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Axi-symmetric motion of a porous approximate sphere
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The creeping motion of a porous approximate sphere at the instant it passes the
center of an approximate spherical container with Ochoa-Tapia and Whitaker’s stress
jump boundary condition has been investigated analytically. The Brinkman’s model
for the flow inside the porous approximate sphere and the Stokes equation for the flow
in an approximate spherical container were used to study the motion. The stream
function (and thus the velocity) and pressure (both for the flow inside the porous
approximate sphere and inside an approximate spherical container) are calculated.
The drag force experienced by the porous approximate spherical particle and wall
correction factor are determined in closed forms. The special cases of porous sphere
in a spherical container and oblate spheroid in an oblate spheroidal container are
obtained from the present analysis. It is observed that drag not only changes with
the permeability of the porous region, but as the stress jump coefficient increases,
the rate of change in behavior of drag increases.
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1. Introduction

The problems of the motion of a particle at the instant it passes the center
of the spherical container serves as a model of interaction in multi-particle sys-
tems. This class of problems is important because it provides some information
on wall effects. Wall effects for a sphere at the instant it passes the center of
the spherical container have been studied by many authors and these studies
were summarized by Oseen [1], Happel and Brenner [2], Kim and Kar-

rila [3], and Jones [4]. A survey of literature regarding the fluid flows past and
within porous bodies indicates that while abundant information is available for
flows in an infinite expanse of fluid, very little information is available for flows
in enclosures. Cunningham [5] and Williams [6], independently, considered
the motion of a solid sphere in a spherical container. Haberman and Sayre [7]
have made an analogous study for the motion of an inner Newtonian fluid sphere.
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Ramkissoon and Rahaman investigated the motion of inner non-Newtonian
(Reiner–Revlin) fluid sphere in a spherical container [8] and a solid spherical
particle in a spheroidal container [9]. The problem of Stokeslet outside a rigid
spherical particle was first solved by Oseen [1]. Maul and Kim [10, 11] studied
the Stokes equations for a point force in a fluid domain bounded by a rigid
spherical container and the image of a point force in a spherical container and
its connection to the Lorentz reflection formula. A spherical envelope approach
to ciliary propulsion was studied by Blake [12]. The Stokes mobility functions
for translation and rotation of the spherical particle in a spherical cavity is in-
vestigated by Felderhof and Sellier [13]. The flow problems of the motion
of a porous particles in a container have been modeled by using Stokes’ version
of the Navier–Stokes equations for the flow inside the container and Darcy’s law
or Brinkman’s equation to describe the flow within the porous particles.

Joseph and Tao [14] considered the creeping flow past a porous spherical
shell immersed in a uniform viscous incompressible fluid using Darcy’s law for
the flow inside the porous region and Stokes equations for the fluid outside the
sphere. They have taken the boundary conditions as continuity of normal velocity
and pressure at the surface of the porous sphere and no-slip of tangential velocity
component of the free fluid. They found that the drag on the porous sphere is
the same as that of a rigid sphere with reduced radius. The usage of no-slip
condition at the permeable surface was not satisfactory and indeed a slip occurs
at the boundary as shown by Beavers and Joseph [15]. To accommodate this,
they proposed a slip boundary condition for plane boundaries is

∂u

∂y
=

λ√
k
(u−Q),

where u is the velocity parallel to the surface, y is the coordinate normal to
the surface, Q is the velocity inside the porous medium, k is the permeability
and λ is a dimensionless constant whose value depends on the properties of the
porous medium. Their experimental values showed a reasonable agreement with
the values predicted by this condition. Using a statistical approach to extend
Darcy’s law to non-homogeneous porous media, Saffman [16] gave a theoretical
justification of the condition proposed by Beavers and Joseph [15]. He showed
that in the limit k → 0

u =

√
k

λ

∂u

∂y
+O(k)

at the boundary. For small values of k, Saffman’s condition is more appropriate
than the usual no-slip condition.

Using Saffman’s boundary conditions at the surface of the sphere, Pad-

mavathi et al. [17] have studied the creeping flow past a porous sphere im-
mersed in a uniform viscous incompressible fluid using Darcy’s law. It was shown
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therein that the torque on a porous sphere is always less than that on a rigid
sphere, whereas the drag in general is not. On the other hand, Sutherland and
Tan [18] have used the continuity of normal velocity, pressure and the tangential
velocity component.

However Darcy’s law appears to be inadequate for the flows with high poros-
ity, and large shear rates and for flows near the surface of the bounded porous
medium. To model such flows a modification of Darcy’s law was proposed by
Brinkman [19] and Debye and Bueche [20] independently. The validity of
this equation was confirmed by experimental verification of Ooms et al. [21] and
Matsumoto and Suganuma [22] and theoretically justified by Tam [23] and
Lundgren [24]. Qin and Kaloni [25] considered the creeping flow past and
through a porous sphere using Brinkman’s law for the flow inside the porous
region and Stokes equations for the fluid outside the sphere. Zlatanovski [26]
has studied the axisymmetric flow past a porous prolate spheroidal particle us-
ing the Brinkman model for the flow inside the spheroidal particle and Stokes
model for the free flow region. The quasisteady translation and steady rotation
of a spherically symmetric composite particle composed of a solid core and a sur-
rounding porous shell located at the center of a spherical cavity filled with an
incompressible Newtonian fluid is studied by Keh and Chou [27]. The quasis-
teady translation and steady rotation of a spherically symmetric porous shell
located at the center of a spherical cavity filled with an incompressible New-
tonian fluid is investigated analytically by Keh and Lu [28]. The motion of
a porous sphere in a spherical container using Brinkman’s model in the porous
region was studied by Srinivasacharya [29]. The solution of the problem of
symmetrical creeping flow of an incompressible viscous fluid past a swarm of
porous approximately spheroidal particles with Kuwabara boundary condition
(i.e., the vanishing of vorticity on the boundary) is investigated by Deo and
Gupta [30]. The flow problem of an incompressible axisymmetrical quasisteady
translation and steady rotation of a porous spheroid in a concentric spheroidal
container are studied analytically by Saad [31]. All these authors [25]–[31] have
used continuity of the velocity, pressure and tangential stresses at the porous-
liquid interface. This continuity of both velocity and stress (built on the effective
viscosity) at the interface is easily achieved since the Brinkman equation and the
Stokes equation are of the same order. Nield [32] pointed out that the continuity
of stress at the interface is clearly valid at the microscopic level (in the pores)
but not necessarily for the average macroscopic stress. Tomar and Uri [33]
showed that planar averaging of the microscopic solution exhibits a continuous
shear stress within the fluid phase and within the porous phase. This continuity
breaks down when moving from the fluid to the porous domain across a sharp
interface, due to a momentum transfer to the solid phase which occurs below the
interface but absent above it. Ochoa-Tapia and Whitaker [34, 35] reasoned
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that due to spatial changes of the local porous structure that characterize the
interface region, the macroscopic conservation equations in both homogeneous
fluid and porous regions may not be satisfied. In order to handle this difficulty
in the context of volume averaging, they have developed the momentum transfer
condition at the boundary between a porous medium and a homogeneous fluid
as a jump condition. This is known as stress jump boundary condition and is
given by

