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In this article, a simple method for detecting, localizing and quantifying
multiple cracks in beams using natural frequencies is presented. We model cracks as
rotational springs and demonstrate a relationship among natural frequencies, crack
locations and depths. The main advantage of our method is that it can detect adapt-
ably the unknown number of cracks intervened. Concise, simple calculations and good
accuracy are other advantages of this method. We present a number of numerical ex-
amples for several beams to validate our method.
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Notations

a crack depth,
b beam width,
h beam height,
ki local stiffness of the ith massless rotational spring in multiple-crack model,
m number of cracks,
x Cartesian coordinate along beam length,

En modal corrected Young’s modulus of beam in the nth mode,
I second static moment of inertia of the beam cross-sectional area,
L beam length,

Mi,n resisting modal bending moment developed in the crack location i and the
mode n,

Un total modal strain energy stored in the uncracked beam in the mode n,
ρ mass density of beam (per unit volume),

βi = xi/L normalized ith crack location,
γi = ai/h normalized ith crack depth,

ωn the nth mode undamped natural frequency of uncracked beam,
∆ωn difference between the nth natural frequency of healthy and cracked beam ,
φ′′

n(β) curvature of the nth mode shape of the uncracked beam.
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1. Introduction

Increasing number of ageing structures is one of the biggest challenges
that mechanical, aerospace and civil engineering are facing. The large-scale en-
gineering structures are very expensive and it is not wisely to tag them “out-of-
service” after the passage of their preliminary design life-time, based on their
specifications defined initially when they are placed in service. At the same
time, it is of a high risk to let them remain to stay in-service without any in-
spection and monitoring. Non-destructive Testing/Evaluation (NDTE) methods,
such as ultrasonic testing, X-ray, acoustic emission (AE), acousto-ultrasonics,
Lamb wave, etc. [1] generally use local techniques for localized inspection and
monitoring of damage in structures. However, these techniques are neither eco-
nomical nor feasible for many large-scale and complex structures with limited
accessible parts [2]. Automated and on-line structural health monitoring (SHM)
methods have received an exponential attention in the last three decades. This
is due to an extra-ordinary technological progress in information technology,
sensor/actuator technology, MEMS/NEMS and other related digital age tech-
nologies and microsystems.

SHM techniques may provide us with important information about the prob-
able presence of damage scenarios like cracks in the following hierarchy: (1) to
detect damage (if any), (2) to localize them, (3) to quantify their severity, and
(4) to predict the remaining useful life of a structure. Vibration-based damage
identification based on modal testing data is one of the methods that are global
in the sense that the measured and processed data show the global dynamic char-
acteristics of a structure, such as natural frequencies and vibration mode shapes.
A change in modal data, obtained from a structure, before and after a damage
occurrence, such as a single-crack or multiple-crack damage, may be used as
a measure for detecting, localizing and assessing the crack damage intensities.

A sudden failure of structures may sustain a loss of life and property due
to damage propagation. Therefore, considerable research and many studies have
been devoted to damage detection in structures. We have classified some damage
identification algorithms by NDE methods in Fig. 1. In this figure, we have in-
cluded the relevant references [1–4]. The propagation of cracks is one of the main
causes of structural failure. Therefore, a number of studies have been devoted to
crack detection and prevention from the initiation of a crack growth. There are
a number of works considering the effects of a crack on the vibrational param-
eters of structures [5–10]. We have also classified crack detection procedures in
the literature on beam-like structures in Fig. 2. In this figure, we have included
the relevant references [1–40].

The mechanical behavior of an open crack is different from a closing
crack [14]. Most of researchers are interested in considering a fatigue crack as an
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Fig. 1. Damage detection methods in structures.
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1 References regarding transverse vibration of cracked beams: [1–4, 11–20, 22–26, 28–37, 39–40].
2 References regarding longitudinal vibration of cracked beams in addition to transverse vibration: [21,
27, 38].
3 References regarding vibration of cracked beams using Euler–Bernoulli beam theory: [1–10, 14–40].
4 References regarding vibration of cracked beams using Timoshenko beam theory: [11–13].

