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A theoretical approach is applied to predict reflection and transmission of non-
linear water waves at a semi-submerged dock. The solution was achieved analytically
and by the method of matched eigenfunction expansions. The results show that the
dock geometry has a significant effect on the nonlinear components of wave reflection
and transmission. The reflection and transmission of nonlinear waves simultaneously
increase with increasing dock width for shallow water waves and decrease with in-
creasing dock width for intermediate- and deep-water waves, which is an interesting
outcome. A similar simultaneous increase or decrease of nonlinear wave reflection and
transmission was observed for the changes of the dock draft. Moreover, the solution
reveals that nonlinear wave components may provide a significant contribution to
the wave field for a wide range of wave parameters. The nonlinear components of
wave reflection and transmission may exceed many times the amplitudes of the cor-
responding second-order Stokes waves as well as the amplitudes of the corresponding
linear components. This phenomenon occurs within the commonly accepted range
of the applicability of the second-order wave theory and implies a need to include
scattered nonlinear wave components in the analysis of many problems of practical
importance, including sediment transport, for which second-order waves have been
shown to be the main driving force. Laboratory experiments were conducted to ver-
ify nonlinear wave field components. Theoretical results are in reasonable agreement
with experimental data.
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1. Introduction

The interaction of nonlinear water waves with a semi-submerged
dock is of great practical importance. A large group of coastal and offshore
structures are dock-like structures. Moreover, docks and decks are elements
of many composite structures applied in harbor, coastal, and offshore
engineering.
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A first solution for the interaction of water waves with a semi-submerged
dock-type structure was obtained for the interaction of long waves with a slab [1].
A more general solution to the linear diffraction or radiation problem has been
achieved by employing the method of matched eigenfunction expansions [2, 3, 4];
the variational formulation of Schwinger [5, 6]; and numerical methods [7, 8,
9, 10]. The linear solutions obtained by applying different methods provide, in
principal, the same results. The derived linear models were favorably verified by
experimental data, e.g., Sulisz and Johansson [11] and Sulisz [12].

Theoretical solutions to the nonlinear diffraction or radiation problem for
a semi-submerged dock are rare. This is mainly related to difficulties in de-
riving a solution that satisfies nonlinear boundary conditions and uncertain-
ties in theoretical descriptions of nonlinear problems. A second-order numeri-
cal approach has been applied by Faltinsen and Løken [13] to calculate the
mean force on a semi-submerged horizontal rectangular cylinder. Sulisz and
Johansson [11] derived a nonlinear analytical solution for a horizontal rect-
angular cylinder of substantial draft later extended by Sulisz [14] for a cylin-
der of arbitrary draft by applying the method of matched eigenfunction ex-
pansions. They calculated and analyzed wave loads on the cylinder and found
that the nonlinear component of wave loads may be higher that correspond-
ing first-order quantities even for waves of moderate steepness. The solution
derived by Sulisz [14] was later extended to bichromatic waves by Li and
Williams [15].

The solutions derived to predict nonlinear wave loads on a semi-submerged
horizontal rectangular cylinder provided insight into the origin of large nonlinear
wave load components on the cylinder and pointed out new aspects of nonlinear
wave loads on a structure. Namely, it was shown that the nonlinear component
of wave loads may be higher than corresponding first-order quantities even for
waves of moderate steepness. A preliminary analysis of wave field in the vicinity
of the cylinder [16] indicates that the second-order reflected waves may exceed
the corresponding amplitudes of the incoming second-order Stokes waves. This
phenomenon, which occurs within the commonly accepted range of the applica-
bility of a second-order wave theory, motivated present study.

In this work, a theoretical approach is applied to predict reflection and trans-
mission of nonlinear water waves at a semi-submerged fixed dock. The boundary-
value problem is formulated up to a second-order in wave steepness and is solved
analytically and by the method of matched eigenfunction expansions. The so-
lution is analyzed with the emphasis on nonlinear components of wave reflec-
tion and transmission. Then, the laboratory experiments are described and the
method to separate nonlinear components of incoming and reflected waves is pre-
sented. Finally, comparisons between theoretical results and experimental data
are shown.
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2. Statement of the problem

2.1. Governing equations

The situation considered for analysis is the diffraction of nonlinear long waves
by a semi-submerged horizontal rectangular cylinder as shown schematically in
Fig. 1. It is assumed that the sea bottom and the cylinder are impervious, and
that the excitation is provided by normally incident long waves of small ampli-
tude A1 and frequency ω. Moreover, it is assumed that

• The fluid is inviscid and incompressible.
• The motion is irrotational.
• The sea bottom and the cylinder are impervious.

Fig. 1. Definitions sketch and coordinate systems.

According to the assumptions, the fluid velocity vector V has a potential
function Φ(x, z, t) such that V = ∇Φ(x, z, t). The fluid motion is governed by
the classical set of equations for the irrotational motion of incompressible and
inviscid fluid. Accordingly, the velocity potential must satisfy the Laplace equa-
tion

(2.1a) ∇2Φ = 0.

