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In this paper, a continuous model for vibration analysis of a beam with
an open edge crack including the effects of shear deformation and rotary inertia
is presented. A displacement field is suggested for the beam and the strain, and
stress fields are calculated. The governing equation of motion for the beam has been
obtained using Hamilton’s principle. The equation of motion is solved with a modified
Galerkin method and the natural frequencies and mode shapes are obtained. A good
agreement has been observed between the results of this research and the results of
previous work done in this fiels. The results are also compared to results of a similar
model with Euler-Bernoulli assumptions to confirm the advantages of the proposed
model in the case of short beams.
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1. Introduction

Structural defects such as cracks may be produced in structures and
machineries under fatigue load operating conditions. The presence of crack can
lead to catastrophic failures in certain conditions. Therefore, developing methods
for early detection of cracks has been the subject of many researches. One of these
methods is the vibration analysis of cracked structures. The occurrence of cracks
affects the dynamic and vibration behavior of the structure considerably. These
vibrations can be used for identifying the cracks and thereby appropriate actions
can be taken to prevent more damage to the system.

The vibration behavior of cracked structures has been investigated by many
researchers. Dimarogonas [1] presented a review on the topic of vibration of
cracked structures. His review included the vibration analysis of cracked rotors,
bars, beams, plates, pipes, blades and shells. Two more literature reviews by
Wauer and Gasch [2, 3] on the dynamic behavior of cracked rotors – are also
available.
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Beams are important elements in structures and machineries; thus, the vi-
bration behavior of cracked beams has been extensively studied by researchers.
There exist three methods for the vibration modeling of cracked beams: dis-
crete models with a local flexibility model for the crack, continuous models with
a local flexibility model for the crack, and continuous models with a continues
model for the crack. Dimarogonas [4] was the first who suggested the local
flexibility method for modeling the crack. He replaced the crack by a rotational
spring connecting two healthy half-beams. The stiffness of this spring was ob-
tained from the concept of J-integral in fracture mechanics. This local flexibility
idea has been followed by several researchers till now. Some researchers utilized
the first approach and modeled two healthy half-beams discretely and added the
flexibility of the rotational spring to the flexibility matrix of the system [5, 6].
While others used the second approach and modeled two healthy half-beams con-
tinuously and used appropriate boundary conditions for each part to link them
through the rotational spring [7, 8]. Loya et al. [9] developed a local flexibility
model for the flexural vibrations of Timoshenko cracked beams. They also mod-
ified the local flexibility model of the crack by adding one or two linear springs
beside the rotational one. These methods have also been extended for beams
with more than one crack [10–12].

The local flexibility model for the crack is a simple approach and has a rela-
tively good result in finding fundamental natural frequency of a cracked beam.
However, this method offers no solutions for finding the stress at the crack area
under the dynamic loads, mode shapes in free vibrations and operational de-
formed shape in forced vibrations. The third approach, continuous modeling of
the crack, was first developed by Christides and Barr [13]. Christides and Barr
proposed a continuous theory for vibration analysis of a uniform Euler–Bernoulli
beam containing one or more pairs of symmetric cracks. They suggested some
modifications on the familiar stress field of a normal Euler–Bernoulli beam in
order to consider the crack effect. The differential equation of motion and cor-
responding boundary conditions were obtained as the results. However, in their
model, two different and incompatible assumptions have been made for displace-
ment and strain fields. Although the accuracy of the results in finding the natural
frequencies is acceptable for some applications, their model is not fully reliable
for more accurate analyses such as stress analysis near the crack tip under dy-
namic loading and mode shape analysis. In addition, the resulting partial dif-
ferential equation is complicated and it is dependent on some constants which
are unknown and must be calculated by correlating the analytically obtained
results with those calculated by the finite element method in each case. Sev-
eral researchers followed the Christides and Barr’s approach by modifying their
method and achieved some improvements [14–18]. However, there still exists the
inconsistency between strain and displacement fields which causes inaccuracy in
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results, especially in mode shapes and stress analysis. Carneiro and Inman

[19] extended Christides and Barr’s approach to the case of Timoshenko cracked
beams.

