume KW is constant and KG is considered for five different values.

Moreover, by increasing in aspect ratio, the natural frequencies increase
significantly as compared with the case 3. The variation of Pasternak’s
shear modulus on natural frequency with different mode number is shown in
Fig. 7.

Fig. 7. The natural frequency of a SWCNT with different mode number mand shear
modulus KG (KW = 102 N/m2, µ = 0.5, L/d = 50).

As illustrated in Fig. 7, by increasing the shear modulus parameter KG in
a constant aspect ratio, the natural frequencies of a SWCNT increase signifi-
cantly and the frequencies are higher than the values in Fig. 4.

Case 5. The general case, including all different parameters, is considered
here. The thermal expansion coefficient for CNTs is taken as −1.6 × 10−6 [40].
In Fig. 8, the effect of temperature on natural frequency is considered.

It is clear that with increasing in temperature, the natural frequency changes
irregularly but the result is that with variation on temperature, the natural
frequencies decrease. In this case, the temperature changes are assumed to be
uniform. An important result is that unlike the previous cases, in a constant as-
pect ratio and temperature, difference in nonlocal parameter plays an important
role on natural frequencies. Figure 9 depicts the effect of nonlocal parameter for
different aspect ratios on natural frequency under temperature field.
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Fig. 8. Effect of temperature on frequency of a SWCNT with different nonlocal parameter µ
(L/d = 50, KG = KW = 0, m = 1).

Fig. 9. Effect of nonlocal parameter µ on natural frequency with different aspect ratios L/d
(Kw = KG = 0, m = 1, θ = 50◦ K).

It illustrates that with using temperature, the natural frequencies related to
Fig. 6 increase slightly. Figure 10 shows the effect of mode number m and shear
modulus parameter on frequency of a SWCNT.

Therefore, with increasing in mode number m and shear modulus parame-
ter KG, the frequencies increase strongly. Comparing Fig. 10 and Fig. 13, it is
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Fig. 10. Effect of mode numbers on natural frequency for different shear modulus
parameter KG (µ = 0.5, L/d = 50, KW = 102 N/m2, θ = 50◦ K).

Fig. 11. Variation of natural frequency with temperature for different aspect ratio L/d and
high Winkler’s modulus KW (µ = 1, KG = 0, m = 1, KW = 107 N/m2).

concluded that temperature have not significant effects on frequencies. In Fig. 11,
as temperature changes, the effect of Winkler’s foundation is considered on nat-
ural frequency of a SWCNT.
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It is obvious that for KW = 107 N/m2, with increasing in temperature, the
natural frequency decreases. Effects of aspect ratio with Pasternak’s foundation
and a fixed nonlocal parameter are shown in Fig. 12.

It is observed that with increasing in nonlocal parameter, natural frequencies
decrease, but in this case, for different temperatures, natural frequencies change
slightly.

Fig. 12. Effect of aspect ratio L/d and Pasternak’s foundation KG on frequency of a
SWCNT (KW = 102 N/m2, θ = 50◦ K, m = 1, µ = 0).

Fig. 13. The omission of rotary inertia m2 and its effect on natural frequency for different
nonlocal parameters.
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Case 6. m2 = 0, N̄ = 0, KG = 0, KW = 0. In this section, we examine the
effect of rotary inertia on natural frequency. In previous cases, this parameter
was considered in constitutive equation. Here, we set the rotary inertia to zero.
Fig. 13 shows the variation of natural frequency with aspect ratio for different
nonlocal parameter.

Therefore, it is concluded that by omitting the rotary inertia, related to
case 2, the natural frequencies significantly reduced and its relationship with
aspect ratio is a curve.

6. Conclusions

In this paper, based on nonlocal elasticity theory, the linear vibration char-
acteristics of a single walled carbon nanotube embedded in two-parameter elas-
tic medium called Pasternak’s foundation were investigated in thermal environ-
ments. Analytical solution was used to solve the constitutive equations. Results
for a SWCNT show that an increase in nonlocal parameter leads to decrease
of the natural frequency. However, by increasing the Winkler and Pasternak’s
moduli in a constant aspect ratio, the natural frequencies are increased. Further-
more, in the absence of nonlocal parameter, with increasing in Pasternak’s shear
parameter, the natural frequencies increase slightly.

Moreover, for a constant nonlocal parameter, with increasing in temperature,
the natural frequencies decrease and they are lower than the results of case 2.

Generally, it is concluded that the effect of Pasternak’s foundation on natural
frequency is more significant as compared to the effects of thermal loading, Win-
kler’s modulus and nonlocal parameter and should be considered in vibration
analysis of carbon nanotubes. Finally, it should be noted that the rotary iner-
tia, nonlocal parameter and thermal loading have the effect of reducing natural
frequency.
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