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Effects of boundary reinforcement on local singular fields
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We consider the local deformation near a point at the interface between free
and fixed boundary segments in an elastic half-plane undergoing plane strain defor-
mations. Using asymptotic analysis, we show that the addition of a reinforcement
along the free boundary effectively eliminates the well-known oscillatory behavior of
the displacement and stress fields in the vicinity of the point leading to a strong
square-root stress singularity. In addition, we demonstrate that the reinforcement
induces a deformation field which is smooth locally and bounded at the point of
interest.
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1. Introduction

The incorporation of surface mechanics into mathematical models de-
scribing deformation of elastic solids has drawn an increasing amount of attention
in the literature recently (see, for example [1]–[21] and the references contained
therein). We note, specifically, the seminal papers [1]–[3] which describe a theory
for finite deformations of elastic solids with thin elastic films attached to their
bounding surfaces. These works are particularly important in that they general-
ize the well-known Gurtin–Murdoch theory of the mechanics of surface stressed
solids [4] which has been used extensively in the literature in continuum models
of deformation at the nanoscale where the high surface area to volume ratio
means that the separate contributions of the surface can no longer be ignored.
Recently, Chhapadia et al. [5] have adapted the theory in [1] to incorporate
curvature-dependence of surface energy to describe size-effects of physical phe-
nomena at small length scales.

In [6], the authors presented a rigorous analysis of a series of non-standard
boundary value problems corresponding to the linearized version of the theory
developed in [1]. It was of particular interest in [6] to determine the contribution
of the reinforcing thin film attached to the bounding surfaces of the solid. This
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paper continues that study by investigating the contribution of boundary rein-
forcement (surface mechanics) to the classical mixed boundary-value problem
describing the plane-strain field near a point at the interface between free and
fixed boundary segments in an elastic half-plane (Fig. 1). It is well-known that
both surface displacements along the free boundary and contact stress distribu-
tions exhibit oscillatory behavior in the vicinity of the point [22]. In this paper,
we demonstrate that a reinforcement along the free boundary effectively elimi-
nates the oscillatory behavior of the stress field in the vicinity of the point leading
to a strong square-root singularity. In addition, we show that the displacement
field is smooth locally and bounded at the point of interest.

Fig. 1. Schematic of the problem.

2. Notation and prerequisites

Plane-strain deformations of a linearly elastic, homogeneous and isotropic
solid are characterized by a displacement vector u whose components (u, v, w),
with respect to the standard basis in R

3, are assumed to satisfy the relations

(2.1) u = u1(x1, x2), v = u2(x1, x2), w = 0,

where (x1, x2) represent Cartesian coordinates in R
2. In the absence of body

forces, the reduced displacement field and the corresponding stress components
σαβ , α, β = 1, 2, can be described in terms of two analytic functions φ(z) and
ψ(z) of the complex variable z = x1 + ix2 (or z = reiθ in the polar coordinate
system, where r2 = x2

1 + x2
2 and tan θ = x2/x1) in the half plane (see Fig. 1)

by [23]

σ11 + σ22 = 2[φ (z)′ + φ (z)′],(2.1a)

σ22 − σ11 + 2iσ12 = 2
[
zφ (z)′′ + ψ (z)′

]
,(2.1b)

2µ (u1 + iu2) = κφ (z) − zφ (z)′ − ψ (z).(2.1c)

Here, the constant κ is defined as:

(2.3) κ =
λ+ 3µ

λ+ µ
= 3 − 4υ,
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where υ is Poisson’s ratio taking values in the range 0 < υ < 1
2 . Thus, κ satisfies

the following inequality

(2.4) 1 < κ < 3.