ǫ−1∂u
p

∂y
− ∂ul

∂y
=

σ√
k
up,

where up, ul are tangential velocity components in porous region and liquid
region respectively, ǫ is the porosity, k is the permeability of the homogeneous
portion of the porous region and σ is the stress jump coefficient. If σ 6= 0, there
is a discontinuity in the shear stress at the porous-liquid interface. This jump
condition is constructed to join Darcy’s law with the Brinkman correction to
Stokes equations. Experimentally it has been verified that the jump coefficient
σ varies in the range −1 to 1 [34–37]. Kuznetsov [36, 37] used this stress jump
boundary condition at the interface between a porous medium and a clear fluid
to discuss flow in channels partially filled with porous medium. Valdés-Parada

et al. [38] have computed the jump coefficient for unidirectional channel flow,
where it is shown that the jump coefficient explicitly depends on porosity and
Darcy number (Da = k/a2). Raja Sekhar and Bhattacharyya [39] used
stress jump boundary condition while discussing the Stokes flow of a viscous
fluid inside a sphere with internal singularities, enclosed by a porous spherical
shell. They concluded that the fluid velocity at a porous-liquid interface varies
with the stress jump coefficient.

Fig. 1. The physical situation and the coordinate system (m = 20, a = 1, b = 0.4). The
equation of the porous approximate sphere is r = a[1 +

P

∞

m=2
βmϑm(ζ)] ≡ ra. The equation

of an approximate spherical container is r = b[1 +
P

∞

m=2
γmϑm(ζ)] ≡ rb.
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In this paper, we consider the creeping motion of a porous approximate sphere
at the instant it passes the center of an approximate spherical container. We have
used the Brinkman’s model for the flow inside the porous approximate sphere
and Stokes’ model for the flow within the approximate spherical container. As
boundary conditions, continuity of the velocity, pressure and the slip condition at
the interface proposed by Ochoa-Tapia are employed. The stream function and
the pressure for both the flows inside porous particle and within an approximate
spherical container are calculated to the first order in the small parameter char-
acterizing the deformation. The drag experienced by the porous approximate
sphere and wall effects are studied numerically.

2. Formulation of the problem

Consider a porous approximate spherical particle passing the center of an
approximate spherical vessel containing an incompressible Newtonian viscous
fluid. This is equivalent to the inner particle at rest while the outer approximate
spherical container moves with a constant velocity U in the negative Z-direction.
The porous medium is assumed to be homogeneous and isotropic. Let (r, θ, φ)
denote a spherical polar co-ordinate system with the origin at the center of the
sphere of radius a.

Let the equation of the inner (porous) approximate sphere be

r = a
[

1 +
∞∑

m=2

βmϑm(ζ)
]

≡ ra

and an approximate spherical container be

r = b
[

1 +

∞∑

m=2

γmϑm(ζ)
]

≡ rb,

where the βm and γm are small, ζ = cos θ, ϑm(ζ) is the Gegenbauer function [2]
of the first kind of order m and degree −1/2. If all the βm and γm are zero,
the approximate spheres reduce to spheres of radii a and b. The liquid region
(ra ≤ r ≤ rb) and the porous region (r ≤ ra) are denoted by regions I and II
respectively. We assume that the flow within an approximate spherical container
is the Stokesian, and Brinkman’s law [19] governs the flow inside the porous
approximate sphere.

The equations of motion for the region within an approximate spherical con-
tainer (region I) are

∇ · q(1) = 0,(2.1)

∇p(1) + µ∇×∇× q(1) = 0,(2.2)
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where q(1) is the volumetric average of the velocity, µ is the coefficient of viscosity
and p(1) is the average of the pressure.

For the region inside the porous approximate sphere (region II), the equations
of motion are

∇ · q(2) = 0,(2.3)

∇p(2) +
µ

k
q(2) + µ∇×∇× q(2) = 0,(2.4)

where q(2) is the volumetric average of the velocity,µ is the coefficient of viscos-
ity, p(2) is the average of the pressure, and k is the permeability of the porous
medium.

Since the flow of the fluid is in the meridian plane and the flow is axially
symmetric, all the physical quantities are independent of φ. Hence, we assume
that the velocity vectors q(1) and q(2) in the form

(2.5) q(i) = u(i)(r, θ) er + v(i)(r, θ) eθ, i = 1, 2,

where (er, eθ, eφ) are unit base vectors in spherical polar co-ordinates.
Introducing the stream functions ψ(i)(r, θ), i = 1, 2, through

(2.6) u(i) = − 1

r2 sin θ

∂ψ(i)

∂θ
, v(i) =

1

r sin θ

∂ψ(i)

∂r
, i = 1, 2,

in (2.2) and (2.4) and eliminating pressure from the resulting equations, we get
the following dimensionless equations for ψ(i), i = 1, 2:

E4 ψ(1) = 0,(2.7)

E2 (E2 − α2)ψ(2) = 0,(2.8)

where α2 = a2/k and E2 =
∂2

∂r2
+

(1 − ζ2)

r2
∂2

∂ζ2
is the Stokesian stream function

operator.