Behzad et al. [20] presented a new continuous theory for bending analysis
of a cracked beam. A bilinear displacement field has been suggested for the
beam strain and stress calculations and the bending differential equation has
been obtained using the equilibrium equations. The model can predict the load-
deflection relation of the beam near or far from the crack tip accurately and
can be also used for stress-strain analysis in a cracked beam. This model is
also used for vibration analysis of a cracked beam and excellent performance
in dynamic loading has been observed [21, 22]. This method has been used for
the force vibration analysis of beams with a horizontal edge crack [23]. They
also extended their model to a continuous model for a beam with an edge crack
perpendicular to the neutral plane (vertical edge crack) [24].

The effects of shear deformation and rotary inertia are not negligible in the
case of short (Timoshenko) beams. Therefore, in this research the formulation of
Behzad’s model [21] is extended to the case of Timoshenko cracked beam model.
The results of this study are compared with the finite element and Carneiro

and Inman’s [19] results for verification. In addition, the results are compared
with Euler–Bernoulli model [21] to confirm the advantages of the presented model
in the case of short beams.

2. Displacement field

In this research, the beam is assumed to be a prismatic beam and the crack
is considered as an open edge U-shape notch. The plane strain assumption has
been used and consequently the displacements along y-axis have been neglected.
The displacements and stresses are supposed to be small and the crack does not
become larger. Finally, the material is assumed to be linear elastic.

In this paper, a similar displacement field to Behzad’s model [21] is proposed.
The horizontal line passing through the crack tip is called “deviation line” which
is shown in Fig. 1. It is proposed that under pure moment each straight plane
section turns into two planes with different slopes, one beneath and the other
above the deviation line as shown in Fig. 1. The slope difference between these
two planes decreases while the distance from the crack increases. So, the following
displacement field can be assumed for a cracked beam [21]:

(2.1)







w = w(x, t), (a)

v = 0, (b)

u(x, z, t) = u0(x, t) − zψ(x, t) + ∆(x, z, t)h(z). (c)
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Fig. 1. Displacement field parameters of a cracked beam.

In which u, v and w are the displacement components along x, y and z axes.
u0(x, t) is the longitudinal displacement of the deviation line along the x-axis
and ψ(x, t)is the slope of plane sections below the deviation line. h(z) is the
unit step function which is equal to zero for z ≤ 0 and 1 for z > 0. The term
∆(x, z)h(z) can be considered as the extra displacement of plane sections above
the deviation line. Figure 1 shows these parameters graphically.

It is assumed that the additional displacement of the plane section above the
deviation line has its maximum value at the crack faces and decreases exponen-
tially with distance from the crack tip. Therefore, ∆(x, z, t) reads as follows:

(2.2) ∆(x, z, t) = ϕ(z, t)e−α|x−xc|/d sgn(x− xc).

In Eq. (2.2), ϕ(z, t) is the magnitude of the additional displacement at the crack
faces, α is a dimensionless exponential decay rate which will be discussed later
in this paper, xc is the crack position, dis the depth of the beam and sgn(x−xc)
is the sign function. The application of the sign function is due to the fact that
the additional displacement function has a discontinuity at the position of the
crack and the sign of its value changes when passing through the crack tip.

In order to find ϕ(z, t), a zero normal stress condition at the crack faces can
be used. Thus, the normal strain function can be found using Eq. (2.2) as

(2.3) εx = u,x = u0,x − zψ,x − α

d
ϕ(z, t)e−α|x−xc|/dh(z),

in which the subscript ,x denotes the partial derivative with respect to x. The
normal stress at the crack faces, x = x+

c or x−c and z > 0, should be zero.
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Therefore, one has

(2.4) ϕ(z, t) =
d

α
(u0,x(xc, t) − zψ,x(xc, t)) .

To avoid discontinuity at the crack tip and considering the nonlinearity at the
crack tip, the function ϕ(z, t) can be modified as follows:

(2.5) ϕ(z, t) =
d

α
(u0,x(xc, t)(1 − e−βz/d) − zψ,x(xc, t)),

where β is a dimensionless parameter and will be discussed later in this paper.
The term (1 − e−βz/d) prevents the discontinuity at the crack tip.