Fig. 2. Crack detection in beam like structures.

open crack to neglect the non-linearity effects due to a crack closure [15]. How-
ever, Matveev [16] studied the dynamic characteristics of a cantilever Euler–
Bernoulli beam with a closing edge transverse crack. The presence of multi-
ple cracks in a beam causes the dynamic response to become more involved
in comparison to a single-crack beam. Therefore, the majority of the studies
conducted in the past considered crack detection in beams with a single crack
[11–14, 16–28]. However, several studies have recently considered multiple-crack
beams [3, 4, 15, 26, 29–34, 39]. Sekhar [4] summarized different studies on
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double- and multi-crack and noted the identification methods in vibrating struc-
tures such as beams, rotors, pipes, etc. The propagation of a crack in a beam
would reduce the local stiffness at the crack location [34]. Dimarogonas [6]
suggested the use of an equivalent rotational spring at the crack location. There-
fore, in the majority of the studies, the local stiffness in a cracked beam under
flexural vibration was modeled as a massless rotational spring [3, 11, 12, 15,
18–26, 28–33, 36, 39, 40].

There are also different methods for solving the forward and inverse prob-
lems. For example, Lee [30] solved the forward problem using the finite ele-
ment method (FEM) and inverse problem using the Newton–Raphson method.
Maiti [33] considered crack detection by transfer matrix method (TMM).
Zhang et al. [37] considered the detection of multiple cracks in stepped can-
tilever beam combining wavelet analysis with TMM. At first, they found the
crack location by peaks of wavelet coefficients and then they identified the crack
depth by transform matrix. Rosales et al. [20] presented a solution for the
inverse problem with a power series technique and the use of artificial neural
networks. However, in most of the presented methods in the literature, it is nec-
essary to know the number of cracks that occurred a priori in the structure to
be able to detect them.

In this article, a crack detection algorithm is presented in order to detect
simultaneously the unknown number of cracks that occurred in the beam and
their specifications (location and severity). The accomplishment of the proposed
technique is that it can easily distinguish among different multiple-crack situ-
ations. For example, if the measured data are extracted from a multiple-crack
situation and we trick the algorithm to identify a single-crack event, our adapt-
able algorithm detects the actual number of cracks as it should do. Furthermore,
the algorithm could detect any number of cracks available if we do not have
enough information about the actual number of cracks.

2. Formulation

In this section, the formulation of multiple-crack detection in Euler–Bernoulli
beams using natural frequencies is presented. Following, a crack detection algo-
rithm is presented in order to solve the common restriction in the multiple-crack
detection problems that is the identification of the actual number of cracks de-
veloped in the beam.

2.1. Multiple-crack formulation

As shown in Fig. 3, consider a prismatic Euler–Bernoulli beam, including m
normal and open cracks at the normalized locations, β1, β2, . . . , βi, . . . βm, i.e.,
βi = xi/L, i = 1, 2, . . . ,m, 0 < β < 1.
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a)

b)

Fig. 3. a) An actual multiple-crack beam, b) cracks modeled by equivalent rotational springs.

Each crack can be modeled as a massless rotational spring with the stiffness
of ki, which can be written as follows [10]:

(2.1) ki =
Ebh2

72πf(γi)
,

where f(γ) is the correction function as follows:

f(γ) = 0.6384γ2 − 1.035γ3 + 3.7201γ4 − 5.1774γ5(2.2)

+ 7.553γ6 − 7.3324γ7 + 2.4909γ8.

Using Rayleigh’s quotient for healthy and cracked beams and some simplifica-
tions, one can obtain a relation between the natural frequencies of healthy and
cracked beams and the crack parameters, as follows:

(2.3)
∆ωn

ωn

∼=
∑m

i=1

M2
i,n

2ki

2Un
,

Equation (2.3) is the principal and well-known equation, which is used in crack
detection problems. In order to use Eq. (2.3) in our crack detection algorithm,
the equation is rewritten in the following form [39]:

(2.4)
∆ωn

ωn
= ψn

m∑

i=1

φ′′ 2n (βi)

ki
, n = 1, 2, . . . , N,

where the crack-independent modal parameter ψn is defined as

(2.5) ψn ≡ EI

2L
∫ 1
0 [φ′′n(β)]2 dβ

.
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In general, as the natural frequencies and mode shapes of the healthy beam
are obtained from a theoretical solution, they slightly differ from natural fre-
quencies of cracked beam which are extracted from either experiments or finite
element solutions. Without considering this point, the errors of crack detection
problem may increase.