At the free surface, the velocity potential Φ(x, z, t) has to satisfy the combined
free-surface boundary condition

(2.1b) Φtt + gΦz + (|∇Φ|2)t +
1

2
∇Φ · ∇|∇Φ|2 = 0, |x| ≥ b, z = η(x, t)

and the dynamic boundary condition

(2.1c) Φt + gη +
1

2
|∇Φ|2 = 0, |x| ≥ b, z = η(x, t);

at the intersection of the dock and fluid a kinematic boundary condition must
be fulfilled

(2.1d) Φz = 0, |x| ≤ b, z = −d; Φx = 0, |x| = b, −d ≤ z ≤ η(x, t);
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at the sea bottom the following boundary condition must be satisfied:

(2.1e) Φz = 0, z = −h,

where ∇ is the two-dimensional vector differential operator, η(x, t) is the free-
surface elevation. Moreover, additional boundary conditions are required at in-
finity [17].

Once the velocity potential is known, pressure can be calculated by applying
the Bernoulli equation

(2.2) Φt +
1

ρ
P + gz +

1

2
|∇Φ|2 = 0,

where ρ is the fluid density, P is the pressure and g is the acceleration due to
gravity.

2.2. Solution technique

It is difficult to find the velocity potential and free-surface elevation which sat-
isfy (2.1) because the free-surface boundary conditions contain nonlinear terms.
Moreover, the boundary conditions must be applied on the free surface that is un-
known and is a part of a final solution [18]. In order to overcome some difficulties
related to (2.1), the combined free-surface boundary conditions, and the dynamic
free-surface boundary conditions are expanded in a Taylor series about a mean
position. The boundary-value problem can be written in the following form:

(2.3a) ∇2Φ = 0

with boundary conditions

Φtt + gΦz + (|∇Φ|2)t +
1

2
∇Φ · ∇|∇Φ|2(2.3b)

+ η

(

Φtt + gΦz + (|∇Φ|2)t +
1

2
∇Φ · ∇|∇Φ|2

)

z

+ · · · = 0, |x| ≥ b, z = 0,

Φt + gη +
1

2
|∇Φ|2 + η

(

Φt + gη +
1

2
|∇Φ|2

)

z

+ · · · = 0, |x| ≥ b, z = 0,(2.3c)

Φz = 0, |x| ≤ b, z = −d; Φx = 0, |x| = b, −d ≤ z ≤ 0,(2.3d)

Φz = 0, z = −h.(2.3e)

Moreover, the velocity potential Φ must satisfy boundary conditions at infinity.
These conditions state that a scattered potential at x → ±∞ represents only
outgoing waves.
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The boundary-value problem (2.3) refers to a fixed domain, which makes
it more convenient to be solved. However, the free-surface boundary conditions
are still nonlinear. A solution to (2.3) can be found in the framework of weakly
nonlinear wave theory by means of a perturbation procedure that has been shown
to be an efficient method to deal with water-wave problems [1, 17]. The method
assumes that the quantities Φ and η are expanded in powers of wave steepness

(2.4)
Φ(x, z, t) = 1Φ+ 2Φ+ · · · ,
η(x, t) = 1η + 2η + · · · ,

in which a quantity with a left subscript n, n = 1, 2, . . . is of the order of (A1k1)
n

where k1 is the incident wave number and A1k1/π is the wave steepness.
The substitution of Eq. (2.4) to Eq. (2.3) leads to the sequence of linear

boundary-value problems for successive order of wave steepness. The solution of
this set of boundary-value problems provides velocity potential and free-surface
elevations.

3. Wave field components

3.1. Near-field components

It is straightforward to derive the linear components of the velocity poten-
tial and free-surface elevation from (2.3) and (2.4). The velocity potential and
the free-surface elevation can be expressed in simple analytical forms. Further
simplifications are possible by introducing complex-valued spatial functions and
separating time-dependent factor. Accordingly, the wave field components can
be expressed as real parts of the following expressions in brackets:

(3.1)
1Φ(x, z, t) = Re[1φ(x, z)e−iωt],

1η(x, t) = Re[1ζ(x)e
−iωt],

where the quantities in brackets are complex-valued spatial functions and i =√
−1.

The spatial wave-field components may be written in the following form:

1φ = − ig

ω
A1

cosα11(z + h)

cosα11h
e−α11(x+b)(3.2a)

− ig

ω

∞
∑

m=1

R1m
cosα1m(z + h)

cosα1mh
eα1m(x+b), x ≤ −b,

1ζ(x) = A1e
−α11(x+b) +

∞
∑

m=1

R1me
α1m(x+b), x ≤ −b;(3.2b)

and in the downwave domain
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1φ = − ig

ω

∞
∑

m=1

T1m
cosα1m(z + h)

cosα1mh
e−α1m(x−b), x ≥ b,(3.2c)

1ζ(x) =
∞
∑

m=1

T1me
−α1m(x−b), x ≥ b,(3.2d)

where R11 and T11 are the amplitudes of the linear component of reflected and
transmitted waves, respectively; R1m and T1m, m = 2, 3, . . . , are the amplitudes
of the linear components of evanescent modes.