3. Equation of motion

Now the strain field can be extracted from the displacement field by direct
derivation. The only nonzero components of the stress field εx and γxy are as
follows:

(3.1)







εx = u,x

= u0,x − zψ,x

−
(
u0,x(xc, t) − u0,x(xc, t)e

−βz/d − zψ,x(xc, t)
)
h(z)e−α|x−xc|/d,

γxy =
1

2
(w,x + u,z)

=
1

2

(

w,x − ψ +

(
β

α
u0,x(xc, t)e

−βz/d − d

α
ψ,x(xc, t)

)

× e−α|x−xc|/d sgn(x− xc)h(z)

)

.

The normal and shear stress energies of the Timoshenko beam can be obtained
using the following relations:

V1 =
1

2

∫

V

σxxεxxdV =
1

2
E

∫

V

ε2xxdV,(3.2)

V2 =
1

2

∫

V

Gκγ2
xydV,(3.3)

in which V1 and V2 are the normal and shear strain energy functions respectively,
V is the volume of the beam, E is the modulus of elasticity,G is the shear modulus
of elasticity and κ is the Timoshenko shear coefficient. The total potential energy
can be calculated by adding up the normal and shear strain energies:

(3.4) Vt = V1 + V2.
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The total kinetic energy of the cracked beam can be also calculated as follows:

(3.5) Tt = T1 + T2,

where T1 and T2, the kinetic energies due to the vertical displacement and the
rotary inertia respectively, can be calculated as

T1 =
1

2

∫

V

ρw2
,tdV,(3.6)

T2 =
1

2

∫

V

ρz2
ηψ

∗2d
,t V,(3.7)

in which the rotation ψ∗ can be calculated as

ψ∗(x, z, t) = −u(x, z, t) − u0(x, t)

z
(3.8)

= ψ(x, t) +
d

α
ψ,x(xc, t)h(z)e

−α|x−xc|/d sgn(x− xc)

and zη is position relative to the centroid in the z direction. In the other words,
it is the distance from the horizontal axis η passing through the centroid of the
cross-section shown in Fig. 2.

z

y
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A
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z
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h

Fig. 2. Cracked beam parameter definition.

Using Hamilton’s principle, one obtains

(3.9) δ

t1∫

t0

Ldt = δ

t1∫

t0

(Tt − Vt)dt = 0.
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Now, by substituting Eq. (3.1) into Eq. (3.8) in Eq. (3.9) and performing appro-
priate calculations the following equations can be obtained:

(3.10)







(ψ,x − k5ψ,x(xc, t)e
−α|x−xc|/d),xx +

ρA

EIη
w,tt,

=
ρ

E
(ψx − k4ψ,x(xc, t)e

−α|x−xc|/d),tt, (a)

κ(w,xx − ψ,x + k6ψ,x(xc, t)e
−α|x−xc|/d) =

ρ

G
w,tt, (b)

where the parameters k1−6 are geometrical dimensionless constants which can
be defined as follows:

(3.11)







k1 =
1

Ac

∫

Ac

e−βz/ddA,

k2 =
Ah

Ah + k1Ac
,

k3 =
Ac

A

(

k2 − k1k2 −
z̄c
z̄h

)

,

k4 =
Icη

Iη
,

k5 =
(k1 − 1)Acz̄c (z̄ + k3z̄h) + Icη

Iη
,

k6 =
Ac

A

(

1 +
β

d
(z̄ + k3z̄h)k1

)

,

in which z̄ is the vertical coordinate of the centroid of the cross-section and z̄h
is the vertical coordinate of the centroid of the healthy part of the cross-section
as shown in Fig. 2, A is the cross-section area of the beam, Ac is the crack face
area, Icy is the moment of inertia of the crack face about the y-axis and Iη is the
moment of inertia of the cross-section about the horizontal axis η.

By evaluating Eq. (3.10b) at the crack position, i.e., x = xc, ψ,x(xc, t) can
be obtained as

(3.12) ψ,x(xc, t) =
1

1 − k6

(

w,xx(xc, t) −
ρ

κG
w,tt(xc, t)

)

.

Substituting Eq. (3.12) into Eq. (3.10b), one obtains

ψ,x =
(

w,xx − ρ

κG
w,tt

)

(3.13)

+
k6

1 − k6

(

w,xx(xc, t) −
ρ

κG
w,tt(xc, t)

)

e−α|x−xc|/d.