3. Boundary conditions

To determine the flow velocity and pressure outside and inside the porous
approximate sphere, we use the following boundary conditions:

(i) The normal velocity component is continuous at the boundary of the ap-
proximate sphere,

(3.1) u(1)(r, θ) = u(2)(r, θ) on r = ra.
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(ii) The tangential velocity component is continuous at the boundary of the
approximate sphere,

(3.2) v(1)(r, θ) = v(2)(r, θ) on r = ra.

(iii) Continuity of the pressure distributions at the boundary of the approxi-
mate sphere,

(3.3) p(1)(r, θ) = p(2)(r, θ) on r = ra.

(iv) Ochoa-Tapia’s stress jump boundary condition for tangential stress,

(3.4)
∂v(2)

∂r
− ∂v(1)

∂r
=

σ√
k
v(2) on r = ra,

where σ is the stress jump coefficient. σ is a constant of order one and the sign
of σ may either be positive or negative.

On the outer sphere, the condition of impenetrability leads to

(3.5) u(1)(r, θ) = −U cos θ and v(1)(r, θ) = U sin θ on r = rb,

and the condition that velocity and pressure must have no singularities anywhere
in the flow field.

The boundary conditions from Eqs. (3.1) to (3.5) in terms of the stream
function in dimensionless form are

(3.6)
ψ(1)(r, θ) = ψ(2)(r, θ), ψ

(1)
r (r, θ) = ψ

(2)
r (r, θ)

ψ
(2)
rr − ψ

(1)
rr = ασ ψ

(2)
r , p(1)(r, θ) = p(2)(r, θ)

}

on r = 1 + βmϑm(ζ),

and

(3.7) ψ(1)(r, θ)=
1

2
r2 sin2 θ, ψ(1)

r (r, θ)=r sin2 θ on r = (1/η)[1+ γmϑm(ζ)],

where η = a/b.

4. Solution of the problem

For the region I, the solution of (2.7) which is nonsingular everywhere in the
flow region is

(4.1) ψ(1) =
∞∑

n=2

[An r
n +Bn r

−n+1 + Cn r
n+2 +Dn r

−n+3]ϑn(ζ),
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For the region II, the solution of (2.8) which is finite as r → 0 is given by

(4.2) ψ(2) =
∞∑

n=2

[En r
n + Fn

√
r In−1/2(αr)]ϑn(ζ),

where In−1/2(αr) denotes the modified Bessel function of the first kind of order
n− 1/2. Using Eqs. (4.1) and (4.2), the expressions for the pressure in the both
flow regions are

p(1) = −
∞∑

n=2

[

Cn

(
4n+ 2

n− 1

)

rn−1 −Dn

(
6 − 4n

n

)

r−n

]

Pn−1(ζ),(4.3)

p(2) = α2
∞∑

n=2

En

(
rn−1

n− 1

)

Pn−1(ζ),(4.4)

where Pn is the Legendre function of first kind.
We first propose to develop the solution corresponding to the boundaries r =

1+βm ϑm(ζ) and r = (1/η)[1+γmϑm(ζ)]. Assume that the coefficients βm and γm

are sufficiently small so that squares and higher powers of βm and γm can be ne-
glected [2], i.e., ry ≈ 1+yβmϑm(ζ) and ry ≈ (1/ηy)[1+yγmϑm(ζ)], where y is pos-
itive or negative. Comparison of Eqs. (4.1) and (4.2) with those obtained in case
of flow of an incompressible viscous fluid past a porous sphere in spherical con-
tainer [27, 29], indicates that the terms involving An, Bn, Cn, Dn, En and Fn for
n > 2 are the extra terms which are not present in case of sphere. The body that
we are considering now is an approximate sphere and the flow generated is not ex-
pected to be much different from the one generated by flow past a porous sphere.
Also the coefficients An, Bn, Cn,Dn, En and Fn for n > 2 are of order βm and the
coefficients An, Bn, Cn and Dn for n > 2 are of order γm. Therefore, while im-
plementing the boundary conditions, we ignore the departure from the spherical
form and set in (3.6) r = 1 in the terms involving An, Bn, Cn, Dn, En and Fn for
n > 2 and in (3.7) r = 1/η in the terms involving An, Bn, Cn and Dn for n > 2.

Applying the boundary conditions (3.6) and (3.7) to the first order in βm and
γm, we have evaluated all the coefficients appearing in the stream functions (4.1)
and (4.2). These coefficients are mentioned in the Appendix. Thus, the stream
functions for the regions I and II are given by

ψ(1) = [A2r
2 +B2r

−1 + C2r
4 +D2r]ϑ2(ζ)(4.5)

+

∞∑

m=2

{[Am−2r
m−2 +Bm−2r

−m+3 + Cm−2r
m +Dm−2r

−m+5]ϑm−2(ζ)

+ [Amr
m +Bmr

−m+1 + Cmr
m+2 +Dmr

−m+3]ϑm(ζ)

+ [Am+2r
m+2 +Bm+2r

−m−1 + Cm+2r
m+4 +Dm+2r

−m+1]ϑm+2(ζ)},
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ψ(2) = [E2r
2 + F2

√
r I3/2(αr)]ϑ2(ζ)(4.6)

+

∞∑

m=2

{[Em−2r
m−2 + Fm−2

√
r Im−5/2(αr)]ϑm−2(ζ)

+ [Emr
m + Fm

√
r Im−1/2(αr)]ϑm(ζ) + [Em+2r

m+2

+ Fm+2

√
r Im+3/2(αr)]ϑm+2(ζ)}.