The eigenvalues must satisfy the following relations:

(3.2e)
ω2

g
= −α1m tan(α1mh), m ≥ 1,

where α1m = {−ik1, α12, α13, . . . ; k1, α12, . . . > 0}.
In order to determine the coefficients of the eigenfunction expansions in (3.2),

which are required to calculate free-surface elevations, it is convenient to intro-
duce the velocity potential in the domain underneath the cylinder and apply
matching conditions. The velocity potential in the fluid domain underneath the
cylinder may be written in the form of the following eigenfunction expansions:

(3.3a) 1φ = − ig
ω

∞
∑

m=1

[C1m(1 − δ1m + δ1mx/b)e
µmx +D1me

−µmx]

× cosµm(z + h), |x| ≤ b,
where

(3.3b) µm =
(m− 1)π

h− d
, m ≥ 1.

The coefficients of the eigenfunction expansions can be quantified by apply-
ing matching conditions which impose the continuity of velocity potentials and
their horizontal derivatives at |x| = b, −h ≤ z ≤ −d. Application of the latter
boundary conditions results in formulas for the coefficients, R1m and T1m

(3.4)

R1m = δ1mA1+
4 cosα1mh

2α1mh+sin 2α1mh

∑

l=1

[C1l(µl+δ1l/b)e
−µlb−D1lµle

µlb]

×
[

sin(µl−α1m)(h−d)
2(µl−α1m)

+
sin(µl+α1m)(h−d)

2(µl+α1m)

]

, m = 1, 2, . . . ,

T1m = − 4 cosα1mh

2α1mh+sin 2α1mh

∑

l=1

[C1l(µl+δ1l/b)e
µlb−D1lµle

−µlb]

×
[

sin(µl−α1m)(h−d)
2(µl−α1m)

+
sin(µl+α1m)(h−d)

2(µl+α1m)

]

, m = 1, 2, . . . .

The coefficients C1m and D1m can be quantified in a similar manner from the
condition of the continuity of velocity potentials at |x| = b.
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A solution at second-order consists of a time-dependent and a time-indepen-
dent part. In order to simplify the formulas for the velocity potential and free-
surface elevations, it is convenient to introduce spatial function and separate
a time-dependent factor at once. Accordingly, the nonlinear components of the
solution can be expressed in the following form:

(3.5)
2Φ(x, z, t) = Re[2φ(x, z)e−2iωt] + 0

2Φ(x, z)

2η(x, t) = Re[2ζ(x)e
−2iωt] + 0

2η(x),

where the quantities in brackets are complex-valued spatial functions.
The time-independent solution is out of scope of the present studies. Ac-

cordingly, the nonlinear components of the velocity potential and free-surface
elevation may be expressed as follows:

2φ = − ig

2ω
A2

cosα21(z + h)

cosα21h
e−α21(x+b)(3.6a)

− ig

2ω

∞
∑

j=1

R2j
cosα2j(z + h)

cosα2jh
eα2j(x+b)

− iωA2
1

α2
11

4ω4/g2

6ω4/g2 + 6α2
11

4ω4/g2

cos 2α11(z + h)

cos2 α11h
e−2α11(x+b)

+ 2iω
∑

m=1

A1R1m
α11α1m

4ω4/g2

6ω4/g2 − 4α11α1m + α2
1s + α2

1m

4ω4/g2 + (α11 + α1m)2

× cos(α11 − α1m)(z + h)

cosα11h cosα1mh
e−(α11−α1m)(x+b)

− iω
∑

s=1

∑

m=1

R1sR1m
α1sα1m

4ω4/g2

6ω4/g2 + 4α1sα1m + α2
1s + α2

1m

4ω4/g2 + (α1s − α1m)2

× cos(α1s + α1m)(z + h)

cosα1sh cosα1mh
e(α1s+α1m)(x+b),

2ζ(x) = A2e
−α21(x+b) +

∞
∑

j=1

R2je
α2j(x+b)(3.6b)

+
g

4ω2
A2

1

α2
11

(

ω4/g2 + 3α2
11

)

ω4/g2
e−2α11(x+b)

+
g

2ω2

∞
∑

m=1

A1R1m
(α11 − α1m)2(ω4/g2 − 3α11α1m)

4ω4/g2 + (α11 + α1m)2
e−(α11−α1m)(x+b)

+
g

4ω2

∞
∑

m=1

∞
∑

s=1

R1mR1s
(α1m + α1s)

2(ω4/g2 + 3α1mα1s)

4ω4/g2 + (α1m − α1s)2
e(α1m+α1s)(x+b),
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for x ≤ −b; and in the downwave area

2φ = − ig

2ω

∞
∑

j=1

T2j
cosα2j(z + h)

cosα2jh
e−α2j(x−b)(3.6c)