272 M. Heydari, A. Ebrahimi, M. Behzad

Substituting Eqs. (3.12) and (3.13) into Eq. (3.10a), the equation of motion for
free vibrations of a cracked Timoshenko beam reads as follows:

(3.14)

(

w,xx−
ρ

κG
w,tt+k7

(

w,xx−
ρ

κG
w,tt

)

(xc, t)e
−α|x−xc|/d

)

,xx

+
ρA

EIη
w,tt

=
ρ

E

(

w,xx − ρ

κG
w,tt + k8

(

w,xx − ρ

κG
w,tt

)

(xc, t)e
−α|x−xc|/d

)

,tt

in which the parameters k7 and k8 can be defined as follows:

(3.15) k7 =
k6 − k5

1 − k6
, k8 =

k6 − k4

1 − k6
.

4. Calculation of exponential decay rates α and β

The dimensionless exponential decay rates (α, β) are the only factors which
has not been discussed yet. In this section the parameters α and β are calculated.
It has been shown that the exponential decay rate β has a very large value and
accordingly it can be assumed that the parameter β tends to infinity (β → ∞)
without losing the accuracy of the results [20, 21]. Then, the parameters k4, k5

and k6 in Eq. (3.11) can be simplified as follows:

(4.1)







k4 =
Icη

Iη
,

k5 = k4 −
Acz̄c
Iη

(

z̄ +
Ac

A
(z̄h − z̄c)

)

,

k6 =
Ac

A
.

Using the J-integral and remote point rotation concepts, Behzad et al. [20]
have shown that the exponential decay rate α can be calculated by solving the
following equation:

(4.2)
χ

1 + χ
(e−αxc/d + e−α(l−xc)/d − 2) − 6π(1 − ν2)ϕ

(
a

d

)

α = 0,

where χ can be calculated as follows

(4.3) lim
β→∞

χ =

(
a

d

)(
a

d
− 2

)
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and ϕ
(

a
d

)
is a function of the crack depth ratio (a/d) and defined as

(4.4) ϕ

(
a

d

)

= 21.8

(
a

d

)10

− 45.8

(
a

d

)9

+ 53.8

(
a

d

)8

− 38.5

(
a

d

)7

+ 24.4

(
a

d

)6

− 12.5

(
a

d

)5

+ 6.14

(
a

d

)4

− 1.57

(
a

d

)3

+ 1.26

(
a

d

)2

.

α values versus the crack depth ratio
(

a
d

)
for crack position at the midspan

(xc = 0.5) are presented in Fig. 3.
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Fig. 3. Exponential decay rate α versus crack depth ratio (a/d) for a crack at the midspan
(xc/l = 0.5).

5. Eigensolution

In order to find the natural frequencies and mode shapes of a cracked beam,
the equation of motion presented in Eq. (3.14) must be solved. However, this
equation cannot be solved analytically and a numerical method must be used.
It can be assumed that the solution is a harmonic function, so one has

(5.1) w(x, t) = X(x)eiωt,

where ω is the natural frequency of the beam. Substituting Eq. (5.1) into
Eq. (3.14) and assuming EIη to be constant along the beam, the following eigen-
value problem is a result:
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(5.2)
d2

dx2

(

(X ′′ + k7X
′′(xc)e

−α|x−xc|/d)

+
ρ

κG
ω2(X + k7X(xc)e

−α|x−xc|/d)

)

− ρA

EIη
ω2X

= − ρ

E
ω2

(

(X ′′ + k8X
′′(xc)e

−α|x−xc|/d) +
ρ

κG
ω2(X + k8X(xc)e

−α|x−xc|/d)

)

.