Hence velocity components are determined. In case the porous approximate
sphere is r = a[1 +

∑∞
m=2 βmϑm(ζ)] and approximate spherical container is

r = b[1 +
∑∞

m=2 γmϑm(ζ)], we employ the above technique for each m and
obtain the expressions for the stream functions for the regions I, and II by su-
perimposition of the expressions thus obtained.

5. Drag on the body and wall effects

The drag experienced by the inner approximate sphere is given by

(5.1) D = µπ

π∫

0

̟3 ∂

∂r

(

E2ψ(1)

̟2

)

r dθ,

where ̟ = r sin θ.
Using Eq. (4.1) and carrying out the integration it is found that

(5.2) D = 4πµUa[D2 +D′
2],

where D2 and D
′

2 are given in Appendix. The coefficients D2 and D′
2 are the

Stokeslet coefficients of the stream function (4.1), which only contribute to the
drag force.

As b → ∞ (or η → 0), we get the drag on a porous approximate sphere in
the case of streaming in an unbounded medium,

(5.3) D∞ = 4πµUa

[(

∆7 +
1

5
∆8β2 +

2

35
∆9 β4

)

/∆6

]

,

where ∆6, ∆7, ∆8, ∆9 are given in Appendix.
It is interesting to note that although the boundary surface is given by r =

a[1 +
∑∞

m=2 βmϑm(ζ)] and r = b[1 +
∑∞

m=2 γmϑm(ζ)], only the coefficients β2,
β4, γ2 and γ4, contribute to the drag. This implies that the drag on the porous
approximately spherical shell is relatively insensitive to the details of the surface
geometry. This is similar to the observation made by Srinivasacharya [40].

The changes of shape from porous sphere to porous approximate sphere and
spherical container to approximate spherical container are shown in Fig. 2. The
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a) b)

Fig. 2. The shape of the body with varying deformation parameters of the inner sphere
(β2 = β4 = β), the outer sphere (γ2 = γ4 = γ) and the separation parameter η = 0.5.

variation of the drag coefficient DN = D/(4πµUa) for various values of normal-
ized permeability k1 (= 1/α2), the inner deformation parameter β (β2 = β4 = β),
and the outer deformation parameter γ (γ2 = γ4 = γ) with no effect of the stress
jump coefficient (σ = 0) is shown in Fig. 3. From Fig. 3a, it is observed that the
drag coefficient is decreasing as the permeability is increasing. There is a slight
increase in the drag coefficient as the deformation parameter of the porous sphere

a) b)

Fig. 3. Variation of the drag coefficient DN with normalized permeability k1 for various
values of β: a) γ = 0.0, σ = 0, η = 0.6; b) γ = 0.15, σ = 0, η = 0.6.
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(β) is increasing. It is interesting to note that the drag coefficient on the porous
sphere is less than the one on porous approximate sphere in presence of spheri-
cal cavity. Figure 3b shows the variation of the DN with the deformation of the
porous sphere (β) when the spherical container is perturbed (γ = 0.15). It is
noticed that there is a slight decrease in the drag on the porous approximate
particle as the deformation of the outer sphere γ increases. This variation of the
drag coefficient DN with normalized permeability k1 can be seen in Tables 1
and 2.

Table 1. Variation of the drag coefficient DN with normalized permeability k1

for various values of β; γ = 0.0, σ = 0, η = 0.6.

Drag coefficient

k1 β = 0.0 β = 0.1 β = 0.2 β = 0.3

0.5 0.62879 0.69042 0.75205 0.81367

1 0.32347 0.35421 0.38494 0.41568

5 0.06626 0.07238 0.07851 0.08463

7 0.04741 0.05178 0.05616 0.06053

10 0.03323 0.03629 0.03935 0.04241

Table 2. Variation of the drag coefficient DN with normalized permeability k1

for various values of β; γ = 0.15, σ = 0, η = 0.6.

Drag coefficient

k1 β = 0.0 β = 0.1 β = 0.2 β = 0.3

0.5 0.61557 0.67719 0.73882 0.80044

1 0.31993 0.35067 0.38140 0.41214

5 0.06611 0.07223 0.07836 0.08448

7 0.04733 0.05171 0.05608 0.06045

10 0.03319 0.03625 0.03931 0.04238

The effect of the stress jump coefficient σ and normalized permeability k1 on
drag coefficient DN at the porous-liquid interface has been plotted in Fig. 4. It is
observed that the drag is decreasing as the stress jump coefficient σ is increasing.
The drag is decreasing as the permeability is increasing when there is a jump
in the stress at the boundary. For positive values of stress jump coefficient σ,
there is a reversal in the behavior of drag at a particular value of permeability
(critical permeability [39]). Beyond the value of critical permeability, the value of
drag becomes negative which is not physically possible. Therefore, the positive
values of σ cannot be considered beyond that particular critical permeability.
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a) b)

Fig. 4. Variation of the drag coefficient DN with normalized permeability k1 for various
values of σ: a) β = 0.0, γ = 0.0, η = 0.6; b) β = 0.15, γ = 0.1, η = 0.6.

If negative σ is considered in the stress jump condition (3.4) the shear stress
of external free flow region becomes more than that of the porous region which
generates a significant drag force on the porous surface for any permeability. But,
for positive values of σ, although the shear stress of the external region becomes
low, for particular range of permeability a significant drag force generates on
the surface. There is a slight increase in the drag coefficient as the deformation
parameters β and γ increases.

The variation of drag coefficient DN with normalized permeability k1 for
various values of η is shown in Fig 5. Figure 5a, shows the variation of the drag
for motion of porous sphere in a spherical container with no effect of stress jump

a) b)

Fig. 5. Variation of the drag coefficient DN with normalized permeability k1 for various
values of η = a/b: a) β = 0.0, γ = 0.0, σ = 0.0; b) β = 0.15, γ = 0.1, σ = 0.5.
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coefficient σ. It is observed that there is a slight increase in the drag coefficient
as η is increasing. Figure 5b presents the variation of the drag coefficient with
effect of stress jump coefficient σ, it is noticed that the drag coefficient becomes
negative after the critical permeability.