− iω
∑

s=1

∑

m=1

T1sT1m
α1sα1m

4ω4/g2

6ω4/g2 + 4α1sα1m + α2
1s + α2

1m

4ω4/g2 + (α1s − α1m)2

× cos(α1s + α1m)(z + h)

cosα1sh cosα1mh
e−(α1s+α1m)(x−b),

2ζ(x) =
∞
∑

j=1

T2je
−α2j(x−b)(3.6d)

+
g

4ω2

∞
∑

m=1

∞
∑

s=1

T1mT1s
(α1m + α1s)

2(ω4/g2 + 3α1mα1s)

4ω4/g2 + (α1m − α1s)2

× e−(α1m+α1s)(x−b),

for x ≥ b, where A2 is the amplitude of the nonlinear incoming wave, R21 and
T21 are the amplitudes of the nonlinear component of reflected and transmitted
waves, respectively; R2j and T2j , j = 2, 3, . . . , are the amplitudes of the nonlinear
components of evanescent modes.

The eigenvalues of the nonlinear solution must satisfy the following relations:

(3.6e)
4ω2

g
= −α2j tanα2jh, j ≥ 1,

where α2j = {−ik2, α22, α23, . . . ; k2, α22, . . . > 0}.
In order to determine the coefficients of the eigenfunction expansions in (3.6),

which are required to calculate the nonlinear components of the free-surface el-
evations, it is convenient to introduce the velocity potential in the domain un-
derneath the cylinder and apply matching conditions. The second-order velocity
potential in the fluid domain underneath the cylinder may be written in the
following form:

(3.7) 2φ = − ig

2ω

∞
∑

j=1

[C2j(1 − δ1j + δ1jx/b)e
µjx +D2je

−µjx]

× cosµj(z + h), |x| ≤ b.

The coefficients of the eigenfunction expansions at second order can be quan-
tified by applying matching conditions which impose the continuity of velocity
potentials and their horizontal derivatives at |x| = b, −h ≤ z ≤ −d. Applica-
tion of the latter boundary conditions results in formulas for the coefficients,
R2j and T2j
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(3.8a) R2j = δ1jA2+
4 cosα2jh

2α2jh+sin 2α2jh

{

∑

l=1

[C2l(µl+δ1l/b)e
−µlb−D2lµle

µlb]

×
[

sin(µl − α2j)(h− d)

2(µl − α2j)
+

sin(µl + α2j)(h− d)

2(µl + α2j)

]

+ SRj

}

, j = 1, 2, . . . ,

(3.8b) T2j = − cosα2jh

2α2jh+sin 2α2jh

{

∑

l=1

[C2l(µl + δ1l/b)e
µlb −D2lµle

−µlb]

×
[

sin(µl − α2j)(h− d)

2(µl − α2j)
+

sin(µl + α2j)(h− d)

2(µl + α2j)

]

+ STj

}

, j = 1, 2, . . . ,

where

(3.8c) SRj = 2
ω2

g
A2

1

α11

cos2 α11h

α2
11

4ω4/g2

6ω4/g2 + 6α2
11

4ω4/g2

×
[

sin(2α11 − α2j)h

2α11 − α2j
+

sin(2α11 + α2j)h

2α11 + α2j

]

+ 2
ω2

g

∑

m=1

A1R1m

α11 − α1m

cosα
11 h cosα1mh

α11α1m

4ω4/g2

6ω4/g2 − 4α11α1m + α2
1s + α2

1m

4ω4/g2 + (α11 + α1m)2

×
[

sin(α11 − α1m − α2j)h

α11 − α1m − α2j
+

sin(α11 − α1m + α2j)h

α11 − α1m + α2j

]

− ω2

g

∑

m=1

∑

s=1

R1mR1s
α1m+α1s

cosα1mh cosα1sh

α1sα1m

4ω4/g2

6ω4/g2+4α1sα1m+α2
1s+α

2
1m

4ω4/g2 + (α1s − α1m)2

×
[

sin(α1m + αsm − α2j)h

α1m + α1s − α2j
+

sin(α1m + α1s + α2j)h

α1m + α1s + α2j

]

,

STj =
ω2

g

∑

m=1

∑

s=1

T1mT1s
α1m + α1s

cosα1mh cosα1sh

α1sα1m

4ω4/g2
(3.8d)

× 6ω4/g2 + 4α1sα1m + α2
1s + α2

1m

4ω4/g2 + (α1s − α1m)2

×
[

sin(α1m + αsm − α2j)h

α1m + α1s − α2j
+

sin(α1m + α1s + α2j)h

α1m + α1s + α2j

]

.

The coefficients C2j and D2j can be quantified in a similar manner from the
condition of the continuity of the second-order velocity potentials at |x| = b.