Therefore, we may adjust the beam Young’s modulus in each mode, in order
to equalize the measured (simulated) and analytical natural frequencies of the
uncracked beam in the corresponding mode. In this way, which is called “zero
setting” [40], there would be a possibility to have different Young’s modulus in
each mode for just one uncracked beam, as follows:

(2.6) En =

(
ωmeasured

ωanalytical

)2

n

×E.

Based on this technique, we may adjust the beam Young’s modulus in each
mode, in order to equalize the measured and analytical natural frequencies of
the uncracked beam in the corresponding mode. In this way, there is a possibility
that we have different Young’s modulus in each mode for just one uncracked
beam.

Therefore, we need to modify the ψn parameters obtained from Eq. (2.5), as:

(2.7) ψn ≡ EnI

2L
∫ 1
0 [φ′′n(β)]2 dβ

.

The unknown parameters in the common crack detection problem are the nor-
malized spatial coordinates βi, and γi, i = 1, 2, . . . ,m, if we would have a proba-
ble situation of m-crack identification. Thus, for obtaining 2m unknown parame-
ters mentioned above, we need 2m independent algebraic equations to be solved
simultaneously. We provide these equations by measuring 2m natural frequencies
of the intact and cracked beams. Finally, by using the basic equations (2.4) and
(2.5), we transform the solution of a nonlinear optimization problem into the
solution of 2m simultaneous nonlinear algebraic equations, as follows:

(2.8)

{
∆ωj

ωj

}

2m×1

= diag (ψj)2m×2m[φji]2m×m

{
1

ki

}

m×1

,

where

(2.9) φji = φ′′ 2j (βi), j = 1, 2, . . . , 2m, i = 1, 2, . . . ,m.

As an example, for triple-crack damage identification, localization and quantifi-
cation, m = 3, we need to solve the following system of algebraic equations:
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(2.10)
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Therefore, we obtain the unknown parameters βi and ki, and knowing ki param-
eters, we can easily obtain γi parameters.

2.2. Unknown number of crack identification algorithm

In this section, we present a damage detection algorithm to predict the num-
ber of cracks incurred in the beam in addition to the detection problem of crack
parameters. The anticipation of the number of cracks at the first step of the solu-
tion procedure may seem as a limitation. Furthermore, if assumed that the num-
ber of cracks would be many more than the actual one, the procedure of solution
algorithm and checking the results would be more complicated. It is necessary
to mention that we do not need to know how many cracks exist in order to exe-
cute our algorithm successfully. Generally, we formulate Eq. (2.8) for an m-crack
identification challenge; however, our algorithm could have enough flexibility and
adaptability to detect the actual number of m cracks that developed, from zero to
a maximum number ofm cracks. This fact authorizes us to develop only a general
relationship, and to run the computational task only once, while our numerical
procedure enables us to predict the actual number of cracks that developed.

In the presented algorithm, we use the following idea. We start our procedure
by considering the least number of cracks that we could expect. Then, if we obtain
a “zero” for the crack depth in the results, it means that our primary assumption
about the number of cracks should be more than that of the actual one. Thus,
we could solve the problem correctly, although we could reduce our primary
assumption and resolve the problem. However, if we do not obtain a zero for the
crack depth in the results, it could mean that our predicted number of cracks
might be false and the results could be unreliable. Therefore, we should increase
the number of cracks and solve the problem again, until we would obtain at least
one “zero” in the depth of the cracks.

Note that we could start our algorithm by considering a large number of
cracks in the beam, therefore, we could obtain zeros for some crack depths and
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the actual number of cracks would be obtained. However, this would cause more
complicated and time-consuming computations as well as more errors. Therefore,
the algorithm suggests starting the procedure considering the least expected
number of the cracks. This algorithm can be programmed easily. In the following
examples, the use of presented algorithm in the crack detection problem is shown.