For the purpose of the present study, Eqs. (2.2) are re-written more conveniently
in the form;

σ22 = 2Re[φ (z)′] + Re[zφ (z)′′] + Re[ψ (z)′],(2.2a)

2µ (u1 + iu2) = κφ (z) − zφ (z)′ − ψ (z),(2.2b)

2µu1 = Re[κφ (z) − zφ (z)′ − ψ (z)].(2.2c)

3. Local singular field near mixed boundary

We consider the local deformation near a point at the interface between an
elastic half-plane fixed at θ = π and a load-free boundary along θ = 0 (see Fig. 1).
As noted in [22], “A familiar example of a mixed boundary-value problem of this
type is furnished by the particular problem of a rigid flat-ended punch that is
bonded to the straight edge of a semi-infinite elastic slab and subjected to an
axial load”. Our particular interest lies in the case when the load-free boundary
(θ = 0) is reinforced with a thin solid film whose bending rigidity is negligible.
For consistency, we assume that no initial tension is applied at the reinforced
boundary (θ = 0).

For convenience, we represent uα and σαβ, α, β = 1, 2 by the same functions
when referred to the polar coordinate system. The corresponding boundary con-
ditions pertaining to this problem can be summarized as follows:

u1(r, π) = u2(r, π) = σ22(r, 0) = 0,(3.1a)

σ12(r, 0) = N,1 (x1) , 0 < r <∞(3.1b)

where the deformation-induced surface tension N (x1) is given by [6]

(3.2) N (x1) = F (x1)u1,1 (x1) , F (x1) > 0.

Here F = EA, E is Young’s modulus and A is the cross-sectional area of the
reinforcement at x1 [6]. Consequently, the boundary condition Eq. (3.1b) on
θ = 0 becomes

(3.3) σ12(r, 0) = EAu1,11 (r, 0) .

We are particularly interested in displacement solutions which admit the
asymptotic representation

(3.4) uα = rρfα(θ) + o(rρ), α = 1, 2, as r → 0
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uniformly for θ ∈ [0, π], where, ρ is a real constant in the range 0 < ρ < 1 and fα

are smooth functions on [0, π]. Solutions of the form (9), to leading order, take
the form

(3.5) uα = rρfα(θ), α = 1, 2 as r → 0.

It is clear from Eq. (2.2c) that we can achieve the leading order solution (3.5)
by assuming that φ and ψ take the form

(3.6) φ(z) = Azρ, ψ(z) = Bzρ, 0 < ρ < 1

where A and B are complex constants to be determined.
From Eqs. (2.2b), (3.6), it follows that the leading order solution (3.5) cor-

responds to the singular stress

(3.7) σ12 = O(rρ−1) as r → 0.

Similarily, the leading order solution (3.5) is such that

(3.8) u1,11(r, 0) = ρ(ρ− 1)rρ−2f1(0) as r → 0.

From (3.7) and (3.8), it is clear that the boundary condition (3.3) requires that,
to leading order,

(3.9) u1,11(r, 0) = 0 as r → 0.

Consequently, we have the following boundary conditions

u1(r, π) = u2(r, π) = 0, σ22(r, 0) = 0,(3.10a)

u1,11(r, 0) = 0 as r → 0.(3.10b)

We note that, from (3.5), (3.8) and (3.9), it is sufficient to replace the condition
(3.10b) by the simpler condition

u1(r, 0) = 0 as r → 0.

That is, the leading order solution satisfies the boundary condition

(3.11) u1(r, 0) = 0.

In what follows, the discussion is confined to the leading order solution from
Eqs. (3.5), (3.6) and (3.11).

From Eqs. (2.2c), (3.6), we obtain:

4µu1 = 2κRe[φ(z)] − zφ(z)′ − zφ(z)′ − ψ(z) − ψz

= κ[Azρ + Azρ] − zAρzρ−1 − zAρzρ−1 − (Bzρ +Bzρ).
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Substituting z = reiθ we then have

(3.12) 4µu1 = rρ[κ(Aeiρθ +Ae−iρθ)−ρAei(ρ−2)θ −ρAei(2−ρ)θ −Beiρθ −Be−iρθ].