Equation (5.2) has a special form, contains a singular function and depends on
the value of the solution at the crack position. Theses anomalies prevent one to
use the ordinary Galerkin projection method and the normal weighted residual
solution for this Sturm–Liouville problem. Behzad et al. [21] presented a modi-
fied Galerkin projection algorithm for solving this type of equations. In this paper
a similar approach has been used. In a regular Sturm–Liouville problem one can
easily consider the function X to be in the form of

∑
ciSi(x) in which Si(x)

are the shape functions that satisfy the physical boundary conditions. However,
in this research, the results show that such an approach will lead to divergence
of the results. Since the function e−α|x−xc|/d in Eq. (5.2) is not a smooth func-
tion it seems that the solution, especially, for larger crack depth ratios tends to
have large derivatives near the crack tip. Accordingly, extracting the value of
X ′′(xc) from X by derivation can lead to large fluctuations in the results and
divergence. In order to avoid the divergence problem, the function X ′′ and the
value of X ′′(xc) are not extracted from X by direct derivation. Instead X ′′ is
discretized independently from X and then a constraint equation is provided to
link X ′′ to X.

Considering the above, the following relations can be written:

(5.3)







X ′′ + k7X
′′(xc)e

−α|x−xc|/d =

N∑

i=1

d1iSi(x),

X + k7X(xc)e
−α

|x−xc|
d =

N∑

i=1

d2iSi(x),

X ′′ + k8X
′′(xc)e

−α|x−xc|/d =

N∑

i=1

d3iSi(x),

X + k8X(xc)e
−α|x−xc|/d =

N∑

i=1

d4iSi(x),

X =
N∑

i=1

ciSi(x),

in which ci and d1−4i are independent sets of constants and functions Si(x)
are the shape functions which must satisfy the physical boundary conditions.
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Substituting Eq. (5.3) into Eq. (5.2), multiplying two sides of the equation by
Sj(x), and then integrating along the length of the beam, one has

(5.4)
N∑

i=1

d1i

l∫

0

S′′
i (x)Sj(x)dx

+
ρ

κG
ω2

N∑

i=1

d2i

l∫

0

S′′
i (x)Sj(x)dx− ρA

EIη
ω2

N∑

i=1

ci

l∫

0

Si(x)Sj(x)dx

+
ρ

E
ω2

( N∑

i=1

d3i

l∫

0

S′′
i (x)Sj(x)dx+

ρ

κG
ω2

N∑

i=1

d4i

l∫

0

S′′
i (x)Sj(x)dx

)

= 0,

j = 1, 2, . . . , N. Or in the matrix form:

(5.5)

K1d1 + ω2 (M1d2+M2c + M3d3) + ω4D1d4 = 0,

K1ij =

l∫

0

S′′
i (x)Sj(x)dx, M1ij =

ρ

κG

l∫

0

S′′
i (x)Sj(x)dx,

M2ij = − ρA

EIη

l∫

0

Si(x)Sj(x)dx, M3ij =
ρ

E

l∫

0

Si(x)Sj(x)dx,

D1ij =
ρ2

κGE

l∫

0

Si(x)Sj(x)dx.

On the other hand, the following relations can be obtained from (5.5):

(5.6)







N∑

i=1

d1iS
′′
i (x) =

1

1 + k7

N∑

i=1

ciSi(x),

N∑

i=1

d2iSi(x) =
1

1 + k7

N∑

i=1

ciSi(x),

N∑

i=1

d3iS
′′
i (x) =

1

1 + k8

N∑

i=1

ciSi(x),

N∑

i=1

d4iSi(x) =
1

1 + k8

N∑

i=1

ciSi(x).

Multiplying two sides of Eq. (5.6) by Sj(x), integrating along the length of the
beam and writing the equations in the matrix form, one has:
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(5.7)

d1 = P−1
1 Q1c, d2 = P−1

1 Q2c,

d3 = P−1

2 Q1c, d4 = P−1
2 Q2c,

Q1ij =

l∫

0

S′′
i (x)Sj(x)dx, Q2ij =

l∫

0

Si(x)Sj(x)dx,

P1ij =

l∫

0

Si(x)Sj(x)dx− k7

1 + k7

l∫

0

Si(x)Sj(x)dx,

P2ij =

l∫

0

Si(x)Sj(x)dx− k8

1 + k8

l∫

0

Si(x)Sj(x)dx.

Substituting Eq. (5.7) into Eq. (5.5), the following equation is obtained:

(5.8)
(K + ω2M + ω4D)c = 0, K = K1P

−1
1 Q1,

M = M1P
−1
1 Q2 + M2 + M3P

−1
2 Q1, D = D1P

−1
2 Q2.

