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are considered: equations of steady vibrations, equations in Laplace transform space,
equations of quasi-static and equations of equilibrium. The fundamental solutions of
the systems of these partial differential equations (PDEs) are constructed by means
of elementary functions and finally, the basic properties of these solutions are estab-
lished.

Key words: double porosity, fundamental solutions, steady vibrations, Darcy’s law.
Mathematics Subject Classification: 74F10, 35E05.

Copyright c© 2013 by IPPT PAN

1. Introduction

The theory of consolidation for single-porosity materials was formulated
in [1]. The Biot system is formally equivalent to the classical coupled quasi-
static system of thermoelasticity which describes the deformation and heat flow
through an elastic solid. The model for consolidation requires the quasi-static
assumption that the equations of motion are replaced by the corresponding equi-
librium equations. One important generalization of this theory that has been
studied extensively began with the work [2], where a fissured porous medium is
characterized as two completely overlapping flow regions: one representing the
porous matrix, and the other the fissure network.
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The theory of consolidation for elastic materials with double porosity was
presented in [3–5]. The theory of Aifantis unifies the earlier proposed models
of Barenblatt for porous media with double porosity [2] and Biot’s model for
porous media with single porosity [1].

However, Aifantis’ quasi-static theory ignored the cross-coupling effects be-
tween the volume change of the pores and fissures in the system. The cross-
coupled terms were included in the equations of conservation of mass for the
pore and fissure fluid and in Darcy’s law for solid with double porosity by sev-
eral authors [6–12]. The significance of the cross-coupling effects on the pore and
fracture fluid pressure response of double porosity media was highlighted in [9],
and it is shown that by neglecting the microscopic coupling between the volu-
metric deformations of the two-pore system many of the characteristic features
of flow and deformation in double porous media cannot be simulated.

In [10, 11], the phenomenological equations of the quasi-static theory for dou-
ble porosity media are established and the method to determine the relevant co-
efficients is presented. The governing equations in the quasi-static case for fluid-
saturated double porosity media are derived in [12]. In these papers [10–12] the
cross-coupled terms were included in Darcy’s law for solids with double porosity.

The double porosity concept was extended for multiple porosity media in
[13, 14]. The basic equations of the thermo-hydro-mechanical coupling theory
for elastic materials with double porosity were presented in [15–17]. The theory
of multiporous media, as originally developed for the mechanics of naturally frac-
tured reservoirs, has found applications in blood perfusion. The double porosity
model would consider the bone fluid pressure in the vascular porosity and the
bone fluid pressure in the lacunar-canalicular porosity. An extensive review of
the results in the theory of bone poroelasticity can be found in the survey papers
[18–20]. For a history of developments and a review of main results in the theory
of porous media see [21].

In the governing equations of the above mentioned theories of poroelasticity
the inertial term was neglected and the quasi-static problems were investigated.
The fully dynamic system to describe deformation in single-porosity media was
developed in [22–24]. Obviously, the inertial effect play a pivotal role in investi-
gation of various problems of vibrations and wave propagation through double
porosity media. Therefore, it is important to study a full dynamic model for
materials with double porosity. In the present paper, we shall consider flow and
deformation processes of the double-porosity media in the case when the iner-
tia effect is included, and in the four spatial cases (steady vibrations, Laplace
transform space, quasi-static and equilibrium) of the dynamical theory, the fun-
damental solutions of the governing system of PDEs will be constructed.

The fundamental solutions have occupied a special place in the theory of
PDEs. They are encountered in many mathematical, mechanical, physical and
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engineering applications. Indeed, the application of fundamental solutions to
a recently developed area of boundary element methods has provided a distinct
advantage in the fact that an integral representation of solution of a boundary
value problem by fundamental solution is often more easily solved by numerical
methods than a differential equation with specified boundary and initial con-
ditions. Recent advances in the area of boundary element methods, where the
theory of fundamental solutions plays a pivotal role, has provided a prominent
place in research of problems in the theories of PDEs, applied mathematics, con-
tinuum mechanics and quantum physics. The fundamental solutions in the linear
theories of elasticity and thermoelasticity for materials with microstructures are
constructed by means of elementary functions by several authors [25–32]. The
fundamental solution in dynamic poroelasticity for materials with single poros-
ity is constructed in [33–35]. For historical and bibliographical material on the
fundamental solutions see [36].

This paper is concerned with the full coupled linear theory of elasticity for
solids with double porosity. The system of the governing equations is based on
the equations of motion [22–24], conservation of fluid mass [6–9], the constitu-
tive equations [3–8] and Darcy’s law for material with double porosity [10–12].
Four spatial cases of the dynamical equations are considered: equations of steady
vibrations, equations in Laplace transform space, equations of quasi-static and
equations of equilibrium. The fundamental solutions of the systems of these
PDEs are constructed by means of elementary (harmonic, biharmonic, metahar-
monic) functions. Finally, the basic properties of the fundamental solutions are
established.

2. Basic equations

Let x = (x1, x2, x3) be a point of the Euclidean three-dimensional space R3,
let t denote the time variable, t ≥ 0, u′(x, t) is the displacement vector in a solid,
u′ = (u′1, u

′
2, u

′
3); p ′1(x, t) and p ′2(x, t) are the pore and fissure fluid pressures,

respectively.
We assume that the subscripts preceded by a comma denote partial differen-

tiation with respect to the corresponding Cartesian coordinate, repeated indices
are summed over the range (1, 2, 3), and the dot denotes differentiation with
respect to t.

The governing system of field equations in the full coupled linear theory of
elasticity for solids with double porosity consists of the following equations.