The wall correction factor Wc is defined as the ratio of the actual drag expe-
rienced by the particle in the enclosure and the drag on a particle in an infinite
expanse of fluid. With the aid of Eqs. (5.2) and (5.3) this becomes

(5.4) Wc =
D

D∞
.

Note that Wc = 1 as η = 0 and Wc ≥ 1 as 0 < η ≤ 1.

a) b)

Fig. 6. Variation of the wall correction factor with η = a/b for various values of normalized
permeability k1: a) β = 0.0, γ = 0.0, σ = 0; b) β = 0.15, γ = 0.1,σ = 0.

The variation of wall correction factor Wc against the separation parameter
η with continuity of tangential stress (σ = 0) for various values of normalized
permeability k1 is shown in Fig. 6. Figure 6a, shows the variation of Wc with η
for the motion of porous sphere in a spherical container for various values of k1.
The separation parameter η (= a/b) reflecting the extent of closeness between
the particle and the cavity wall, ranges from 0 (far apart) to 1 (in contact). It is
observed in the figure that, as η increases, the wall correction factor increases.
For k1 > 2, the particle mobility varies slowly with the separation parameter η,
compared with the case of lower permeability (or greater α). Similar behavior
is observed in Fig. 6b when the porous sphere and spherical container are per-
turbed. The effect of the stress jump coefficient σ and separation parameter η
on wall correction factor Wc has been plotted in Fig. 7. It is observed that the
wall corrector factor increases as η increases for negative values of stress jump
coefficient σ and for positive values of σ, Wc < 1 for high permeability which is
not physically possible.
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a) b)

Fig. 7. Variation of the wall correction factor with η = a/b for various values of normalized
permeability k1: a) β = 0.15, γ = 0.1, σ = −0.3; b) β = 0.15, γ = 0.1, σ = 0.3.

6. Special cases

Case (i). A porous sphere in a spherical container. If βm = 0 and γm = 0
for m > 2, the inner and outer approximate spheres reduce to spheres and the
drag on porous sphere in spherical contianer is

(6.1) D = 4πµUaD2.

If σ = 0, i.e., the continuity of the shear stress, the drag on the porous sphere
(6.1) reduces to

(6.2) D = 24πµUaα2
[
α
(
15η5 + α2(η5 − 1)

)
coshα

−
(
15η5 + α2(6η5 − 1)

)
sinhα

]
/L1,

where

L1 = α
(
− 270η5 + α4(η − 1)4(4η2 + 7η + 4)

+ 6α2(10η6 − 21η5 + 10η3 + 1)
)
coshα

−
(
−270η5 + 3α4(η − 1)3η(8η2 + 9η + 3)

+ 6α2(10η6 − 36η5 + 10η3 + 1)
)
sinhα,

which agrees with the drag on the porous sphere in spherical container case
obtained in [27] and [29].

If b→ ∞ (or η → 0), we obtain drag on a porous sphere in the case of stream-
ing in an unbounded medium. Applying the limit as η → 0 to (6.2), we get

(6.3) D∞ =
12πµUaα2 (−α coshα+ sinhα)

α(3 + 2α2) coshα− 3 sinhα
,
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which agrees with the drag on the porous sphere case derived by Brinkman [19],
Neale et al. [41] and Qin and Kaloni [42].

Case (ii). A porous oblate spheroid in an oblate spheroidal container. Con-
sider the motion of a porous oblate spheroid particle at the instant it passes the
centre of an oblate spheroidal container. We take the equation of surface of the
porous oblate spheroid to be

(6.4)
x2 + y2

c2
+

z2

c2(1 − ε)2
= 1

whose equatorial radius is c in which ε is so small that ε2 and higher powers
may be neglected. Following Happel and Brenner [2] its polar equation can
be written in the form r = a[1 + 2εϑ2(ζ)], where a = c(1 − ε) (see [2, p. 144]).
Similarly, the equation of an oblate spheroidal container can be noted in the
form r = b[1 + 2εϑ2(ζ)].

Using (4.1) and (4.2), the expressions for stream functions can be determined.
The drag on the oblate spheroidal particle is

(6.5) D = 4πµUa[D2 + (D2 + (2/5L)(∆2 + ∆3))ε].

The volume of the spheroid defined by Eq. (6.5) is (4/3)πc3(1 − ε), and
a sphere of equal volume can be obtained by choosing the radius equal to
c(1 − ε/3) (with ε2 and higher powers neglected) (see [2, p. 144]). The non-
dimensional drag on such a sphere is 4πµU(1 − ε/3)D2 and this is clearly less
than the drag on the spheroid. Similar comment holds for the drag on the sphere
of equal surface area as that of the spheroid. These two conclusions are the same
as in the case of viscous fluid [2] and micropolar fluid [43]. Further, the volume
of the spheroid in terms of a is (4π/3)a3/(1−ε)2 which is larger than the volume
of the sphere 4πa3/3. Since the spheroid is larger than the sphere, it interacts
more with the container, and the drag increases.

The variation of the drag coefficient DN = D/(4πµUa) for various values of
normalized permeability k1 and ε is shown in Fig. 8a for fixed value of σ = 0.
It can be observed that the drag coefficient is decreasing as the permeability is
increasing. There is a slight increase in the drag coefficient as the deformation
parameter ε is increasing. It is interesting to note that the drag coefficient on
the porous sphere (ε = 0) is less than that of the drag on the porous oblate
spheroid. In Fig. 8b, the drag coefficient increases as η increases for particular
value of stress jump coefficient. The variation of the drag coefficient DN for
various values of k1 and σ is shown in Fig. 9, for fixed values of ε. It is observed
that the drag coefficient decreases as the permeability increases for negative
values of stress jump coefficient σ and for positive values of σ, the drag is positive
only for a particular range of permeability.
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a) b)

Fig. 8. Variation of the drag coefficient DN with normalized permeability k1 (oblate
spheroid): a) for various values of ε, σ = 0, η = 0.6; b) for various values of η, σ = 0.3,

ε = 0.75.

a) b)

Fig. 9. Variation of the drag coefficient DN with normalized permeability k1 (oblate
spheroid) for various values of σ: a) ε = 0.1, η = 0.6; b) ε = 0.75, η = 0.6.