Similarly, Eqs. (2.2a, b) yield

2µ(u1 + iu2) = κAzρ − zAρzρ−1 −Bzρ(3.13)

= rρ(κAeiρθ − ρAei(2−ρ)θ − e−iρθB),

σ22 = ρrρ−1

[

Aei(ρ−1)θ +Aei(1−ρ)θ +
1

2
(ρ− 1)(Aei(ρ−3)θ +Aei(3−ρ)θ)(3.14)

+
1

2
(Bei(ρ−1)θ +Bei(1−ρ)θ)

]

.

At the reinforced boundary (θ = 0), since σ22 = 0 at θ = 0 we obtain from
Eq. (3.14) that

(3.15) σ22 = ρrρ−1

[(

1 +
1

2
(ρ− 1)

)

(A+A) +
1

2
(B +B)

]

= 0.

Comparing coefficients on both sides of Eq. (3.15) yields

(3.16) (ρ+ 1)2ReA+ 2ReB = 0.

In addition, Eq. (3.11) yields, from Eq. (3.12),

(3.17) 2µu1 = rρ [(κ− ρ) ReA− ReB] = 0.

Again, comparing coefficients on both sides of Eq. (3.17), we have that

(3.18) (κ− ρ) ReA− ReB = 0.

Therefore, in view of Eqs. (3.16) and (3.18), we conclude that

(3.19) ReA = 0, ReB = 0.

Now, at the fixed boundary (θ = π), since u1 = u2 = 0 at θ = π, Eq. (3.13)
becomes

(3.20) 0 + 0i = rρ(κAeiρπ − ρAei(2−ρ)π − e−iρπB).

We thus obtain

(3.21) κAeiρπ − ρAei(2−ρ)π − e−iρπB = 0, ∵ rρ 6= 0.
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In view of the results in Eq. (3.19), Eq. (3.21) can be rewritten as

κe2iρπ + ρe2iπ = −B
A

= C ∈ R.

Since eiθ = cos θ + i sin θ, the above condition becomes

(3.22) κ(cos 2ρπ + i sin 2ρπ) + ρ(cos 2π + i sin 2π) = −B
A

= C ∈ R.

Consequently, the only possible root (ρ, 0 < ρ < 1) satisfying Eq. (3.22) is ρ= 1
2 .

Therefore, we obtain that

(3.23) κ cosπ +
1

2
= −B

A
, B = A

(

κ− 1

2

)

.

As a result, the unknown complex potentials are given by

(3.24) φ (z) = Az1/2, ψ (z) = Bz1/2, B = A

(

κ− 1

2

)

.

Remark 1. It should be emphasized that the boundary conditions (3.1)
are not sufficient for a complete statement of a plane-strain problem for a half-
plane since no restrictions have been placed on the nature of the displacements or
stresses at infinity. Consequently, we expect that the parameter A in the solution
(3.24) will depend on the applied (remote) loading.

4. Stress and displacement fields

The corresponding stress and displacement fields for the elastic half-plane
can now be completely determined from (3.24). In fact, from Eq. (2.2b), the
normal and tangential components of the displacement field can be expressed as

2µ (u1 + iu2) = κφ (z) − zφ (z) − ψ (z)

= r1/2

[

(κA+B) cos
θ

2
+
A

2
cos

3θ

2

]

+ ir1/2

[

(κA−B) sin
θ

2
+
A

2
sin

3θ

2

]

.

Since A and B are imaginary numbers (see Eq. (3.19)), we obtain that

(4.1)

u1 =
1

2µ
ir1/2

[

(κA−B) sin
θ

2
+
A

2
sin

3θ

2

]

,

iu2 =
1

2µ
r1/2

[

(κA+B) cos
θ

2
+
A

2
cos

3θ

2

]

,
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where B = A
(
κ− 1

2

)
. The stress fields are obtained similarly. For example, from

Eqs. (2.1a), (2.2a) and (3.24), the normal and tangential stress components near
the origin are given by

(4.2)
σ22 = ir−1/2

[

A

(
1

4
sin

5

2
θ − sin

θ

2

)

− B

2
sin

θ

2

]

,

σ11 + σ22 = −2ir−1/2A sin
θ

2
.