1) The equations of motion [22–24]
(2.1) tlj,j = ρ(ü′l − F ′

l ), l = 1, 2, 3,

where tlj is the component of total stress tensor, ρ is the reference mass density,
ρ > 0, F′ = (F ′

1, F
′
2, F

′
3) is the body force per unit mass.
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2) The equations of fluid mass conservation [6–9]

(2.2) divv(1) + ζ̇1 + β1ėrr + γ(p′1 − p′2) = 0,

and

(2.3) divv(2) + ζ̇2 + β2ėrr − γ(p′1 − p′2) = 0,

where v(1) and v(2) are the fluid flux vectors for the pores and fissures, respec-
tively; elj is the component of strain tensor,

(2.4) elj =
1
2

(
u′l,j + u′j,l

)
, l, j = 1, 2, 3,

β1 and β2 are the effective stress parameters, γ is the internal transport coefficient
(leakage parameter) and corresponds to a fluid transfer rate with respect to
the intensity of flow between the pores and fissures, γ > 0; ζ1 and ζ2 are the
increments of fluid (volumetric strain) in the pores and fissures, respectively, and
defined by

(2.5) ζ1 = α1p
′
1 + α12p

′
2, ζ2 = α21p

′
1 + α2p

′
2,

α1 and α2 measure the compressibilities of the pore and fissure systems, respec-
tively; α12 and α21 are the cross-coupling compressibility for fluid flow at the
interface between the two-pore systems at a microscopic level [6–9]. However,
the coupling effect (α12 and α21) is often neglected (see, e.g., [3–5]).

3) The constitutive equations (extending Terzaghi’s effective stress concept
to double porosity) [3–8]

(2.6) tlj = t′lj − (β1p
′
1 + β2p

′
2)δlj , l, j = 1, 2, 3,

where t′lj = 2µelj + λerrδlj is the component of effective stress tensor, λ and µ
are the Lamé constants, δlj is the Kronecker delta.

4) Darcy’s law for material with double porosity [10–12]

(2.7)
v(1) = − 1

µ′
(
κ1 grad p ′1 + κ12 grad p ′2

)− ρ1 s(1),

v(2) = − 1
µ′

(
κ21 grad p ′1 + κ2 grad p ′2

)− ρ2 s(2),

where µ′ is the fluid viscosity, κ1 and κ2 are the macroscopic intrinsic perme-
abilities associated with matrix and fissure porosity, respectively; κ12 and κ21

are the cross-coupling permeabilities for fluid flow at the interface between the
matrix and fissure phases; ρ1, s(1) and ρ2, s(2) are the densities of fluid, the
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external forces (such as gravity) for the pore and fissure phases, respectively.
The cross-coupling terms of (2.7) with coefficients κ12 and κ21 are considered by
several authors [10–12]. However, the latter coupling effect (κ12 and κ21) is often
neglected (see, e.g., [3–5]).

Substituting equations (2.4)–(2.7) into (2.1)–(2.3), we obtain the following
system of equations of motion in the full coupled linear theory of elasticity for
solids with double porosity expressed in terms of the displacement vector u′ and
the pressures p′1 and p′2:

(2.8)

µ∆u′ + (λ + µ) grad divu′ − β1 grad p′1 − β2 grad p′2 = ρ(ü′ − F′),

k1∆p′1 + k12∆p′2 − α1ṗ
′
1 − α12ṗ

′
1 − γ(p′1 − p′2)− β1 div u̇′ = −ρ1 div s(1),

k21∆p′1 + k2∆p′2 − α21ṗ
′
1 − α2ṗ

′
2 + γ(p′1 − p′2)− β2 div u̇′ = −ρ2 div s(2),

where ∆ is the Laplacian operator, kj = κj/µ′ (j = 1, 2), k12 = κ12/µ′, k21 =
κ21/µ′.

For the body force F′, the external forces s(1) and s(2) are assumed to be ab-
sent, and for the displacement vector u′, the pressures p ′1 and p ′2 are postulated
to have a harmonic time variation, that is,

{u′, p′1, p′2}(x, t) = Re [{u, p1, p2}(x)e−iωt],

then from system of equations of motion (2.8) we obtain the following system of
homogeneous equations of steady vibrations in the full coupled linear theory of
elasticity for solids with double porosity:

(2.9)
µ∆u + (λ + µ) grad div u− β1 grad p 1 − β2 grad p2 + ρω2u = 0,

(k1∆ + a1)p1 + (k12∆ + a12)p2 + iωβ1 div u = 0,

(k21∆ + a21)p1 + (k2∆ + a2)p2 + iωβ2 div u = 0,

where aj = iω αj−γ, alj = iω αlj +γ (l, j = 1, 2); ω is the oscillation frequency,
ω > 0.

If F′ = s(1) = s(2) = 0, then the system (2.8) in the Laplace transform space
can be rewritten as

(2.10)
µ∆u + (λ + µ) grad div u− β1 grad p1 − β2 grad p2 − ρτ2u = 0,

(k1∆ + b1)p1 + (k12∆ + b12)p2 − τβ1 div u = 0,

(k21∆ + b21)p1 + (k2∆ + b3)p2 − τβ2 div u = 0,

where bj = −ταj − γ, blj = −ταlj + γ (l, j = 1, 2); τ is a complex number
and Re τ > 0. It is easy to verify that the system (2.10) may be obtained from
the system (2.9) by replacing ω by −iτ . The system (2.10) plays an important
auxiliary role in the study of dynamic problems of the full coupled linear theory
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of elasticity for solids with double porosity. As in the classical theories of elas-
ticity and thermoelasticity (see [37]), Eqs. (2.10) will be called the equations of
pseudo-oscillations in the full coupled linear theory of elasticity for solids with
double porosity.

Neglecting inertial effect (ρ = 0) in (2.8), we obtain the system of homoge-
neous equations of steady vibrations in the full coupled linear quasi-static theory
of elasticity for solids with double porosity

(2.11)
µ∆u + (λ + µ) grad divu− β1 grad p1 − β2 grad p2 = 0,

(k1∆ + a1)p1 + (k12∆ + a12)p2 + iωβ1 div u = 0,

(k21∆ + a21)p1 + (k2∆ + a2)p2 + iωβ2 div u = 0.