3. Numerical examples

In this section, we present some numerical examples in order to validate our
presented algorithm. The examples are provided for single- and double-crack
beams.

3.1. Example 1: single-crack beam

In this example, we utilize a prismatic rectangular cross-section beam with
the properties listed in Table 1. To prove our assertion, in this example, we
set our default for a double-crack beam, while, in simulated data, there exists
only one crack. Thus, we organize our algorithm for a double-crack detection
situation, as follows:

(3.1)
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Table 1. Geometrical and material properties.

Length, Height×width, Young’s modulus, Poisson’s ratio, Mass density,

L [m] b× h [m2] E [Pa] ν ρ [kg/m3]

0.24 0.02 × 0.012 2.1 × 10 11 0.3 7860

We need to know four natural frequencies of the intact and cracked beams for
solving Eq. (3.1). For modeling and free vibration analysis of the cracked beam,
we have used an FEM processing software package. We have modeled a top
surface crack, as a 0.5 mm wide V-notch, in a cross-section normal to the beam
axis. We have utilized an eight-node 3D solid FE with very fine mesh around
the crack. We list the resulting natural frequencies of the single-crack beam in
Table 2.
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Table 2. Natural frequencies obtained by FE for a single-crack cantilever beam.

Case no.
Crack location and size Natural frequencies (Hz)

β γ ω1 ω2 ω3 ω4

Uncracked beam
Analytical 289.92 1816.93 5087.45 9969.38

FE 288.25 1751.3 4688.1 8670.8

1 0.6 0.3 286.16 1642.2 4518.4 8595.4

2 0.3 0.2 282.03 1741.7 4577.6 8625.6

We obtain the required vibration mode shapes of the intact beam and correct
them using Eq. (2.6). As it can be seen, the system of equations is nonlinear. To
solve the system of equations (3.1), we implement an m.file in MATLAB, based
on the fsolve function [39]. As this method depends on an initial guess to solve
the set of equations, it may introduce a local minimum as the result rather than
a global minimum. Therefore, we divide the solution domain (βi, γi) into several
subdomains and choose an initial guess from each subdomain. In this way we
obtain a set of initial guesses that covers the entire solution domain. The equa-
tions are solved using the obtained initial guesses and the best solution is chosen
as the result. The outputs of this code are the best solution satisfying Eq. (3.1).

If the i-th normalized crack size (γi) is less than 0.05, we assume there is no
crack in the i-th location. By enforcing a “zero” for both normalized parameters
of γi and βi corresponding to the ignorable crack, we resolve Eq. (3.1) and we
use the final results. For the presented cracked beam, i.e., β = 0.6 and γ = 0.3,
we obtain the following results for the first run of the algorithm:

β1 = 0.605, γ1 = 0.281,

β2 = 0.450, γ2 = 0.029.

As we may observe, the normalized crack depth is less than 0.05, i.e., γ2 = 0.029.
Accordingly, as mentioned previously, we set β2 = 0 and γ2 = 0, resolve equations
and obtain the following results:

β1 = 0.600, γ1 = 0.281.

Regarding the obtained results, the percent relative errors of damage parameters
by our algorithm are:

% error(β) = 0.0, % error(γ) = −1.9.

Another example is solved and tabulated in Table 3 as the case No. 2 for a single-
crack beam. Note that as we use four natural frequencies in our crack detection
procedure, we are in a position to believe that we may not encounter the challenge
of non-uniqueness results.
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Table 3. Comparison of predicted and simulated crack locations and sizes for the

single-crack cantilever beam from Table 2.

Case no. Step 1 Results % error(β) % error(γ)

1
β1 = 0.605 γ1 = 0.281

β1 = 0.600 γ1 = 0.281 0.0 −1.9
β2 = 0.450 γ2 = 0.029

2
β1 = 0.310 γ1 = 0.191

β1 = 0.308 γ1 = 0.191 0.8 −0.9
β2 = 0.310 γ2 = 0.001

3.2. Example 2: double-crack beam

In this example, we utilize the same beam as in Example 1. For instance,
consider the case No. 1 from Table 4. Two cracks are modeled in the beam with
the following specifications:

β1 = 0.2, γ1 = 0.3,

β2 = 0.4, γ2 = 0.2.

