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In the paper we investigate the flow with heat transfer in the rotating cavity of
different geometrical parameters and different Reynolds numbers. We focus on the
near-wall characteristics and compare our results with the experimental and numerical
data published in literature as well as with the theoretical results. We also present the
preliminary results obtained for rotor/rotor configurations with the axial annular jet.
Computations are performed using pseudo-spectral methods. Parallelization of the
DNS code allows us to perform computations on the meshes with up to 35 million
collocation points.
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1. Introduction

The problem of laminar-turbulent transition and turbulence in the
near-wall sublayer is far from being solved, both in terms of understanding of
physics and in terms of obtaining engineering accuracy for different devices in
which turbulent flows play an important role (fluid flow machines, aircraft and
automobile industries). The engineering and economic aspects prompt the on-
going research aimed at transferring new ideas from theory to industry. The
near-wall sublayer is presently mostly modelled based on the existing knowledge
of simple 2D models (zero-pressure gradient boundary layers and plane channel
flow). It is believed that the understanding of the structure of coherent eddies in
transitional and turbulent areas in simple model flows helps to understand more
complex wall flows. This knowledge can contribute to wall turbulence control
and to the development of scaling ideas. Additionally, the knowledge of turbu-
lent flow structures, their origins, their role in creating stress and transporting
energy can help to understand the nature of the turbulence. The understanding
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of the fundamental physical characteristics of the near-wall flows is the main
area of our interest. We use the strong 3D non-isothermal rotor/stator and ro-
tor/rotor model flows (a few cases with axial annular jet are also investigated)
to study numerically the structure of the near-wall sublayer. These simple model
flows with heat transfer contain Reynolds stresses which transport mean momen-
tum and they also produce and dissipate turbulent kinetic energy. Rotor/rotor
and rotor/stator flows are the simplest possible wall flows which exhibit most of
the phenomena that are needed to understand strong 3D transitional and tur-
bulent flows in more general flow cases – these models are particularly suitable
for engineers dealing with gas turbines and axial compressors.

The flow in rotor/stator cavity was investigated experimentally and numeri-
cally among others by Randriamampianina et al. [1], Serre and Pulicani [2],
Serre, Tuliszka-Sznitko, Bontoux [3], Lygren and Anderson [4], Pon-

cet and Schiestel [5], Severac and Serre [6], Randriamampianina

et al. [7], Pelle and Harmand [8], Tuliszka-Sznitko et al. [9, 10]. Pelle

and Harmand [8] performed measurements over the rotor (in the rotor/stator
configuration) using a technique based on infrared thermography. Tuliszka-

Sznitko et al. [9, 10] performed computations of the non-isothermal flow in the
rotor/stator cavity, delivering distributions of the local Nusselt numbers along
the stator and rotor for different configurations and Reynolds numbers. The ax-
ial throughflow (rotor/stator configuration) with heat transfer was numerically
investigated in [5] using RANS method.

The main motivation of our work is to investigate the characteristics of the
near-wall flows. We present characteristics obtained in the stator boundary layer
and preliminary results obtained in the heated rotor boundary layer under im-
pingement of cold annular jet. Direct numerical simulations (DNS) of these flow
cases require refined meshes with a large number of collocation points. To meet
this requirement we apply the OpenMP technology to the code described in
[9, 10]. Computations for the high aspect ratio L = (R1 − R0)/H and large
Reynolds numbers Re = R2

1Ω/ν (presented in this paper) were performed with
up to 35 million collocation points. These results are complementary to the
results obtained for L = 5–35 with up to 10 million collocation points and pub-
lished in [10]. We compare the present results with the experimental data of
Elkins and Eaton [11] and the numerical results of Kasagi [12] and Wu and
Kasagi [13, 14].

Additionally, in the frame of this paper we implement the spectral vanishing
viscosity method (SVV) to the parallelized DNS code for non-isothermal flow
in rotating cavity. The SVV method was previously used for the investigation
of the isothermal flow in rotor/stator cavity by Severac and Serre [6]. The
main purpose of SVV implementation is to provide a stable scheme for solv-
ing Navier–Stokes equations, which simultaneously preserves spectral accuracy
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(the exponential rate of convergence, Pasquetti and Xu [15]). This method is
suitable for the investigation of rotor/stator and rotor/rotor flow cases where
laminar, transitional and fully turbulent areas coexist. In the paper we extend
the SVV method [6] to non-isothermal flow and perform computations for the
high Reynolds numbers in the rotor/stator cavity with heat transfer. The SVV
is also used for preliminary investigations of the flow cases with annular jet. To
check the exponential rate of convergence we use the benchmark published in [6].