Obviously, in the static case (ω = 0), from (2.9) we get the following system of
homogeneous equations in the full coupled linear equilibrium theory of elasticity
for solids with double porosity

(2.12)
µ∆u + (λ + µ) grad divu− β1 grad p1 − β2 grad p2 = 0,

(k1∆− γ)p1 + (k12∆ + γ)p2 = 0,

(k21∆ + γ)p1 + (k2∆− γ)p2 = 0.

We introduce the second-order matrix differential operators with constant
coefficients:

1) A(s)(Dx) = (A(s)
lj (Dx))5×5,

A
(s)
lj (Dx) = (µ∆ + ρω2)δlj + (λ + µ)

∂2

∂xl∂xj
,

A
(s)
l;m+3(Dx) = −βm

∂

∂xl
, A

(s)
m+3;l(Dx) = iωβm

∂

∂xl
,

A
(s)
44 (Dx) = k1∆ + a1, A

(s)
45 (Dx) = k12∆ + a12,

A
(s)
54 (Dx) = k21∆ + a21, A

(s)
55 (Dx) = k2∆ + a2, m = 1, 2, l, j = 1, 2, 3.

2) A(p)(Dx) = (A(p)
lj (Dx))5×5,

A
(p)
lj (Dx) = (µ∆− ρτ2)δlj + (λ + µ)

∂2

∂xl∂xj
,

A
(p)
l;m+3(Dx) = −βm

∂

∂xl
, A

(p)
m+3;l(Dx) = −τβm

∂

∂xl
,

A
(p)
44 (Dx) = k1∆ + b1, A

(p)
45 (Dx) = k12∆ + b12,

A
(p)
54 (Dx) = k21∆ + b21, A

(p)
55 (Dx) = k2∆ + b2, m = 1, 2, l, j = 1, 2, 3.
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3) A(q)(Dx) = (A(q)
lj (Dx))5×5, A

(q)
lj (Dx) = µ∆δlj + (λ + µ)

∂2

∂xl∂xj
,

A
(q)
l;m+3(Dx) = A

(s)
l;m+3(Dx), A

(q)
m+3;n(Dx) = A

(s)
m+3;n(Dx),

m = 1, 2, l, j = 1, 2, 3, n = 1, 2, . . . , 5.

4) A(e)(Dx) = (A(e)
lj (Dx))5×5, A

(e)
lj (Dx) = A

(q)
lj (Dx),

A
(e)
l;m+3(Dx) = A

(q)
l;m+3(Dx), A

(e)
m+3;l(Dx) = 0,

A
(e)
44 (Dx) = k1∆− γ, A

(e)
45 (Dx) = k12∆ + γ,

A
(e)
54 (Dx) = k21∆ + γ, A

(e)
55 (Dx) = k2∆− γ, m = 1, 2, l, j = 1, 2, 3.

5) A(o)(Dx) = (A(o)
lj (Dx))5×5, A

(o)
lj (Dx) = µ∆δlj + (λ + µ)

∂2

∂xl∂xj
,

A
(o)
44 (Dx) = k1∆, A

(o)
45 (Dx) = k12∆, A

(o)
54 (Dx) = k21∆,

A
(o)
55 (Dx) = k2∆, A

(o)
l;m+3(Dx) = A

(o)
m+3;l(Dx) = 0, m = 1, 2, l, j = 1, 2, 3.

It is easily seen that the systems (2.9)–(2.12) can be written as

A(s)(Dx)U(x) = 0, A(p)(Dx)U(x) = 0,

A(q)(Dx)U(x) = 0, A(e)(Dx)U(x) = 0,

respectively, where U = (u, p 1, p 2) is the five-component vector function and
x ∈ R3.

The matrix differential operator A(o)(Dx) is called the principal part of the
operator A(r)(Dx), where r = s, p, q, e.

Definition 1. The operator A(r)(Dx) is said to be elliptic if [36]

detA(o)(ξ) 6= 0,

where ξ = (ξ1, ξ2, ξ3), |ξ| 6= 0, r = s, p, q, e.
Obviously, we have

detA(o)(ξ)

= det




µ|ξ|2+(λ + µ)ξ2
1 (λ+µ)ξ1ξ2 (λ+µ)ξ1ξ3 0 0

(λ+µ)ξ1ξ2 µ|ξ|2+(λ+µ)ξ2
2 (λ+µ)ξ2ξ3 0 0

(λ+µ)ξ1ξ3 (λ+µ)ξ2ξ3 µ|ξ|2+(λ+µ)ξ2
3 0 0

0 0 0 k1|ξ|2 k12|ξ|2
0 0 0 k21|ξ|2 k2|ξ|2




5×5

= µ2µ0 k |ξ|10,
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where µ0 = λ + 2µ, k = k1k2− k12k21. Hence, A(r)(Dx) is an elliptic differential
operator if and only if

(2.13) µµ0 k 6= 0,

where r = s, p, q, e. We will suppose that the assumption (2.13) holds true.

Definition 2. The fundamental matrix of operator A(r)(Dx) is the matrix
Γ(r)(x) = (Γ(r)

lj (x))5×5 satisfying condition (in the class of generalized func-
tions) [36]

(2.14) A(r)(Dx)Γ(r)(x) = δ(x)J,

where δ(x) is the Dirac delta, J = (δlj)5×5 is the unit matrix, x ∈ R3, and
r = s, p, q, e.

The matrices Γ(s),Γ(p),Γ(q) and Γ(e) are called the fundamental solutions of
systems (2.9), (2.10), (2.11) and (2.12), respectively.

In this article the matrices Γ(s), Γ(p), Γ(q) and Γ(e) are constructed in terms
of elementary functions, and some of their basic properties are established.

3. Fundamental solution of the system of steady vibrations equations

First we construct the matrix Γ(s). We consider the system of nonhomoge-
neous equations

(3.1)
µ∆u + (λ + µ) grad divu + iωβ1 grad p1 + iωβ2 grad p2 + ρω2u = f ,

(k1∆ + a1)p1 + (k21∆ + a21)p2 − β1 div u = f1,

(k12∆ + a12)p1 + (k2∆ + a2)p2 − β2 div u = f2,

where f is a three-component vector function, f1 and f2 are scalar functions
on R3. As one may easily verify, the system (3.1) may be written in the form

(3.2) A(s)T
(Dx)U(x) = F(x),

where A(s)T is the transpose of matrix A(s), F = (f , f1, f2) is a five-component
vector function and x ∈ R3.