7. Conclusions

An exact solution for the problem of the motion of a porous approximate
sphere in an approximate spherical container is obtained by considering the
Brinkman’s model in the porous region and Stokes equations in the liquid re-
gion. At the porous-liquid interface Ochoa-Tapia’s stress jump boundary condi-
tion, continuity of the normal velocity and continuity of the pressure have been
used. An expression for the drag on the porous particle in a container and wall
correction factor are obtained. It is observed that the drag coefficient on the
porous sphere is less than that on the drag of the porous approximate sphere
in presence of spherical cavity. The drag is decreasing as the permeability is
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increasing. The drag is decreasing as the stress jump coefficient σ is increasing.
For negative values of σ, the drag is always positive for any permeability. But
for positive values of σ, the drag is positive only for a particular range of perme-
ability. Hence, we conclude that stress jump condition, characterized by a stress
jump coefficient, has a significant impact on the drag force.

8. Appendix

Applying the boundary conditions (3.6) and (3.7) to the first order in βm

and γm, we obtain the following system of algebraic equations:

(8.1)
[
A2 +B2 + C2 +D2 −E2 − I3/2(α)F2

]
ϑ2(ζ)

+ [2A2 −B2 + 4C2 +D2 − 2E2]βmϑm(ζ)ϑ2(ζ)

+

∞∑

n=3

[
An +Bn + Cn +Dn − En − In−1/2(α)Fn

]
ϑn(ζ) = 0,

(8.2)
[
2A2 −B2 + 4C2 +D2 − 2E2 +

[
I3/2(α) − αI1/2(α)

]
F2

]
ϑ2(ζ)

+
[
2A2 + 2B2 + 12C2 − 2E2 − I3/2(α)F2

]
βmϑm(ζ)ϑ2(ζ)

+
∞∑

n=3

[nAn − (n− 1)Bn + (n+ 2)Cn − (n− 3)Dn − nEn

+
[
(n− 1)In−1/2(α) − αIn−3/2(α)

]
Fn

]
ϑn(ζ) = 0,

(8.3) [−2A2 − 2B2 − 12C2 + 2(1 − ασ)E2

+ [(α2 + ασ + 2)I3/2(α) − α2σI1/2(α)]F2]ϑ2(ζ)

+ [6B2 − 24C2 − 2ασE2 − (4 + ασ)I3/2(α)F2]βmϑm(ζ)ϑ2(ζ)

+

∞∑

n=3

[−n(n− 1)An − n(n− 1)Bn

− (n+ 1)(n+ 2)Cn − (n− 2)(n− 3)Dn + n((n− 1) − ασ)En

+ [((n+ ασ)(n− 1) + α2)In−1/2(α) − α2σIn−3/2(α)]Fn]ϑn(ζ) = 0,

(8.4) −
[
10C2 +D2 + α2E2

]
P1(ζ) −

[
10C2 − 2D2 + α2E2

]
P1(ζ)βmϑm(ζ)

−
∞∑

n=3

[(
4n+ 2

n− 1

)

Cn −
(

6 − 4n

n

)

Dn +
α2

(n− 1)
En

]

Pn−1(ζ) = 0,
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(8.5)
[
η−2A2 + ηB2 + η−4C2 + η−1D2 − η−2

]
ϑ2(ζ)

+
[
2η−2A2 − ηB2 + 4η−4C2 + η−1D2 − 2η−2

]
γmϑm(ζ)ϑ2(ζ)

+

∞∑

n=3

[
η−nAn + ηn−1Bn + η−n−2Cn + ηn−3Dn

]
ϑn(ζ) = 0,

(8.6)
[
2η−1A2 − η2B2 + 4η−3C2 +D2 − 2η−1

]
ϑ2(ζ)

+
[
2η−1A2 + 2η2B2 + 12η−3C2 − 2η−1

]
γmϑm(ζ)ϑ2(ζ)

+

∞∑

n=3

[nη−n+1An − (n− 1)ηnBn

+ (n+ 2)η−n−1Cn − (n− 3)ηn−2Dn]ϑn(ζ) = 0.

Equating the leading coefficients in (8.1)–(8.6) to zero and solving the result-
ing system of equations, we obtain

A2 =
[
−α

(
270η5 + 6α2(21η5 − 5η3 − 1) + α3(α+ σ)(9η5 − 5η3 − 4)

−6ασ(9η5 + 5η3 + 1)
)
coshα+

(
270η5 + 15α4η3(3η2 − 1)

+ 6α2(36η5 − 5η3 − 1) + ασ
(
α4(9η5 − 5η3 − 4)

−3α2(3η5 + 5η3 + 2) − 6(9η5 + 5η3 + 1)
))

sinhα
]
/L,

B2 = − 2α
[
α
(
α2(α+ σ)(η3 − 1) + 3α(5η3 − 2) − 6σ(5η3 + 1)

)
coshα

−
(
3α(5η3 − 2) + 3α3(2η3 − 1) + σ

(
α4(η3 − 1) − 3α2(3η2 + 1)

−6(5η3 + 1)
))

sinhα
]
/L,

C2 = 3αη3
[
α(α+ σ)(6η2 + α2(η2 − 1)) coshα−

(
6η2(α+ σ) + α2(α

+σ)(3η2 − 1) + α4σ(η2 − 1)
)
sinhα

]
/L,

D2 = 6α[α(15η5(α− 2σ) + α2(α+ σ)(η5 − 1)) coshα

− (15η5(α− 2σ) + α3(6η5 − 1) + α4σ(η5 − 1) − α2σ(9η5 + 1)) sinhα]/L,

E2 = − 6[α(45η5 + α(α+ σ)(6η5 − 5η3 − 1)) coshα

− (45η5 + α2(21η5 − 5η3 − 1) + ασ(1 + α2)(6η5 − 5η3 − 1)) sinhα]/L,

F2 = 3
√

2πα5/2
(
α(3η5 − 5η3 + 2) − 2σ(6η5 − 5η3 − 1)