The mathematical and geometrical models are described in Section 2. The
numerical method is presented in Section 3. In Section 4 some results obtained
for aspect ratio L = 5, curvature parameter Rm = (R1 + R0)/(R1 − R0)
= 1.8, Re = 400 000–700 000 are presented to demonstrate the effectiveness of
the SVV method. The near-wall characteristics and the comparison with the wall
asymptotes are shown in Section 5. In Section 6 the preliminary results obtained
for rotor/rotor cavity with the annular axial jet are discussed; the attention is
focused on the local Nusselt number distributions and their correlations with the
flow structure. Summary and conclusions are given in Section 7.

2. Mathematical and geometrical models

In the paper we investigate the non-isothermal flow in the cavity between
rotor and stator, and between rotor and rotor of the inner and outer radius R0

and R1, respectively (Fig. 1). The inter-disks spacing is denoted by H. The rotor
rotates at uniform angular velocity Ω = Ωez, where ez is the unit vector on the
z axis. The flow is described by the Navier–Stokes, continuity and energy equa-
tions written in a cylindrical coordinate system (R,ϕ,Z). Equations are written
with respect to rotating frame of reference. The Boussinesq approximation is
used to take into account the buoyancy effects induced by the involved body
forces.

The dimensionless axial and radial coordinates are: z = Z/(H/2), z ∈ [−1, 1],
r = (2R− (R1 +R0))/(R1 −R0), r ∈ [−1, 1]. The velocity components and time

a) b)

Fig. 1. Schematic pictures of: a) numerical domains of rotor/stator cavity, b) rotor/rotor
configuration with axial annular jet.
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are normalized by ΩR1 and Ω−1, respectively. The dimensionless components
of the velocity vector in radial, azimuthal and axial directions are denoted by
u = U/ΩR1, v = V/ΩR1, w = W/ΩR1. The dimensionless temperature is de-
fined in the following way: Θ = (T −T1)/(T2 −T1), where T1 is the temperature
of the upper disk and the inner cylinder, and T2 is the temperature of the bottom
heated rotating disk and the outer cylinder (rotor/stator configuration). In the
rotor/rotor flow case only the bottom disk is heated. The flow is governed by
the following dimensionless parameters: aspect ratio L = (R1 − R0)/H, curva-
ture parameter Rm = (R1 + R0)/(R1 − R0), the rotational Reynolds number
Re = ΩR2

1/ν, Prandtl number Pr = 0.71 and the thermal Rossby number
B = β(T2 − T1) (where β is thermal expansion coefficient).

In the rotor/stator flow case the boundary conditions are as follows: the
rotating bottom disk is attached to the inner cylinder and the stator is attached
to the outer cylinder. The no-slip boundary conditions are used with respect to all
rigid walls, so u = w = 0. For the azimuthal velocity component, the boundary
conditions are v = 0 on the rotating disk and v = −(Rm + r)/(Rm + 1) on the
stator. The thermal boundary conditions are as follows:

Θ = 1 for z = −1.0, −1.0 ≤ r ≤ 1.0 and for outer cylinder,
Θ = 0 for z = 1.0, −1.0 ≤ r ≤ 1.0 and for inner cylinder.

The thermal Rossby number equals B = 0.1 in all considered flow cases.
In our preliminary investigation with the axial annular jet we assume that

the nozzle, axial velocity component profile is constant. In the outer cylinder we
apply constant radial velocity component or the convective condition. On the
impinging wall we apply a no-slip condition and the temperature is constant.

3. Numerical methods

The temporal approximation used in the paper is a projection scheme which
is based on backward differentiation in time. In every iteration a pressure pre-
dictor is computed by solving the pressure equation with the pressure Neumann
boundary condition. The Navie–Stokes, continuity and energy equations are ap-
proximated in time using a second-order semi-implicit scheme, which combines
an implicit treatment of the diffusive term and an explicit Adams–Bashforth
approximation for the non-linear convective terms. The predicted velocity field
is then corrected so that the final velocity field satisfies the incompressibility
constraint. The correction is performed by introducing a special correction pa-
rameter φ: pn+1 = pp + 3φ/2δt, where n + 1 and p depict present iteration
and predictor, δt is the increment of time. All dependent variables (predictors
of three velocity components, predictor of pressure, temperature and corrector;
Ψ = [u, v, w, p,Θ, φ]) are obtained by solving Helmholtz equation which can be
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written in the following form:

(3.1a)
1

L2

∂2Ψ

∂r2
+

1

L2(Rm + r)