Applying the operator div to (3.1)1 from system (3.1) we obtain

(3.3)
(µ0∆ + ρω2) div u + iωβ1∆p1 + iωβ2∆p2 = div f ,

(k1∆ + a1)p1 + (k21∆ + a21)p2 − β1 div u = f1,

(k12∆ + a12)p1 + (k2∆ + a2)p2 − β2 div u = f2.

From (3.3) we have

(3.4) B(∆)V(x) = ϕ(x),



Fundamental solutions in the full coupled theory. . . 375

where V = (divu, p 1, p 2), ϕ = (ϕ1, ϕ2, ϕ3) = (div f , f1, f2) and

B(∆) = (Blj(∆))3×3 =




µ0∆ + ρω2 iωβ1∆ iωβ2 ∆
−β1 k1∆ + a1 k21∆ + a21

−β2 k12∆ + a12 k2∆ + a2




3×3

.

We introduce the notation

Λ1(∆) =
1

kµ0
detB(∆).

It is easily seen that Λ1(−ξ) = 0 is a cubic algebraic equation and there exists
three roots λ2

1, λ2
2 and λ2

3 (with respect to ξ). Then we have

Λ1(∆) = (∆ + λ2
1)(∆ + λ2

2)(∆ + λ2
3).

The system (3.4) implies

(3.5) Λ1(∆)V = Φ,

where

(3.6) Φ = (Φ1, Φ2, Φ3), Φj =
1

kµ0

3∑

l=1

B∗
lj ϕl, j = 1, 2, 3

and B∗
lj is the cofactor of element Blj of the matrix B.

Now applying the operators Λ1(∆) to (3.1)1 and taking into account (3.5),
we obtain

(3.7) Λ2(∆)u = F1,

where Λ2(∆) = Λ1(∆)(∆ + λ2
4), λ2

4 = ρω2/µ and

(3.8) F1 =
1
µ

[Λ1(∆)f − (λ + µ) grad Φ1 − iωβ1 grad Φ2 − iωβ2 gradΦ3] .

On the basis of (3.5) and (3.7) we get

(3.9) Λ(s)(∆)U(x) = ψ(x),

where ψ = (F1, Φ2, Φ3) is five-component vector and

Λ(s)(∆) = (Λ(s)
lj (∆))5×5, Λ(s)

11 (∆) = Λ(s)
22 (∆) = Λ(s)

33 (∆) = Λ2(∆),

Λ(s)
44 (∆) = Λ(s)

55 (∆) = Λ1(∆), Λ(s)
lj (∆) = 0, l, j = 1, 2, . . . , 5, l 6= j.
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We introduce the notations

(3.10)
nj1(∆) = − 1

kµµ0
[(λ + µ)B∗

j1(∆) + iωβ1B
∗
j2(∆) + iωβ2B

∗
j3(∆)],

njl(∆) =
1

kµ0
B∗

jl(∆), j = 1, 2, 3, l = 2, 3.

In view of (3.6) and (3.10), from (3.8) we have
(3.11)

F1 =
[

1
µ

Λ1(∆)I + n11(∆) grad div
]
f + n21(∆) gradf1 + n31(∆) gradf2,

Φm = n1m(∆) divf + n2m(∆)f1 + n3m(∆)f2, m = 2, 3,

where I = (δlj)3×3 is the unit matrix.
Thus, from (3.11) we have

(3.12) ψ(x) = L(s)T
(Dx)F(x),

where

(3.13)

L(s)(Dx) = (L(s)
lj (Dx))5×5,

L
(s)
lj (Dx) =

1
µ

Λ1(∆) δlj + n11(∆)
∂2

∂xl∂xj
,

L
(s)
l;m+2 (Dx) = n1m(∆)

∂

∂xl
, L

(s)
m+2;l(Dx) = nm1(∆)

∂

∂xl
,

L
(s)
m+2;4(Dx) = nm2(∆),

L
(s)
m+2;5(Dx) = nm3(∆), l, j = 1, 2, 3, m = 2, 3.

By virtue of (3.2) and (3.12), from (3.9) it follows that ΛU = L(s)T
A(s)T

U. It
is obvious that L(s)T

A(s)T
= Λ and, hence,

(3.14) A(s)(Dx)L(s)(Dx) = Λ(s)(∆).

We assume that λ2
l 6= λ2

j , where l, j = 1, 2, 3, 4 and l 6= j. Let

(3.15)

Y(s)(x) = (Y (s)
lm (x))5×5,

Y
(s)
11 (x) = Y

(s)
22 (x) = Y

(s)
33 (x) =

∑4
j=1 η2jγ

(s)
j (x),

Y
(s)
44 (x) = Y

(s)
55 (x) =

3∑

j=1

η1jγ
(s)
j (x),

Y
(s)
lm (x) = 0, l 6= m, l, m = 1, 2, . . . , 5,
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where

(3.16) γ
(s)
j (x) = −eiλj |x|

4π |x|
is the fundamental solution of Helmholtz’ equation, i.e., (∆ + λ2

j )γ
(s)
j (x) = δ (x)

and

η1m =
3∏

l=1, l 6=m

(λ2
l−λ2

m)−1, η2j =
4∏

l=1, l 6=j

(λ2
l−λ2

j )
−1, m = 1, 2, 3, j = 1, 2, 3, 4.

Lemma 1. The matrix Y(s) is the fundamental solution of operator Λ(s)(∆),
that is,

(3.17) Λ(s)(∆)Y(s) (x) = δ (x)J,

where x ∈ R3.

P r o o f. It suffices to show that Y
(s)
11 and Y

(s)
44 are the fundamental solutions

of operators Λ2(∆) and Λ1(∆), respectively, i.e.,

(3.18) Λ2(∆)Y (s)
11 (x) = δ (x)

and
Λ1(∆)Y (s)

44 (x) = δ (x) .