The linear component of the free-surface elevation 1ζ(x) consists of stan-
dard modes, e.g., progressive waves and evanescent modes. The nonlinear com-
ponent of the free-surface elevation 2ζ(x) is far more complex and consists of
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near- and far-field parts. The near-field part is due to second-order evanescent
modes (j > 1) as well as first-order wave-evanescent mode and evanescent mode-
evanescent mode interactions. The far-field part is due to second-order free-waves
(j = 1) and first-order wave-wave interaction and, which is interesting to note,
does not contain a product of the interaction between two first-order waves
propagating in the opposite directions. In the classical derivation of the non-
linear component of the free-surface elevation, in which only one propagating
wave is considered, a product of the first-order wave-wave interaction is called
the Stokes wave. The above formula is the result of an extension of the classical
derivation as a general first-order potential was taken into consideration.

3.2. Far-field components

The linear components of the velocity potential and free-surface elevation are
described in terms of eigenfunction expansions by simple, standard forms which
are typically applied to describe wave-structure interaction problems [12, 19].
The formulas derived for the nonlinear component of the time-dependent part
of the velocity potential and free-surface elevation, Eqs. (3.6a)–(3.6d) possess
complex forms which are the result of the interaction between various first-order
modes. The complexities of the formulas are mainly due to evanescent modes.
Far away from a disturbance, where the evanescent modes can be practically
neglected, the nonlinear components of the velocity potential and free-surface
elevation are determined by simple expressions that may be analyzed easier.
Namely, the nonlinear components of the velocity potential and the free-surface
elevation far away from the cylinder are

2φ(x, z) = − ig

2ω
A2

cosh k2(z + h)

cosh k2h
eik2(x+b)(3.9a)

− ig

2ω
R21

cosh k2(z + h)

cosh k2h
e−ik2(x+b)

− 3

8
iωA2

1

cosh 2k1(z + h)

sinh4 k1h
e2ik1(x+b) +

1

4
iωA1R11

(

3+
g2

ω4
k2

1

)

− 3

8
iωR2

11

cosh 2k1(z + h)

sinh4 k1h
e−2ik1(x+b), x→ −∞,

2ζ(x) = A2e
ik2(x+b) +R21e

−ik2(x+b)(3.9b)

+
1

4
A2

1k1
cosh k1h

sinh3k1h
(2 + cosh 2k1h)e

2ik1(x+b)

+
1

4
R2

11k1
cosh k1h

sinh3k1h
(2 + cosh 2k1h)e

−2ik1(x+b), x→ −∞;
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and in the downwave domain

2φ(x, z) = − ig

2ω
T21

cosh k2(z + h)

cosh k2h
eik2(x−b)(3.9c)

− 3

8
iωT 2

11

cosh 2k1(z + h)

sinh4 k1h
e2ik1(x−b), x→ ∞,

2ζ(x) = T21e
ik2(x−b)(3.9d)

+
1

4
T 2

11k1
cosh k1h

sinh3k1h
(2 + cosh 2k1h)e

2ik1(x−b), x→ ∞.

The first two terms in Eq. (3.9b) represent the right- and left-progressing free-
waves, while the remaining two terms represent the right- and left-progressing
Stokes waves of amplitudes A2S and R2S , respectively. On the downwave side,
the first term in Eq. (3.9d) represents the right-progressing free-waves, while
the second term represents the right-progressing Stokes wave of amplitude T2S .
The amplitudes of Stokes waves can be determined from Eqs. (3.9b) and (3.9d).
Accordingly, on the upwave side of the cylinder the amplitudes of the Stokes
waves can be written in the following form:

A2S =
1

4
A2

1k1
cosh k1h

sinh3k1h
(2 + cosh 2k1h),(3.10a)

R2S =
1

4
|R2

11|k1
cosh k1h

sinh3k1h
(2 + cosh 2k1h);(3.10b)

and on the downwave side the cylinder the amplitude of the Stokes wave is

(3.10c) T2S =
1

4
|T 2

11|k1
cosh k1h

sinh3k1h
(2 + cosh 2k1h).

It is worth noting that the second-order free-waves travel with a speed of 2ω/k2,
while the Stokes wave travels with a speed of ω/k1. Since k2 > 2k1, the nonlinear
free-waves travel at a speed that is slower than the Stokes wave. There are many
consequences of the above phenomena. The most publicized seems to be the gen-
eration of waves of nonpermanent form by a sinusoidally moving wavemaker in
a 2D wave flume. It is also interesting to note that a constant term associated
with the interaction between the linear component of left- and right-progressing
waves, that was expected to appear in the formula for 2ζ(x) due to the form of
Eq. (3.9a), has been canceled in Eq. (3.9b). It is also evident from Eqs. (3.9b)
and (3.9d) that the linear components of evanescent modes do not directly con-
tribute to 2ζ(x) far away from the cylinder. However, the linear components of
evanescent modes may indirectly contribute to 2ζ(x) by contributing to R21 or
to T21, or to both amplitudes.
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The derived solution satisfies all boundary conditions including radiation
conditions. The solution is relatively general and can be applied to describe
a nonlinear wave diffraction or radiation problem for a cylinder of an arbitrary
cross-section. This can be achieved by applying Eqs. (3.2) and (3.6) in a hybrid
model, which enables us to derive a nonlinear solution for a cylinder of an arbi-
trary cross-section. Moreover, Eqs. (3.2) and (3.6) can be directly applied to solve
the wavemaker problem and a variety of cases for wave radiation or diffraction
by a horizontal rectangular cylinder for which the coefficients in Eqs. (3.2) and
(3.6) can be determined analytically or by the method of matched eigenfunction
expansions.