The first six natural frequencies of this beam are shown in Table 4. In this
example, we consider that our beam contains two cracks as the initial guess.
Thus, we organize our algorithm for a double-crack detection situation as in
Eq. (3.1).

Solving the set of equations, we obtain the following results:

β1 = 0.212, γ1 = 0.277,

β2 = 0.404, γ2 = 0.194.

As it can be seen, there is no “zero” in our results for cracks depth. Therefore,
in this section we cannot conclude that our beam is a double-crack beam.

To solve this problem, we continue our algorithm assuming that the beam
contains three cracks. Solving Eq. (2.10) with this assumption we obtain the
following results:

β1 = 0.212, γ1 = 0.277,

β2 = 0.402, γ2 = 0.188,

β3 = 0.5822, γ3 = 0.038.

It can be seen that one of the crack depths, i.e., 0.038, is less than 0.05 and can
be considered as zero. Therefore, we can conclude that our beam has two cracks
with the following specifications:

β1 = 0.212, γ1 = 0.277,

β2 = 0.404, γ2 = 0.194.
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Table 4. Natural frequencies obtained by FE for a double-crack cantilever beam.

Case no.
Crack location and size Natural frequencies (Hz)

β1 γ1 β2 ω2 ω1 ω2 ω3 ω4 ω5 ω6

Uncracked

beam

Analytical 289.92 1816.93 5087.45 9969.38
16

480

22

613

FE 288.25 1751.3 4688.1 8670.8
13

441

18

770

1 0.2 0.3 0.4 0.2 263.92 1713.1 4521.6 8224.6
12

796

18

720

2 0.15 0.2 0.35 0.25 269.78 1705.3 4531.7 8575.5
12

752

18

223

And the prediction errors are as follows:

%error(β1) = 1.2, %error(γ1) = −2.3,

%error(β2) = 0.4, %error(γ2) = −0.6.

Another example is solved and presented in Table 5 as the case No. 2 for a double-
crack beam.

We can start our algorithm by assuming that a large number of cracks oc-
curred in the beam and then eliminate the zero depth cracks from our results;
however, this assumption will considerably increase the CPU time needed to
solve the algorithm.

Table 5. Comparison of predicted and simulated crack locations and sizes for the

double-crack cantilever beam from Table 4.

Case
no.

Step 1 Step 2 Results % error(β) %error(γ)

1 β1 =0.212 γ1 =0.277 β1 =0.212, γ1 =0.277 β1 =0.212, γ1 =0.277 (β1): 1.2 (γ1): −2.3

β2 =0.404, γ2 =0.194 β2 =0.402, γ2 =0.188 β2 =0.404, γ2 =0.194 (β2): 0.4 (γ2): −0.6

β3 =0.5822, γ3 =0.038

2 β1 =0.16, γ1 =0.184 β1 =0.161, γ1 =0.186 β1 =0.16, γ1 =0.184 (β1): 1 (γ1): −1.6

β2 =0.357, γ2 =0.242 β2 =0.163, γ2 =0.014 β2 =0.357, γ2 =0.242 (β2): 0.7 (γ2): −0.8

β3 =0.365, γ3 =0.253

4. Conclusion

In this article, a simple method for detecting, localizing and quantifying mul-
tiple cracks in beams using natural frequencies was presented. We modeled cracks
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as rotational springs and demonstrated a relationship among natural frequen-
cies, crack locations and depths. The main advantage of presented algorithm
was that it could detect any number of cracks available if we could not have
enough information about the actual number of cracks. Furthermore, the algo-
rithm was adaptable to detect actual number of cracks that incurred despite the
fact that we misguided it by a wrong assumption about the number of cracks.
The presented crack detection algorithm is feasible for computer programming.
In the presented examples, the algorithm could find the actual number of cracks
successfully with an arbitrary initial guess about that number. Furthermore, the
algorithm could detect crack locations and depths with acceptable accuracies.
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