Also, Eqs. (2.1b) and (3.24) yield

σ22 − σ11 + 2iσ12 = − A

2
r−1/2

(

cos
5θ

2
− i sin

5θ

2

)

(4.3)

+Br−1/2

(

cos
θ

2
− i sin

2θ

2

)

.

Therefore, we obtain

iσ12 = r−1/2

(

−A
4

cos
5θ

2
+
B

2
cos

θ

2

)

.

The corresponding results are plotted through Figs. 2–6.
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Fig. 2. Normal displacement (u1), when A/µ = 0.1 and κ = 2.7.
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Fig. 3. Tangential displacement (u2), when A/µ = 0.1 and κ = 2.7.
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Fig. 4. Stress component (σ11), when A/µ = 0.1 and κ = 2.7.
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Fig. 5. Stress component (σ22), when A/µ = 0.1 and κ = 2.7.
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Fig. 6. Stress component (σ12), when A/µ = 0.1 and κ = 2.7.
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Figures 2 and 3 indicate that the introduction of boundary reinforcement
removes the anomalous oscillatory behavior of the displacement field (as pre-
dicted by the linear theory of elasticity [24]) in the vicinity of the point at the
interface between free and fixed boundary segments. In fact, both normal (u1)
and tangential (u2) displacements are found to be zero (see Figs. 2 and 3) at the
fixed boundary (θ = 0) satisfying the imposed boundary conditions (Eqs. 3.10).
In addition, the displacement fields are smooth locally and bounded at the ori-
gin (r = 0). In the case of the corresponding stress distributions, it is clear
from Figs. 4, 5 and 6 that the stresses are similarly free of the classical oscilla-
tory behavior in the vicinity of the origin (r = 0). where they exhibit a strong
square-root singularity. In addition, the stresses (σ11 and σ22) along θ = 0 are
found to be zero reflecting the imposed boundary conditions (see Eq. (3.1)) while
the shear stress (σ12) along θ = 0 is nonzero which can be attributed to the pres-
ence of boundary reinforcement. At the fixed boundary (θ = π), σ11 and σ22 have
non zero values whereas σ12 is found to be identically zero.

Remark 2. We have also investigated the possibility of more general
(weakly) singular solutions corresponding to

(4.4) φ(z) = Azρ + Czρ ln z, ψ(z) = Bzρ +Dzρ ln z.

In these cases, we find that the complex constants C and D in Eq. (4.4) are
found to be identically zero so that we again arrive at the results in Eq. (3.24):

φ (z) = Az1/2, ψ (z) = Bz1/2, B = A

(

κ− 1

2

)

.

5. Conclusions

We consider the local deformation near a point at the interface between free
and fixed boundary segments in an elastic half-plane undergoing plane strain de-
formations. Using asymptotic analysis, we show that the addition of a reinforce-
ment along the free boundary effectively eliminates the well-known oscillatory
behavior of the displacement and stress fields in the vicinity of the point leading
to a strong square-root singularity in the corresponding stress distributions and
a displacement field which is smooth locally and bounded at the point of interest.
The explicit form of the stresses near the origin is obtained displaying the anti-
cipated discontinuity across the origin where the boundary data experiences an
abrupt change. Finally, we note that, in contrast to the classical case [21], the
shear stress (σ12) along θ = 0 is nonzero which can be attributed to the presence
of boundary reinforcement.



Effects of boundary reinforcement on local singular fields. . . 299

References

1. D.J. Steigmann, R.W. Ogden, Plane deformations of elastic solids with intrinsic
boundary elasticity, Proc. R. Soc. Lond. A, 453, 853–877, 1997.

2. D.J. Steigmann, R.W. Ogden, A necessary condition for energy-minimizing plane de-
formations of elastic solids with intrinsic boundary elasticity, Math. Mech. Solids, 2, 3–16,
1997.