Taking into account the equalities

η11 + η12 + η13 = 0, η12(λ2
1 − λ2

2) + η13(λ2
1 − λ2

3) = 0,

η13(λ2
1 − λ2

3)(λ
2
2 − λ2

3) = 1,

(∆ + λ2
l )γ

(s)
j (x) = δ (x) + (λ2

l − λ2
j )γ

(s)
j (x), l, j = 1, 2, 3, x ∈ R3,

we have

Λ1(∆)Y (s)
44 (x) = (∆ + λ2

2)(∆ + λ2
3)

3∑

j=1

η1j [δ(x) + (λ2
1 − λ2

j )γ
(s)
j (x)]

= (∆ + λ2
2)(∆ + λ2

3)
3∑

j=2

η1j(λ2
1 − λ2

j )γ
(s)
j (x)

= (∆ + λ2
3)

3∑

j=2

η1j(λ2
1 − λ2

j )[δ(x) + (λ2
2 − λ2

j )γ
(s)
j (x)]

= (∆ + λ2
3)γ

(s)
3 (x) = δ(x).

Equation (3.18) is proved quite similarly.
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We introduce the matrix

(3.19) Γ(s)(x) = L(s)(Dx)Y(s)(x).

Using identities (3.14) and (3.17) from (3.19) we get

A(s)(Dx)Γ(s)(x) = A(s)(Dx)L(s)(Dx)Y(s)(x) = Λ(s)(∆)Y(s)(x) = δ(x)J.

Hence, Γ(s) (x) is the solution of (2.14). We have thereby proved the following
theorem.

Theorem 1. If the condition (2.13) is satisfied, then the matrix Γ(s)(x) de-
fined by (3.19) is the fundamental solution of system (2.9), where the matrices
L(s)(Dx) and Y(s)(x) are given by (3.13) and (3.15), respectively.

Obviously, each element Γ(s)
lj (x) of the matrix Γ(s)(x) is represented in the

following form:

(3.20) Γ(s)
lj (x) = L

(s)
lj (Dx)Y (s)

11 (x), Γ(s)
lm(x) = L

(s)
lm(Dx)Y (s)

44 (x),

l = 1, 2, . . . , 5, j = 1, 2, 3, m = 4, 5.

Remark 1. In the case k12 = k21 = α12 = α21 = ρ = 0, the matrix Γ(s)(x)
is constructed and its basic properties are established in [30].

Remark 2. On the basis of operator L(s) (Dx) and (3.19) we can obtain the
Galerkin type representation of solution of system (2.9) (for details see [38, 39]).

Remark 3. The operator A(s) (Dx) is not self adjoined. Obviously, it is
possible to construct the fundamental solution of adjoined operator in quite
similar manner.

It is easy to verify that the fundamental solution Γ(p)(x) of the system of
equations of pseudo-oscillations (2.10), the fundamental matrix of the operator
A(p)(Dx), may be obtained from the matrix Γ(s)(x) by replacing ω by −iτ . We
have the following result.

Theorem 2. If the condition (2.13) is satisfied, then the matrix Γ(p)(x) de-
fined by

Γ(p)(x) = L(p)(Dx)Y(p)(x)

is the fundamental solution of system (2.10), where L(p)(Dx) and Y(p)(x) are
obtained from the matrix L(s)(x) and Y(s) (x) by replacing ω by −iτ , respectively.

Remark 4. The matrices Γ(s) (x) and Γ(p) (x) are constructed by 4 meta-
harmonic functions (solutions of the Helmholtz equation) γ

(s)
m (m = 1, 2, 3, 4)

(see (3.16)).
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4. Fundamental solutions of the systems of quasi-static
and equilibrium equations

By the method, developed in the previous section, we can construct the funda-
mental solutions of the systems of quasi-static equations (2.11) and equilibrium
equations (2.12).

In what follows we shall use the notations

1)

C(∆) = (Clj(∆))3×3 =




µ0∆ iωβ1∆ iωβ2 ∆
−β1 k1∆ + a1 k21∆ + a21

−β2 k12∆ + a12 k2∆ + a2




3×3

,

C′(∆) =
(
C ′

lj(∆)
)
3×3

=




µ0 iωβ1 iωβ2

−β1 k1∆ + a1 k21∆ + a21

−β2 k12∆ + a12 k2∆ + a2




3×3

.

2)

Λ(q)(∆) = (Λ(q)
lj (∆))5×5,

Λ(q)
11 (∆) = Λ(q)

22 (∆) = Λ(q)
33 (∆) = ∆Λ3(∆),

Λ(q)
44 (∆) = Λ(q)

55 (∆) = Λ3(∆), Λ(q)
lj (∆) = 0, l, j = 1, 2, . . . , 5, l 6= j,

where Λ3(∆) = ∆(∆ + ξ2
1)(∆ + ξ2

2); ξ2
1 and ξ2

2 are the roots of equation (with
respect to ξ) detC′(−ξ) = 0.

3)

mj1(∆) = − 1
kµµ0

[(λ + µ)C∗
j1(∆) + iωβ1C

∗
j2(∆) + iωβ2C

∗
j3(∆)],

mjl(∆) =
1

kµ0
C∗

jl(∆), j = 1, 2, 3, l = 2, 3,

where C∗
lj is the cofactor of element Clj of the matrix C.