)
/L,
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where

L = α(−270η5 + α3(α+ σ)(η − 1)4(4η2 + 7η + 4)

+ 6ασ(−20η6 + 9η5 + 10η3 + 1) + 6α2(10η6 − 21η5 + 10η3 + 1)) coshα

− (−270η5 + α5σ(η − 1)4(4η2 + 7η + 4) + 3α4(η − 1)3η(8η2 + 9η + 3)

+ 6ασ(−20η6 + 9η5 + 10η3 + 1) + 3α3σ(−12η6 + 3η5 + 10η3 − 3η + 2)

+ 6α2(10η6 − 36η5 + 10η3 + 1)) sinhα.

To obtain the remaining arbitrary constants An, Bn, Cn, Dn, En, Fn, we require
the following identities (see [2, p. 142]):

ϑm(ζ)ϑ2(ζ) = bm−2ϑm−2(ζ) + bmϑm(ζ) + bm+2ϑm+2(ζ),(8.7)

ϑm(ζ)P1(ζ) = am−2Pm−3(ζ) + amPm−1(ζ) + am+2Pm+1(ζ),(8.8)

where

(8.9)

bm−2 = − (m− 2)(m− 3)

2(2m− 1)(2m− 3)
, bm =

m(m− 1)

(2m+ 1)(2m− 3)
,

bm+2 = − (m+ 1)(m+ 2)

2(2m− 1)(2m+ 1)
, am−2 =

(m− 2)

(2m− 1)(2m− 3)
,

am =
1

(2m+ 1)(2m− 3)
, am+2 = − (m+ 1)

(2m− 1)(2m+ 1)
.

Using these in (8.1)–(8.6), we obtain

(8.10) An = Bn = Cn = Dn = En = Fn = 0 for n 6= m− 2,m,m+ 2

and when n = m− 2,m,m+ 2, we have the following system of equations:

(8.11) An +Bn + Cn +Dn −En − In−1/2(α)Fn

= − [2A2 −B2 + 4C2 +D2 − 2E2]βmbn,

(8.12) nAn − (n− 1)Bn + (n+ 2)Cn − (n− 3)Dn − nEn

+
[
(n− 1)In−1/2(α) − αIn−3/2(α)

]
Fn

= −
[
2A2 + 2B2 + 12C2 − 2E2 − I3/2(α)F2

]
βmbn,

(8.13) − n(n− 1)An − n(n− 1)Bn − (n+ 1)(n+ 2)Cn

− (n− 2)(n− 3)Dn + n((n− 1) − ασ)En

+
[
((n+ ασ)(n− 1) + α2)In−1/2(α) − α2σIn−3/2(α)

]
Fn

= −
[
6B2 − 24C2 − 2ασE2 − (4 + ασ)I3/2(α)F2

]
βmbn,
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(8.14) −
(

4n+ 2

n− 1

)

Cn +

(
6 − 4n

n

)

Dn − α2

(n− 1)
En

=
[
10C2 − 2D2 + α2E2

]
βman,

(8.15) η−nAn + ηn−1Bn + η−n−2Cn + ηn−3Dn

= −
[
2η−2A2 − ηB2 + 4η−4C2 + η−1D2 − 2η−2

]
γmbn,

(8.16) nη−n+1An − (n− 1)ηnBn + (n+ 2)η−n−1Cn − (n− 3)ηn−2Dn

= −
[
2η−1A2 + 2η2B2 + 12η−3C2 − 2η−1

]
γmbn.

The above system of equations is solved using Mathematica and the values of An,
Bn, Cn, Dn, En, and Fn, for n = m− 2,m,m+ 2 are obtained. These constants
contain the coefficients βm and γm. As the expressions are cumbersome, they are
not presented here.

The expression for the constant D′
2 appearing in Eq. (5.2) is

(8.17) D′
2 =

1

5L
(∆2β2 + ∆3γ2) +

2

35L
(∆4β4 + ∆5γ4) ,

where

(8.18) ∆2 =
(
− 12α(α2[10125αη10 + 270α3η5(11η5 − 10η3 − 1)

+ 9α5(26η10 − 50η8 + 25η6 − 2η5 + 1) + α7(η − 1)4(3η3 + 6η2 + 4η + 2)2

+ (90η5 + α2(3η5 − 5η3 + 2))(−135η5 − 9α2(η5 − 1) + 2α4(3η5 − 5η3 + 2))σ

+ ασ2(810(4η10 + 5η8 + η5) + α4(η − 1)4(3η3 + 6η2 + 4η + 2)2

+ 9α2(6η10 + 5η8 − 50η6 + 43η5 − 5η3 + 1))] cosh2 α

+ α[6α(−3375η10 + 3α4η5(150η3 − 25η − 13) − 5α6η3(3η7 − 8η5 + 2η2 − 2)

+ 90α2η5(10η3 + 1)) + (24300η10 + 2α8(5η3 − 2)(6η5 − 5η3 + 2)

− 18α4(42η10 − 31η5 − 5η3 + 2)

− 3α6(123η10 − 255η8 + 100η6 + 69η5 − 45η3 + 8))σ

+ 2α(−810η8(4η2 + 5) + α6(5η3 − 2)(6η5 − 5η3 + 2)

− 9α2η3(126η7 + 155η5 − 50η3 − 5)

− 3α4(39η10 − 40η8 − 75η6 + 82η5 − 10η3 + 4))σ2] coshα sinhα

+ [10125αη10 + 270α3η5(36η5 − 10η3 − 1)

+ 9α5(321η10 − 250η8 + 25η6 + 28η5 + 1)
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+ α7(η − 1)2(87η5 − 25η3 − 2)(3η3 + 6η2 + 4η + 2)

+ σ(−12150η10 − 135α2η5(69η5 − 5η3 − 4)