∂Ψ

∂r
+

1

L2(Rm + r)2
∂2Ψ

∂ϕ2
+
∂2Ψ

∂z2

︸ ︷︷ ︸

∆Ψ

−qΨ = S,

where q is a constant or is a function of r, function S contains terms obtained in
previous iterations and obtained in the predictor stage. Detailed description of
the iteration process is given in [2] and [10]. The spatial approximation is based
on a pseudo-spectral Chebyshev–Fourier–Galerkin collocation method: the ap-
proximations of the variables Ψ = [u, v, w, p,Θ, φ] are given by the development
into truncated series:

(3.1b) Ψ(r, ϕ, z) =

Nϕ/2−1
∑

k=−Nϕ/2

Nr−1∑

n=0

Nz−1∑

m=0

Ψ̂nmkTn(r)Tm(z)eikϕ,

−1 ≤ r, z ≤ 1, 0 ≤ ϕ ≤ 2π,

where Tn(r) and Tm(z) are Chebyshev polynomials and N r, Nϕ and N z are
numbers of collocation points in radial, azimuthal and axial directions, respec-
tively. In the radial and axial directions we use Chebyshev polynomials with the
Gauss–Lobatto distributions to ensure high accuracy of the solution inside the
very thin boundary layers at the disks.

In the SVV method an artificial viscous operator is added to Laplace operator
to stabilize the computational process. This SVV operator is sufficiently large to
suppress Gibbs oscillations and small enough not to affect the solution accuracy
(Tadmor [17], Karamanos and Karniadakis [18]). The one-dimensional SVV
viscous operator [17] can be written in the following way:

(3.2a) ∆̃NuN ≡ εN
∂

∂x

(

QN
∂uN

∂x

)

.

After adding (3.2a) to the Laplace operator we have

(3.2b) ν∆SV V uN = ν∆uN + εN
∂

∂x

(

QN
∂uN

∂x

)

,

where N is the number of collocation points, uN is a discrete approximation of
velocity component u, εN is the viscosity amplitude (limN→∞ εN = 0) and QN

is the spectral operator active only for high frequencies [6, 19]. The operator
(3.2a) in Fourier space can be written in the following form:

(3.3a) εN
∂

∂x

(

QN
∂uN

∂x

)

= −εN

∑

kT≤|k|≤N/2

k2Q̂N/2(k)ûke
ikx,
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where N is the number of Fourier mode and kT is the threshold mode above
which operator (3.2a) is active. In Chebyshev space QN works in the following
way:

(3.3b) QN

(
∂uN

∂x

)

=

N∑

k=kT

Q̂N (k)
∂ûN

∂x
Tk,

where Tk are Chebyshev polynomials and Q̂N is defined as follows:

(3.3c) Q̂N (k) =







0 for 0 ≤ |k| ≤ kT ,

exp

[

−
(
N − |k|
kT − |k|

)2
]

for kT < |k| ≤ N.

The SVV modes are activated over threshold kT which can be taken as N/2
whereas the viscous amplitude εN can be taken as O(1/N). The extension of
definition (3.2a) to the 3D flow cases is discussed in [6, 15, 16, 18]. After [6] we
can write:

(3.4a) ν∆SV V uN ≡ ν∆uN + ∇ · (εNQN · (∇uN )) = ν(∇ ·GN · ∇)uN ,

where

(3.4b) GN = I +
1

ν
εNQN

=






1 + εr
NrQr

Nr/ν 0 0

0 1 + εϕ
NϕQ

ϕ
Nϕ/ν 0

0 0 1 + εz
NzQz

Nz/ν




 =






Gr
Nr 0 0

0 Gϕ
Nϕ 0

0 0 Gz
Nz




 ,

∇uN is the velocity gradient tensor, εi
N i is a viscosity amplitude for i direction,

Qi
N i is a viscosity operator which is defined in spectral space by Eq. (3.3c). In

the next step the modified Laplace operator (3.4a) is introduced to our DNS
algorithm. In DNS algorithm all dependent variables are obtained by solving
Helmholtz equation (3.1a) using (3.1b) approximation. In the first step equation
(3.1a) is expanded into Fourier series:

(3.5)
1

L2

∂2Ψ̂k

∂r2
+

1

L2(Rm + r)

∂Ψ̂k

∂r
+
∂2Ψ̂k

∂z2
−
[

q +
k2

L2(Rm + r)2

]

Ψ̂k = Ŝk,

k ∈ [−Nϕ/2, . . . , Nϕ/2 − 1].