4)

(4.1)

L(q)(Dx) = (L(q)
lj (Dx))5×5,

L
(q)
lj (Dx) =

1
µ

Λ1(∆)δlj + m11(∆)
∂2

∂xl∂xj
,

L
(q)
l;n+2(Dx) = m1n(∆)

∂

∂xl
, L

(q)
n+2;l(Dx) = mn1(∆)

∂

∂xl
,

L
(q)
n+2;4(Dx) = mn2(∆), L

(q)
55 (Dx) = m33(∆), l, j = 1, 2, 3, n = 2, 3.
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(4.2)

Y(q)(x) = (Y (q)
lj (x))5×5,

Y
(q)
11 (x) = Y

(q)
22 (x) = Y

(q)
33 (x) =

2∑

n=1

[cnγn(x) + cn+2γ
(q)
n (x)],

Y
(q)
44 (x) = Y

(q)
55 (x) = c2γ1(x) +

2∑

n=1

dnγ(q)
n (x), Y

(q)
lj (x) = 0,

l 6= j, l, j = 1, 2, . . . , 5,

where

(4.3) γ1(x) = − 1
4π |x| , γ2(x) = −|x|

8π
, γ(q)

n (x) = −eiξn|x|

4π|x| , n = 1, 2,

and

c1 = −ξ2
1 + ξ2

2

ξ4
1ξ

4
2

, c2 =
1

ξ2
1ξ

2
2

,

c3 =
1

ξ4
1(ξ

2
2 − ξ2

1)
, c4 =

1
ξ4
2(ξ

2
1 − ξ2

2)
,

d1 =
1

ξ2
1(ξ

2
1 − ξ2

2)
, d2 =

1
ξ2
2(ξ

2
2 − ξ2

1)
.

We introduce the matrix

(4.4) Γ(q) (x) = L(q) (Dx)Y(q) (x) .

Theorem 3. If the condition (2.13) is satisfied, then the matrix Γ(q)(x) de-
fined by (4.4) is the fundamental solution of system of quasi-static equations
(2.11), where the matrices L(q)(Dx) and Y(q)(x) are given by (4.1) and (4.2),
respectively.

Remark 1. The matrix Γ(q)(x) is constructed by harmonic (γ1), biharmonic
(γ2) and metaharmonic (γ(q)

1 and γ
(q)
2 ) functions (see (4.3)).

Now we introduce the following notations:
1)

L(e)(Dx) = (L(e)
lj (Dx))5×5, L

(e)
lj (Dx) =

1
µ

(
∆δlj − λ + µ

µ0

∂2

∂xl∂xj

)
,

L
(e)
l4 (Dx) =

1
kµ0

[(β1k2 − β2k21)∆− γ(β1 + β2)]
∂

∂xl
,(4.5)

L
(e)
l5 (Dx) =

1
kµ0

[(β2k1 − β1k12)∆− γ(β1 + β2)]
∂

∂xl
,
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L
(e)
4l (Dx) = L

(e)
5l (Dx) = 0, L

(e)
44 (Dx) =

1
k
(k2∆− γ)∆,

L
(e)
45 (Dx) = −1

k
(k12∆ + γ)∆, L

(e)
54 (Dx) = −1

k
(k21∆ + γ)∆,(4.5)[cont.]

L
(e)
55 (Dx) =

1
k
(k1∆− γ)∆, l, j = 1, 2, 3.

2)

(4.6)

Y(e)(x) = (Y (e)
lj (x))5×5, Y

(e)
11 (x) = Y

(e)
22 (x) = Y

(e)
33 (x) = γ2(x),

Y
(e)
44 (x) = Y

(e)
55 (x) =

1
ξ4
3

[γ3(x)− γ1(x)] +
1
ξ2
3

γ2(x),

Y
(e)
lj (x) = 0, l 6= j, l, j = 1, 2, . . . , 5,

where γ1(x) and γ2(x) are defined by (4.3),

γ3(x) = −eiξ3|x|

4π |x| , ξ2
3 = −γ

k
(k1 + k2 + k12 + k21).

We introduce the matrix

(4.7) Γ(e)(x) = L(e)(Dx)Y(e)(x).

Theorem 4. If the condition (2.13) is satisfied, then the matrix Γ(e)(x) de-
fined by (4.7) is the fundamental solution of system of equilibrium equations
(2.12), where the matrices L(e)(Dx) and Y(e)(x) are given by (4.5) and (4.6),
respectively.

Remark 2. The matrix Γ(e)(x) is constructed by harmonic (γ1), biharmonic
(γ2) and metaharmonic (γ3) functions. Obviously, the matrix L(e)(Dx) is not
obtained from L(s)(Dx) by replacing ω = 0.

5. Basic properties of fundamental solutions

Theorems 1–4 lead to the following results.
Theorem 5. Each column of the matrix Γ(r)(x) is a solution of homogeneous

equation
A(r)(Dx)U(x) = 0

at every point x ∈ R3 except the origin, where r = s, p, q, e.
Theorem 6. If condition (2.13) is satisfied, then the fundamental solution

of the system
A(o)(Dx)U(x) = 0

is the matrix Ψ(x) = (Ψlj(x))5×5, where
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(5.1)

Ψlj(x) =
1
µ

(
∆δlj − λ + µ

µ0

∂2

∂xl∂xj

)
γ2(x)

=
1
µ0

γ2,lj(x)− 1
µ

Rljγ2(x) = λ′
δlj

|x| + µ′
xlxj

|x|3 ,

Ψ44(x) =
k2

k
γ1(x), Ψ45(x) = −k12

k
γ1(x), Ψ54(x) = −k21

k
γ1(x),

Ψ55(x) =
k1

k
γ1(x), Ψlm = Ψml = 0, λ′ = −λ + 3µ

8πµµ0
,

µ′ = − λ + µ

8πµµ0
, Rlj(Dx) =

∂2

∂xl∂xj
−∆δlj , l, j = 1, 2, 3, m = 4, 5.

It is easy to verify that R(Dx) = (Rlj(Dx))3×3 = curl curl.
Obviously, Theorem 6 leads to the following result.
Corollary 1. The relations

(5.2) Ψlj(x) = O(|x|−1), Ψmn(x) = O(|x|−1)

hold in the neighborhood of the origin, where l, j = 1, 2, 3 and m,n = 4, 5.
We shall use the following lemma.
Lemma 2. If condition (2.13) is satisfied, then

(5.3)

∆n11(∆)=− 1
µ

Λ1(∆) +
1

kµ0
(∆ + λ2

4)B
∗
11,

n21(∆)=
iω

kµ0
(∆ + λ2

4)[β1(k2∆ + a2)− β2(k12∆ + a12)],

n31(∆)=− iω

kµ0
(∆ + λ2

4)[β1(k21∆ + a21)− β2(k1∆ + a1)].