4. Results

The derived solution was applied to calculate reflection and transmission of
nonlinear water waves at a semi-submerged dock. The nonlinear components of
water waves on the upwave and downwave sides of the dock are analyzed for
the wide range of wave frequencies and two basic geometric parameters of the
model, e.g., dock width and draft. The results are made dimensionless and are
plotted as a function of the dimensionless wave number k1h.

The width of a dock is one of the two main geometric parameters for the
problem of nonlinear wave interaction with a horizontal rectangular dock. The
effect of a dock width on nonlinear components of free-surface elevation is pre-
sented in Fig. 2. The plots present the amplitudes of the nonlinear components
of the free-surface elevation (R21) and (T21) for two dock widths, b/h = 0.4 and
b/h = 0.6. In order to show the values of the results in shallow water and to
obtain dimensionless quantities independent on the amplitude of the incident
wave, R21 and T21 are divided by the amplitude of the incoming Stokes waves.

The plots presented in Fig. 2 show that the width of a dock has a significant
effect on the reflection and transmission of nonlinear waves at a semi-submerged
dock. The results show that the reflection of nonlinear waves increases with
increasing dock width for shallow water waves and decreases with increasing
dock width for intermediate- and deep-water waves. A similar tendency indicates
wave transmission, namely, the transmission of nonlinear waves increases with
increasing dock width for shallow water waves and decreases with increasing
dock width for intermediate- and deep-water waves. The phenomenon of the
simultaneous increase or decrease of the reflection and transmission of nonlinear
waves is an interesting result. In general, wave reflection is expected to increase
when wave transmission decreases and vice versa; however, the results show
that wave reflection and transmission simultaneously increases or decreases with
increasing the dock width. This outcome arises from the complexity of a nonlinear
diffraction problem. One needs to realize that a second-order solution arises
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a)

b)

Fig. 2. Effect of dock width on the amplitudes of the nonlinear reflected and transmitted
waves: a) reflected waves, b) transmitted waves.

from higher-order products of first-order waves as well as from a contribution
of second-order waves. As a consequence, higher-order products are affected by
various functions of k1h and k2h, which are governed by different dispersion
relations and cannot be simplified as in the case of linear wave theory.
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a)

b)

Fig. 3. Effect of dock draft on the amplitudes of the nonlinear reflected and transmitted
waves: a) reflected waves, b) transmitted waves.

The draft of the dock is the second geometric parameter for the problem of
the nonlinear wave interaction with a horizontal rectangular dock. The effect
of the draft of the dock on nonlinear components of free-surface elevation is
shown in Fig. 3. The plots present the amplitudes of the nonlinear components
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a)

b)

Fig. 4. Ratio of the amplitudes of the nonlinear reflected and transmitted waves to the
amplitudes of the corresponding nonlinear Stokes waves: a) reflected waves, b) transmitted

waves.

of the free-surface elevation (R21) and (T21) for two dock drafts, d/h = 0.4 and
d/h = 0.6. The results plotted in Fig. 3 are dimensionless.

The plots in Fig. 3 show that the draft of a dock has a significant effect on
the reflection and transmission of nonlinear waves at a semi-submerged dock.
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a)

b)

Fig. 5. Ratio of the amplitudes of nonlinear reflected and transmitted waves to the
amplitudes of the corresponding linear waves: a) reflected waves, b) transmitted waves.

The results show that the reflection of nonlinear waves increases with increasing
dock draft for shallow water waves and decreases with increasing dock draft for
intermediate- and deep-water waves. A similar tendency indicates wave trans-
mission, namely, the transmission of nonlinear waves increases with increasing
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dock draft for shallow water waves and decreases with increasing dock draft for
intermediate- and deep-water waves. This result is interesting because wave re-
flection is expected to increase when wave transmission decreases and vice versa.
However, the results show that wave reflection and transmission simultaneously
increase or decrease with increasing the draft of the dock, which is a noteworthy
outcome.