The natural frequencies and corresponding mode shapes for the cracked beam
can be calculated by solving the matrix eigenvalue problem of Eq. (5.8).

6. Results for a simply supported beam with rectangular cross-section

In this section, the beam is assumed to be simply supported with a rect-
angular cross-section. However, for every desired boundary condition and cross-
section, the presented solution can be used. The beam is modeled with an aspect
ratio of 5 and properties described in Table 1.

Table 1. Properties used for modeling the cracked beam.

Property Value

Dimensions L × d × b(m) 1.25e − 1 × 2.5e − 2 × 5e − 3

Modulus of elasticity E (GPa) 200

Shear modulus G (GPa) 76.9

Poisson’s ratio ν 0.3

Density ρ (kg/m3) 7810

Timoshenko shear coefficient κ 5/6

In a simply supported cracked beam the shape functions Si(x) can be as-
sumed to be in the form of sin(iπx/l) which satisfies the physical boundary
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conditions. In this research, the number of shape functions N is set to be 100.
The natural frequencies and mode shapes have been calculated using Eq. (5.8).

Figure 4 shows the first three natural frequency ratios of the Timoshenko
cracked beam. In order to generalize the results, the natural frequencies of the
cracked beam have been divided to the corresponding values for a normal beam.
In Fig. 4, the natural frequency ratios have been plotted versus the crack depth
ratio (a/d) for several crack positions, xc/l = 0.1, 0.3 and 0.5.

To verify the results, they are compared with results of the finite element (FE)
analysis in Fig. 4. ANSYS software has been used for the finite element analysis.
In order to have an accurate and reliable model, the PLANE183 singular element
has been used in the cracked area [25]. This element is an eight-node quadratic
solid singular element which is specially designed for the crack analysis. In this
research, a fine mesh has been used at the vicinity of the crack and dependency
of the results on the mesh size has been checked. In all of the results there is
a good agreement between analytical results and FE analysis results.

The first three natural frequencies obtained by the proposed model are com-
pared to Carneiro and Inman’s [19] analytical and finite element results for
a crack at xc/l = 0.5 in Fig. 5. In this figure, results are divided by correspond-
ing natural frequencies of an uncracked beam. They show a good agreement that
verifies the accuracy of the proposed model.

The first three natural frequencies of Euler–Bernoulli [21] and Timoshenko
cracked beams are compared with each other in Fig. 6. In this figure, the results of
natural frequencies are divided by corresponding natural frequencies of uncracked
Timoshenko beam. In the case of healthy beam, the Euler–Bernoulli beam has
6, 22 and 42 percent difference in comparison to Timoshenko beam for the first
three natural frequencies, respectively, as it can be seen in Fig. 6. This shows the
importance of using Timoshenko beam model in the case of short beams. Also,
the Euler–Bernoulli beam has higher sensitivity to the crack depth rather than
Timoshenko beam.

Figure 7 shows the first three normalized mode shapes for a cracked beam
with a/d = 0.5 and xc/l = 0.1, 0.3 and 0.5. Comparison of the analytical and
finite element results in this figure shows the efficiency of the presented model
in modeling of mode shapes.

Effect of crack position ratio (xc/l) on the first and second mode shapes is
shown in Figs. 8 and 9, respectively, for a/d = 0.1, 0.3 and 0.5.

Figures 10 and 11 show effect of crack depth ratio (a/d) on the first and
second mode, respectively, for xc/l = 0.1, 0.3 and 0.5.

Results show that the decrease in natural frequencies and the change in mode
shapes are dependent on both crack depth ratio and crack position. In general,
a higher crack depth ratio leads to a bigger change in natural frequencies and
mode shapes for a given crack position. But in the case of crack position, the
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Fig. 4. First three natural frequency ratios of a cracked beam versus crack depth ratio (a/d).
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Fig. 5. First three natural frequency ratios of a cracked beam versus crack depth ratio (a/d)
for crack position ratio xc/l = 0.5; comparison with Carneiro and Inman’s [19] analytical

and finite element results and the present work.
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Fig. 7. First three normalized mode shapes of a cracked beam with a/d = 0.5; (——):
analytical results; (••••): finite element results.