P r o o f. Taking into account the equalities (3.10) and

(µ0∆ + ρω2)B∗
11(∆) + iωβ1∆B∗

12(∆) + iωβ2∆B∗
13(∆) = detB

we have

∆n11(∆) = − 1
kµµ0

[detB− (µ∆+ ρω2)B∗
11(∆)] = − 1

µ
Λ1(∆)+

1
kµ0

(∆+λ2
4)B

∗
11.

The formulae (5.3)2 and (5.3)3 are proven in a quite similar manner.
We introduce the notations

(5.4)

d
(m)
11 = − 1

kµ0λ2
m

η1mB∗
11(−λ2

m), d
(4)
11 =

1
ρω2

,

d
(m)
q1 = η2mnq1(−λ2

m), d
(m)
q1 = η1mn1q(−λ2

m),

d (m)
qr = η1mnqr(−λ2

m), m = 1, 2, 3, q, r = 2, 3.
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On the basis of Lemma 2 we can rewrite the fundamental solution Γ(s) (x)
in the simple form that (3.19) (or (3.20)) for x 6= 0. We have the following
result.

Theorem 7. If x 6= 0, then

(5.5)

Γ(s)
lj (x) =

3∑

m=1

d
(m)
11 γ

(s)
m,lj(x) + d

(4)
11 Rljγ

(s)
4 (x),

Γ(s)
l;q+2(x) =

3∑

m=1

d
(m)
1q γ

(s)
m,l(x), Γ(s)

q+2;l(x) =
3∑

m=1

d
(m)
q1 γ

(s)
m,l(x),

Γ(s)
q+2;r+2(x) =

3∑

m=1

d(m)
qr γ(s)

m (x), l, j = 1, 2, 3, q, r = 2, 3.

P r o o f. Let x 6= 0. It is easy to verify that

(5.6) ∆γ(s)
m (x) = −λ2

mγ(s)
m (x), δljγ

(s)
m (x) = − 1

λ2
m

(
∂2

∂xl∂xj
−Rlj

)
γ(s)

m (x),

l, j = 1, 2, 3, m = 1, 2, 3, 4.

On the other hand, from (5.3)1 it follows that

(5.7) n11(−λ2
m)− 1

µλ2
m

Λ1(−λ2
m)

= − 1
kµ0λ2

m

(λ2
4 − λ2

m)B∗
11(−λ2

m), m = 1, 2, 3, 4.

By virtue of (3.13), (3.15), (5.6) and (5.7) from (3.20) we have

(5.8) Γ(s)
lj (x) =

[
1
µ

Λ1(∆)δlj + n11(∆)
∂2

∂xl∂xj

] 4∑

m=1

η2mγ(s)
m (x)

=
4∑

m=1

η2m

[
1
µ

Λ1(−λ2
m)δlj + n11(−λ2

m)
∂2

∂xl∂xj

]
γ(s)

m (x)

=
4∑

m=1

η2m

[
− 1

µλ2
m

Λ1(−λ2
m)

(
∂2

∂xl∂xj
−Rlj

)
+ n11(−λ2

m)
∂2

∂xl∂xj

]
γ(s)

m (x)

=
4∑

m=1

η2m

[
− 1

kµ0λ2
m

(λ2
4 − λ2

m)B∗
11(−λ2

m)
∂2

∂xl∂xj
+

1
µλ2

m

Λ1(−λ2
m)Rlj

]
γ(s)

m (x).
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On the basis of (5.4) and identities

(λ2
4 − λ2

j )η2j = η1j , j = 1, 2, 3,

η2mΛ1(−λ2
m) =

{
0 for m = 1, 2, 3,

1 for m = 4,

from (5.8) we obtain

Γ(s)
lj (x) =

3∑

m=1

d
(m)
11

∂2

∂xl∂xj
γ(s)

m (x) +
4∑

m=1

1
µλ2

m

η2mΛ1(−λ2
m)Rljγ

(s)
4 (x)

=
3∑

m=1

d
(m)
11 γ

(s)
m,lj(x) + d

(4)
11 Rljγ

(s)
4 (x).

The other formulae of (5.5) can be proven quite similarly.
Theorem 7 leads to the following result.
Theorem 8. The relations

(5.9)
Γ(s)

lj (x) = O(|x|−1), Γ(s)
mq(x) = O(|x|−1),

Γ(s)
mj(x) = O(1), Γ(s)

jm(x) = O(1)

hold the neighborhood of the origin, where l, j = 1, 2, 3, m, q = 4, 5.
Lemma 3. If condition (2.13) is satisfied, then

(5.10)
3∑

m=1

d
(m)
11 = − 1

ρω2
,

3∑

m=1

λ2
md

(m)
11 = − 1

µ0
.

P r o o f. It is easy to verify that

(5.11)
B∗

11(−λ2
m) = kλ4

m + (a12k21 + a21k12 − a1k2 − a2k1)λ2
m + a,

λ2
1λ

2
2λ

2
3 =

ρω2a

kµ0
,

where a = a1a2 − a12a21. By virtue of (5.11) we obtain

3∑

m=1

1
λ2

m

η1mB∗
11(−λ2

m) =
B∗

11(−λ2
1)

λ2
1(λ

2
2 − λ2

1)(λ
2
2 − λ2

1)
+

B∗
11(−λ2

2)
λ2

2(λ
2
1 − λ2

2)(λ
2
3 − λ2

2)

+
B∗

11(−λ2
3)

λ2
3(λ

2
1 − λ2

3)(λ
2
2 − λ2

3)

=
a

λ2
1λ

2
2λ

2
3

=
kµ0

ρω2
.
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Hence, from (5.4) we have

3∑

m=1

d
(m)
11 = − 1

kµ0

3∑

m=1

1
λ2

m

η1mB∗
11(−λ2

m) = − 1
ρω2

.