− 9α4(123η10 + 45η8 − 21η5 + 5η3 − 2) + 30α8η3(3η7 − 8η5 + 5η3 + 2η2 − 2)

+ α6(396η10 − 630η8 + 250η6 + 63η5 − 95η3 + 16))

+ ασ2(810η5(4η5 + 5η3 + 1) + α8(η − 1)4(3η3 + 6η2 + 4η + 2)2

+ α6(36η10 − 45η8 − 100η6 + 153η5 − 55η3 + 11)

+ 5α4(117η10 + 48η8 − 95η6 + 114η5 − 8η3 + 4)

+ 9α2(246η10 + 305η8 − 50η6 + 103η5 − 5η3 + 1))] sinh2 α

− 3α2[3α4 + 25α6η6 + 9α2(235 + 37α2)η10

+ 3αη5((α6 − 585)η5 + (75 − 70α2)η3 + 60)σ

+ 3(α2 + (90 + 73α2)η5 + α6η10)σ2] sinh 2α
)
/L,

(8.19) ∆3 =
(
12α2η(α(30αη2(η3 − 1) + α2(α+ σ)(2η5 − 5η2 + 3)

− 30η2σ(2η3 + 1)) coshα− (30αη2(η3 − 1) + 3α3(4η5 − 5η2 + 1)

− 30η2σ(2η3 + 1) + α4σ(2η5 − 5η2 + 3)

− 3α2σ(6η5 + 5η2 − 1)) sinhα)2
)
/L,

(8.20) ∆4 =
(
3α(α2[α3(η − 1)2(540η5 + α4(3η5 − 5η3 + 2)

+ 9α2(7η5 − 5η3 − 2))(3η3 + 6η2 + 4η + 2)

+ 2σ(4050η10 − 135α2η5(17η5 − 15η3 − 2)

+ 9α4(11η10 − 35η8 + 43η5 − 15η3 − 4) + α6(η − 1)4(3η3 + 6η2 + 4η + 2)2)

+ ασ2(540η5(21η5 − 5η3 − 1) + α4(η − 1)4(3η3 + 6η2 + 4η + 2)2

− 18α2(12η10 − 15η8 + 25η6 − 39η5 + 15η3 + 2))] cosh2 α

+ [α3(η − 1)2(540η5 + 9α2(47η5 − 5η3 − 2)

+ α4(87η5 − 25η3 − 2))(3η3 + 6η2 + 4η + 2)

+ 2σ(4050η10 − 9α4(129η10 − 115η8 − 83η5 + 15η3 + 4)

+ 135α2η5(3η5 + 15η3 + 2) + 15α8η3(3η7 − 8η5 + 5η3 + 2η2 − 2)

− α6(207η10 + 90η8 − 125η6 − 279η5 + 85η3 + 22))

+ ασ2(540η5(21η5 − 5η3 − 1) + α8(η − 1)4(3η3 + 6η2 + 4η + 2)2
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− 2α6(27η10 − 15η8 + 50η6 − 129η5

+ 65η3 + 2) + 5α4(225η10 − 42η8 − 95η6 + 168η5 − 68η3 − 8)

+ 18α2(408η10 − 85η8 − 25η6 + 19η5 − 15η3 − 2))] sinh2 α

− α[3α3(η − 1)2((5α4 + 81α2 + 180)η5 − 5α2(3 + α2)η3 − 6α2)

× (3η3 + 6η2 + 4η + 2) + σ(8100η10 − 270α2η5(7η5 − 15η3 − 2)

− 18α4(84η10 − 40η8 − 63η5 + 15η3 + 4)

+ α8(η − 1)4(3η3 + 6η2 + 4η + 2)2

+ 3α6(39η10 − 115η8 + 50η6 + 67η5 − 35η3 − 6))

+ ασ2(540η5(21η5 − 5η3 − 1) + α6(η − 1)4(3η3 + 6η2 + 4η + 2)2

− 3α4(21η10 − 10η8 + 75η6 − 152η5 + 60η3 + 6)

+ 18α2(198η10 − 35η8 − 25η6 + 29η5 − 15η3 − 2))] sinh 2α
)
/L,

(8.21) ∆5 =
(
−3α2η(α(30αη2(η3 − 1) + α2(α+ σ)(2η5 − 5η2 + 3)

− 30η2σ(2η3 + 1)) coshα− (30αη2(η3 − 1) + 3α3(4η5 − 5η2 + 1)

− 30η2σ(2η3 + 1) + α4σ(2η5 − 5η2 + 3)

− 3α2σ(6η5 + 5η2 − 1)) sinhα)2
)
/L.

The expressions for the constants ∆6, ∆7, ∆8 and ∆9 appearing in Eq. (5.3)
are defined as

∆6 = α(3 + 2α2)(α+ σ) coshα− (3α+ (3 + 3α2 + 2α4)σ) sinhα,(8.22)

∆7 = 3α2(−α(α+ σ) coshα+ (α+ σ + α2σ) sinhα),(8.23)

∆8 = 3α2(9α2 − 13α4 − 4α6 − 2ασ(4α4 + α2 − 9)(8.24)

+ (4α6 + 7α4 + 11α2 + 9)σ2 − (α2(4α4 + 5α2 + 9)

+ 2ασ(4α4 + 17α2 + 9) + (4α6 + 15α4 + 29α2 + 9)σ2) cosh 2α

+ 2α(α+ σ)(9α+ (3 + 2α2)2σ) sinh 2α)/(2∆6),

∆9 = 3α2
(
(α6 − 8α4 + 9α2) + (2α5 − 7α3 + 18α)σ(8.25)

− (α6 − 2α4 − α2 − 9)σ2 + (α2(α4 − 10α2 − 9)

+ ασ(2α4 − 29α2 − 18) + (α6 − 19α2 − 9)σ2) cosh 2α

− α(α+ σ)(−18α+ (α2 − 6)(3 + 2α2)σ) sinh 2α)/(2∆6).
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