282 M. Heydari, A. Ebrahimi, M. Behzad

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

Position ratio (x/l)

N
or

m
al

iz
ed

 d
is

pl
ac

em
en

t
a/d=0.1

 

 

x
c
/l=0.1

x
c
/l=0.3

x
c
/l=0.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

Position ratio (x/l)

N
or

m
al

iz
ed

 d
is

pl
ac

em
en

t

a/d=0.3

 

 

x
c
/l=0.1

x
c
/l=0.3

x
c
/l=0.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

Position ratio (x/l)

N
or

m
al

iz
ed

 d
is

pl
ac

em
en

t

a/d=0.5

 

 

x
c
/l=0.1

x
c
/l=0.3

x
c
/l=0.5

Fig. 8. Effect of crack position ratio (xc/l) on first normalized mode shape of a cracked
beam.
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Fig. 9. Effect of crack position ratio (xc/l) on second normalized mode shape of a cracked
beam.
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Fig. 10. Effect of crack depth ratio (a/d) on first normalized mode shape of a cracked beam.
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Fig. 11. Effect of crack depth ratio (a/d) on second normalized mode shape of a cracked
beam.
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Fig. 12. Comparison of the first three normalized mode shapes with Carneiro and
Inman’s [19] analytical results and the analytical and finite element results for a cracked

beam with a/d = 0.5 and xc/l = 0.5. (——): analytical results; (••••): finite element results;
(♦♦♦♦), (����), (◦◦◦◦): Carneiro and Inman’s analytical results.

amount of change is dependent on the position of crack relative to the nodes
and anti-nodes of the corresponding mode shape. For a crack at the node of
mode shape, there is no change in the natural frequencies and mode shapes,
but for a crack at the anti-node of mode shapes, the change has its maximum
amount. As it can be observed in Figs. 4 and 11, the second natural frequency
and mode shape do not show any change for a crack at the midspan of the beam
(xc/l = 0.5) because this point coincides with the node of the second mode of
the beam. But as it can be seen in Figs. 4 and 10, the first natural frequency
and mode shape show their maximum change for a crack at the midspan. This is
becausethe midspan is the anti-node of the first mode shape. The first three mode
shapes of a cracked beam are compared with Carneiro and Inman’s analytical
results [19] and the proposed analytical and finite element results for a crack at
xc/l = 0.5 and a/d = 0.5 in Fig. 12. This comparison shows higher accuracy of
the proposed model in determining mode shapes of a cracked beam in comparison
to Carneiro and Inman’s results [19].

7. Conclusions

A continuous theory for the flexural vibration analysis of a Timoshenko beam
with an open edge crack has been developed in this paper. A bilinear displace-
ment field [21] has been suggested for the beam. In the proposed displacement
field, it is assumed that the crack face rotates more than the other parts of the
section as well as its adjacent area. Also, the additional rotation decays with
an exponential regime along the beam length. The strain and stress fields are
calculated by direct derivation of displacement field and using the linear elastic
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material model. Next, the partial differential equation of motion has been ob-
tained using Hamilton’s principle with considering the effects of shear strain and
rotary inertia.

The obtained governing equation of motion for a simply supported beam with
a rectangular cross-section and an open edge crack has been solved with a modi-
fied Galerkin projection method. The obtained results have been compared with
finite element results for the first three natural frequencies and mode shapes
and an excellent agreement has been observed. Also, a good agreement has been
observed between presented results and previous work results [19] for the first
three natural frequencies. Furthermore, a higher accuracy in the results of first
three mode shapes has been observed compared to the previous model [19].

Results for the first three natural frequencies have also been compared with
Euler–Bernoulli beam [21] to show the importance of using Timoshenko model
in the case of short beams. The obtained results have also been used to study
the effect of crack parameters on natural frequencies and mode shapes. Results
show that the change in the natural frequencies and mode shapes is dependent
on both crack depth ratio and crack position.

The presented model proposes a reasonably accurate model which predicts
the behavior of a cracked short beam and its results are reliable near the crack tip
and far from it. Additionally, the displacement and strain fields are completely
compatible in this model, while in the previous continuous models, an inconsis-
tency existed between strain and displacement fields which can cause inaccuracy
in results. The developed theory is applicable for open edge cracks and there is
a need for an extension to breathing cracks and other types of cracks.
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