An analysis indicates that nonlinear reflected and transmitted waves gen-
erated due to the interaction of water waves with a dock provide a significant
contribution to the total diffracted wave field. This demonstrates the results
of the ratio of the amplitudes of the nonlinear component of the free-surface
elevation (R21, T21) to the amplitudes of the corresponding second-order Stokes
waves plotted in Fig. 4. The results show that the nonlinear components of the
reflected and transmitted free-waves may exceed many times the amplitudes of
the corresponding second-order Stokes waves. Especially high are the nonlinear
waves on the upwave side of the dock. The analysis shows that the nonlinear
reflected and transmitted waves may provide a dominant contribution to the
total wave field, which demonstrates the plots of the ratio of the amplitudes of
the nonlinear reflected (R21) and transmitted (T21) waves to the amplitudes of
the corresponding linear components presented in Fig. 5. The plots show that
the nonlinear waves may become the dominant contributions to the wave field
for a wide range of wave frequencies. A detailed analysis indicates that the non-
linear wave components may exceed the amplitudes of the corresponding linear
waves within commonly accepted range of the applicability of the weakly nonlin-
ear wave theory. This conclusion is of significant importance for many problems
of practical importance, including a sediment transport, for which second-order
waves have been shown to be the main driving force [20, 21].

5. Experiments

5.1. Laboratory experiments

Laboratory experiments were conducted in the wave flume at the Chalmers
University of Technology in Göteborg to verify the present theory. The wave
flume is 80 m long, 2 m wide and 1 m deep. It is equipped with a movable hinge
wave generator. A wave absorbing slope is supplied at the end of the wave flume.

A rectangular dock was built in the middle part of the wave flume. The dock
was built as a beam frame covered with walls of PVC. The draft of the dock
was d = 0.3 m and the beam 2b = 0.61 m. The water depth in the wave flume
was h = 0.4 m. A group of two resistance-type wave gauges was located in front
of the dock to measure the free-surface elevation and a similar group of wave
gauges was used to measure the free-surface elevation on the downwave side.
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The dock was exposed to plane waves generated by a sinusoidally moving wave-
maker. Water waves were generated for four wave steepnesses to investigate the
effect of wave steepness on nonlinear wave reflection and transmission. Waves of
higher steepness were achieved by increasing the amplitude of wavemaker oscilla-
tions. The measurements were conducted after the steady-state conditions were
established in the wave flume, but before re-reflection disturbed the measurements.

The free-surface elevation was recorded during four wave periods. The mea-
surements were sampled 64 times per wave period, so one measured record con-
tained 256 samples. This approach made it possible to see if the measured quan-
tities remain stable for consecutive waves. Moreover, the leakage problem asso-
ciated with the application of the Fourier analysis was also avoided since the
number of samples is an integer power of two.

5.2. Comparisons with experiments

The analysis of the nonlinear wave field in the wave flume is a complex
task. This is a consequence of complex reflections of different wave components,
nonlinear wave interactions, and various side effects. The analysis of the free-
surface elevation and the separation of the incident, reflected, and transmitted
wave trains were conducted by adapting the multi-gauge method [22, 23] to
the problem of the separation of nonlinear incident and reflected waves. The
method is extended here to calculate linear and nonlinear components of water
waves in the wave flume including the amplitudes and phases of the incident,
reflected and transmitted waves. The derived experimental quantities were used
to conduct verification of the theoretical approach.

In order to calculate linear and nonlinear components of water waves in
a wave train and to separate incoming and reflected waves, M1 wave gauges
are selected on the upwave side of the dock at (xm, 0), m = 1, . . . ,M1, and
M2 wave gauges are selected on the downwave side of the dock at (xm,0), m =
M1+1, . . . ,M1 +M2. By applying the multi-gauge method, the amplitude of the
incoming (An), reflected (Rn1), and transmitted (Tn1), waves can be computed
from

An =

M1
∑

m=1
e−2iknxm

M1
∑

m=1
cnme

iknxm −M1

M1
∑

m=1
cnme

−iknxm

M1
∑

m=1
e−2iknxm

M1
∑

m=1
e2iknxm −M2

1

,(5.1a)

Rn1 =

M1
∑

m=1
e2iknxm

M1
∑

m=1
cnme

−iknxm −M1

M1
∑

m=1
cnme

iknxm

M1
∑

m=1
e−2iknxm

M1
∑

m=1
e2iknxm −M2

1

,(5.1b)
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Tn1 =

M1+M2
∑

m=M1+1

e−2iknxm

M1+M2
∑

m=M1+1

cnme
iknxm −M2

M1+M2
∑

m=M1+1

cnme
−iknxm

M1+M2
∑

m=M1+1

e−2iknxm

M1+M2
∑

m=M1+1

e2iknxm −M2
2

,(5.1c)

where cnm is the complex-valued amplitude of Fourier series component corre-
sponding to wave frequency nω.