Similarly, by virtue of (5.11) we obtain

3∑

m=1

η1mB∗
11(−λ2

m) =
B∗

11(−λ2
1)

(λ2
2 − λ2

1)(λ
2
3 − λ2

1)
+

B∗
11(−λ2

2)
(λ2

1 − λ2
2)(λ

2
3 − λ2

2)

+
B∗

11(−λ2
3)

(λ2
1 − λ2

3)(λ
2
2 − λ2

3)
= k.

Finally, from (5.4) we get

3∑

m=1

λ2
md

(m)
11 = − 1

kµ0

3∑

m=1

η1mB∗
11(−λ2

m) = − 1
µ0

.

Now we can establish the singular part of the matrix Γ(s) (x) in the neigh-
borhood of the origin.

Theorem 9. The relations

(5.12) Γ(s)
lj (x)−Ψlj(x) = const + O(|x|)

hold in the neighborhood of the origin, where l, j = 1, 2, . . . , 5.
P r o o f. Let x 6= 0. In view of (5.1) and (5.5) we obtain

(5.13) Γ(s)
lj (x)−Ψlj (x)

=
∂2

∂xl∂xj

[ 3∑

m=1

d
(m)
11 γ(s)

m (x)− 1
µ0

γ2(x)
]

+ Rlj

[
1

ρω2
γ

(s)
4 (x) +

1
µ

γ2(x)
]

for l, j = 1, 2, 3. In the neighborhood of the origin from (3.16) we have

(5.14) γ(s)
m (x) = − 1

4π|x|
∞∑

n=0

(iλm|x|)n

n!
= γ1(x)− iλm

4π
− λ2

mγ2(x) + γ̃m(x),

where

γ̃m(x) = − 1
4π|x|

∞∑

n=3

(iλm|x|)n

n!
, m = 1, 2, 3, 4.
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Obviously,

(5.15) γ̃m(x) = O(|x|2), γ̃m,j(x) = O(|x|), γ̃m,lj(x) = const + O(|x|),
l, j = 1, 2, 3, m = 1, 2, 3, 4.

On the basis of (5.14) from (5.13) we get

3∑

m=1

d
(m)
11 γ(s)

m (x)− 1
µ0

γ2(x) =
3∑

m=1

d
(m)
11

[
γ1(x)− iλm

4π
+ γ̃m(x)

]
(5.16)

−
( 3∑

m=1

λ2
md

(m)
11 +

1
µ0

)
γ2(x).

By virtue of equalities (5.10) from (5.16) it follows that

(5.17)
3∑

m=1

d
(m)
11 γ(s)

m (x)− 1
µ0

γ2(x)

= − 1
ρω2

γ1(x)− i

4π

3∑

m=1

λmd
(m)
11 +

3∑

m=1

d
(m)
11 γ̃m(x).

Similarly, from (5.14) we have

1
ρω2

γ
(s)
4 (x) +

1
µ

γ2(x) =
1

ρω2

[
γ1(x)− iλ4

4π
− λ2

4γ2(x) + γ̃4(x)
]

+
1
µ

γ2(x)(5.18)

=
1

ρω2
γ1(x)− iλ4

4πρω2
+

1
ρω2

γ̃4(x).

Taking into account (5.15), (5.17), (5.18) and ∆γ1(x) = 0 (x 6= 0) from (5.13)
we obtain

Γ(s)
lj (x)−Ψlj(x) = − 1

ρω2

(
∂2

∂xl∂xj
−Rlj

)
γ1(x) +

3∑

m=1

d
(m)
11 γ̃m(x) +

1
ρω2

γ̃4(x)

= − 1
ρω2

∆γ1(x) + const + O(|x|)

= const + O(|x|), l, j = 1, 2, 3.

The other formulae of (5.12) can be proved quite similar manner.
Thus, on the basis of Corollary 1 and Theorem 9 the matrix Ψ(x) is the

singular part of the fundamental solution Γ(s)(x) in the neighborhood of the
origin (see (5.2), (5.9) and (5.12)).
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Corollary 1 and Theorem 9 lead to the following results.
Theorem 10. The relations

Γ(r)
lj (x) = O(|x|−1), Γ(r)

mq(x) = O(|x|−1), Γ(r)
mj(x) = O(1),

Γ(r)
jm(x) = O(1), l, j = 1, 2, 3, m, q = 4, 5

hold in the neighborhood of the origin, where l, j = 1, 2, . . . , 5 and r = p, q, e.
Theorem 11. The relations

Γ(r)
lj (x)−Ψlj(x) = const + O(|x|)

hold in the neighborhood of the origin, where l, j = 1, 2, . . . , 5 and r = p, q, e.
Thus, the matrix Ψ(x) is the singular part of the fundamental solution

Γ(r)(x) in the neighborhood of the origin, where r = p, q, e.

6. Concluding remarks

1. On the basis of fundamental solutions of the systems (9) to (12) it is
possible:
(i) to construct the surface (single-layer and double-layer) and volume poten-

tials and to establish their basic properties (for details of the surface and
volume potentials of the classical theories of elasticity and thermoelasticity
see [37]);

(ii) to investigate 3D boundary value problems of the theory of the full cou-
pled theory of elasticity for solids with double porosity by means of the
potential method (boundary integral method) and the theory of singular
integral equations (for an extensive review of works and basic results on the
potential method in the classical theories of elasticity and thermoelasticity
see [37, 40]);

(iii) to obtain numerical solutions of the boundary value problems by using
boundary element method;

(iv) to construct the Green’s functions for the simple cases of 3D domain
(sphere, half-space and etc.).

2. By using the above mentioned method it is possible to construct the fun-
damental solutions of the systems of equations in the modern linear theories of
elasticity and thermoelasticity for homogeneous isotropic elastic materials with
microstructure.

3. Recently, the plane harmonic waves and the basic boundary value problems
of the full coupled theory of poroelasticity for materials with double porosity were
investigated in [41–44].
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