3. D.J. Steigmann, R.W. Ogden, Elastic surface-substrate interactions, Proc. R. Soc.
Lond. A, 455, 437–474, 1999.

4. M.E. Gurtin, A.I. Murdoch, A continuum theory of elastic material surfaces, Arch.
Ration. Mech. Anal., 57, 4, 291–323, 1975.

5. P. Chhapadia, P. Mohammadi, P. Sharma, Curvature-dependent surface energy and
implications for nanostructures, J. Mech. Phys. Solids, 59, 2103–2115, 2011.

6. P. Schiavone, C.Q. Ru, Integral equation methods in plane-strain elasticity with bound-
ary reinforcement, Proc. R. Soc. Lond. A, 454, 2223–2242, 1998.

7. E. Orowan, Surface energy and surface tension in solids and fluids, Proc. R. Soc. Lond.
A, 316, 473–491, 1970.

8. M.E. Gurtin, A.I. Murdoch, Surface stress in solids, Int. J. Solids Struct., 14, 431–440,
1978.

9. J.W. Chan, F. Larché, Surface stress and chemical equilibrium of small crystals – II.
Solid particles embedded in a solid matrix, Acta Metall., 30, 51–56, 1982.

10. Y. Benveniste, J. Aboudi, Continuum model for fiber reinforced materials with debond-
ing, Int. J. Solids Struct., 20, 11-12, 935–951, 1984.

11. R. Thomson, T.J. Chuang, The role of surface stress in fracture, Acta Metall., 34, 6,
1133–1143, 1986.

12. R.C. Cammarata, Surface and interface stress effects in thin films, Progress. Surf. Sci-
ence, 46, 1–38, 1994.

13. H. Altenbach, V.A. Eremeyev, L.P. Lebedev, On the existence of solution in linear
elasticity with surface stresses, Z. Angew. Math. Mech., 90, 7, 535–536, 2010.

14. H. Altenbach, V.A. Eremeyev, L.P. Lebedev, On the spectrum and stiffness of an
elastic body with surface stresses, Z. Angew. Math. Mech., 91, 9, 699–710, 2010.

15. H.X. Zhu, The effects of surface and initial stresses on the bending stiffness of nanowires,
Nanotechnology, 19, Art. 405703, 2008.

16. G.F.Wang, X.Q. Feng, S.W. Yu, Surface buckling of a bending microbeam due to
surface elasticity, Europhysics Letters, 77, Art. 44002, 2007.

17. Z.Q. Wang, Y.P Zhao, Z.P. Huang, The effects of surface tension on the elastic
properties of nanostructures, Int. J. Eng. Sci., 48, 140–150, 2010.

18. J.S. Wang, Y.H. Cui, X.Q. Feng, G.F.Wang, Q.H. Qin, Surface Effects on the
Elasticity of Nanosprings, Europhysics Letters, 92, 16002-1-6, 2010.

19. H. Altenbach, V.A. Eremeyev, N.F. Morozov, Linear theory of shells taking into
account surface stresses, Doklady Physics, 54, 531–535, 2009.



300 C. I. Kim, P. Schiavone, C.-Q. Ru

20. H. Altenbach, V.A. Eremeyev, N.F. Morozov, On equations of the linear theory of
shells with surface stresses taken into account, Mechanics of Solids, 45, 331–342, 2010.

21. X. Wang, P. Schiavone, Finite matrix crack penetrating a partially debonded circular
inhomogeneity, Arch. Mech., 64, 3, 319–342, 2012.

22. J.K. Knowles, E. Sternberg, On the singularity induced by certain mixed boundary
conditions in linearized and nonlinear elastostatics, Int. J. Solids Structures, 11, 1173–
1201, 1975.

23. N.I. Muskhelishvili, Some basic problems of the mathematical theory of elasticity, No-
ordhoff, Groningen, Netherlands, 1963.

24. M.L. Williams, Stress singularities resulting from various boundary conditions in angular
corners of plates in extension, J. Appl. Mech., 66, 556–560, 1952.

Received November 19, 2012; revised version January 24, 2013.