The linear component of reflected and transmitted wave amplitudes can be
calculated by a standard application of Eq. (5.1) in a similar manner as in Sulisz
[24, 25]. However, the determination of the nonlinear components of wave reflec-
tion and transmission requires a nonstandard approach. The problem is that the
amplitudes of Fourier series component corresponding to wave frequency 2ω, i.e.,
c2m, contain the product of second-order Stokes waves as well as second-order
free-waves generated by the wavemaker [23]. It is necessary to subtract the con-
tributions of these waves on the upwave and downwave side of the dock to obtain
the nonlinear components of free reflected and transmitted waves for comparisons
with theoretical results. The contributions of second-order incoming, reflected,
and transmitted Stokes waves are calculated by applying measured first-order
wave amplitudes as well as nonlinear Stokes wave theory and are deducted from
c2m with proper phases. This enables us to calculate the second-order free-wave
generated by the wavemaker and subtract its contribution from c2m to obtain the
nonlinear components of free reflected and transmitted waves for comparisons
with theoretical results. The described procedure illustrates the complexity of
the derivation of the amplitudes of reflected and transmitted waves at second
order. The procedure is far more complex when orders higher than two are con-
sidered because the product of nonlinear wave interactions and wave numbers
involve unknown amplitudes.

The theoretical results and experimental data for nonlinear components of
reflected and transmitted waves are shown in Fig. 6 and Fig. 7. The plots in
Fig. 6 present the second-order components of the reflected and transmitted
free-waves and the plots in Fig. 7 show the corresponding amplitudes of the
second-order Stokes waves. The comparisons are conducted for four sequences
of the laboratory waves generated with subsequent wavemaker amplitudes. The
results plotted in Fig. 6 and Fig. 7 are dimensional (SI).

The plots in Fig. 6 and Fig. 7 show that the theoretical results are in reason-
able agreement with the experimental data. A fairly good agreement between the
theoretical results and experimental data is observed for four wave trains con-
sidered in laboratory experiments. It is interesting to notice that a reasonable
agreement is observed between the theoretical results and experimental data on
the upwave and downwave sides of the dock. The discrepancies between theo-
retical results and corresponding experimental data observed on the downwave
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a)

b)

Fig. 6. Theoretical results (—) and experimental data (+) of the amplitudes of the
nonlinear reflected and transmitted waves, b/h = 0.7625, d/h = 0.75, k1h = 0.5: a) reflected

waves, b) transmitted waves.

sides for the wave sequence of the lowest amplitude are probably due to the
measurements of the unsteady waves. The analysis of four subsequent waves
in the recorded wave train indicates that in this particular case a steady-state
condition were not fully established on the downwave side of the dock before



Reflection and transmission of nonlinear water waves. . . 257

a)

b)

Fig. 7. Theoretical results (—) and experimental data (+) of the amplitudes of the
nonlinear reflected and transmitted Stokes waves, b/h=0.7625, d/h=0.75, k1h=0.5: a)

reflected waves, b) transmitted waves.

the measurement started. There is often a problem with recording steady-state
nonlinear waves in a relatively short wave flume because nonlinear wave compo-
nents, due to a slower speed, require more time to reach a steady-state condition
and the recording has to be terminated before re-reflection disturbed the mea-
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surements. This probably caused observed discrepancies because, for waves of
higher steepness, the comparison between theoretical results and experimental
data is satisfactory.

6. Summary

A theoretical approach is applied to predict reflection and transmission of
nonlinear water waves at a semi-submerged dock. The solution for the dock of
arbitrary draft was achieved analytically and by the method of matched eigen-
function expansions. The solution was applied to calculate nonlinear wave field
scattered by the dock and focus on nonlinear components of wave reflection and
transmission arising from the interaction of water waves with the dock.

The results show that the dock geometry has a significant effect on the non-
linear components of wave reflection and transmission. The reflection and trans-
mission of nonlinear waves increase with increasing dock width for shallow water
waves and decrease with increasing dock width for intermediate- and deep-water
waves. A similar tendency indicates wave reflection and transmission with re-
spect to the changes of the dock draft, namely, the reflection and transmission
of nonlinear waves increases with increasing dock draft for shallow water waves
and decreases with increasing dock draft for intermediate- and deep-water waves.
The results are novel and noteworthy because wave reflection and transmission
simultaneously increase or decrease with the changes of the dock geometry. In
general, wave reflection is expected to increase when wave transmission decreases
and vice versa. This surprising outcome arises from the complexity of the non-
linear diffraction problem.

The solution reveals that the scattered components of nonlinear reflected and
transmitted waves may provide a significant contribution to the wave field for
a wide range of wave and dock parameters. The results show that the nonlinear
components of reflected and transmitted waves may exceed many times the am-
plitudes of the corresponding second-order Stokes waves. The nonlinear reflected
waves may also exceed many times corresponding linear components for a wide
range of wave frequencies. These phenomena occur within the commonly ac-
cepted range of the applicability of a second-order wave theory and imply a need
to include scattered components of nonlinear free-surface elevation in the anal-
ysis of many problems of practical importance, including a sediment transport,
for which second-order waves have been shown to be the main driving force.

A special effort was devoted to laboratory experiments and accompanying
procedures because the verification required a separation of several components
of the same frequency and standard decomposition methods could not be applied.
The second-order components of the reflected and transmitted free-waves and
Stokes waves were compared with corresponding experimental data for waves of
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different steepness. The comparisons show that theoretical results are in reason-
able agreement with experimental data.
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