After spatial discretization in radial and axial direction we can write

(3.6) AΨ + ΨB = S, Ψ = Ψ̂ijk = Ψ̂k(ri, zj), S = Ŝijk = Ŝk(ri, zj),

−1 ≤ ri, zj ≤ 1,
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where

(3.7)
Aij =

1

L2
Dr

(2)
ij +

1

L2(Rm + ri)
Dr

(1)
ij −

[

qi +
k2

L2(Rm + ri)2

]

δij ,

Bij = Dz
(2)
ji .

Dr
(1)
ij , Dr

(2)
ij , Dz(2)

ij are differentiating matrices. In the SVV method, the Laplace
operator in Eq. (3.1a):

(3.8) ∆ =
1

L2

∂2

∂r2
+

1

L2(Rm + r)

∂

∂r
+

1

L2(Rm + r)2
∂2

∂ϕ2
+

∂2

∂z2

is modified and takes the following form:

∆SV V ≡ 1

L2

∂

∂r
Gr

Nr

∂

∂r
+

1

L2(Rm + r)
Gr

Nr

∂

∂r
(3.9)

+
1

L2(Rm + r)2
∂

∂ϕ
Gϕ

Nϕ

∂

∂ϕ
+

∂

∂z
Gz

Nz

∂

∂z
.

After expanding (3.9) in Fourier series and with Eq. (3.3a) we obtain

∆SV V
k =

1

L2

∂

∂r
Gr

Nr

∂

∂r
+

1

L2(Rm + r)
Gr

Nr

∂

∂r
(3.10)

− k2

L2(Rm + r)2
Ĝϕ

Nϕ(k) +
∂

∂z
Gz

Nz

∂

∂z
.

Matrices Aij and Bij can be written in the following form:

(3.11)

Aij =
1

L2
Dr

(2)SV V
ij +

1

L2(Rm + r)
Dr

(1)SV V
ij

−
(

qi +
k2

L2(Rm + r)2

(

1 +
εϕ
Nϕ

ν
Q̂ϕ

Nϕ/2(k)

))

δij,

Bij = Dz
(1)SV V
ji .

In Eqs. (3.11) differentiating matrices Dr(1)SV V
ij and Dr(2)SV V

ij are defined in the
following way:

(3.12)

[Dr
(2)SV V
ij ] = Dr(2)SV V = Dr(1) ·Dr(1)SV V ,

[Dr
(1)SV V
ij ] = Dr(1)SV V =

(

I +
1

ν
εr
NrHr

)

Dr(1).
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The matrix Dz(1)SV V
ij is defined in a similar way. Hris Chebyshev high-pass

filter [20] that is defined as follows (in z direction we obtain similar formulas):

(3.13)

Hr
ij =

2

N rcj

Nr−1∑

n=0

1

cn
Q̂r

Nr(n)Tn(ri)Tn(rj),

where cj =

{
2 for j ∈ (0, N r),
1 for j ∈ (1, . . . , N r − 1),

Tn(rj) = cos(nπ(j)/N r).

In order to verify the exponential convergence of the SVV method we use
the benchmark described in [6]: the steady flow solution in cavity with L = 5,
Rm = 5, Re = 500 has the following analytical solution:

(3.14)

ua =
2

L(r + Rm)
z2 tanh(1 − z3) sin(ϕ) cos(2ϕ),

va = 5 · 10−2(1 + 2 ln(L(r + Rm))z2 tanh(1 − z3),

wa = 2 · 10−1 sin2(L(r + Rm)2)
1 + sin(ϕ)

2 + cos(ϕ)
,

pa = 10−1 tanh[1 − L2(r + Rm)2]z2[sin(ϕ) + cos(2ϕ)]2.

Benchmark requires obtaining the function for mass force F from Navier–Stokes
equations (what we did using the MAXIMA symbolic calculation tool). Then
the disturbed flow field (3.14) [6] was used as an initial condition in our code.
In our solver we took into account the mass force F . The boundary conditions
were directly taken from (3.14). We performed computations for the following
parameters: ε = 1/N , δt = 0.01, Nϕ = N z = 57 and for different numbers of
collocation points in radial direction. Our computations confirm the exponential
convergence of the SVV method for N r ≥ 100. The implemented SVV method
turned out to be a very effective tool which allowed us to perform computations
for high Reynolds numbers, even using mesh with a small number of collocation
points (N r = 165, Nϕ = 140, N z = 61).

4. SVV computations: rotor/stator case flow

To show the effectiveness of the SVV method, computations have been
performed for rotor/stator configuration of L = 5, Rm = 1.8 on the mesh
(165 × 140 × 61) with the use of the threshol value N/2 and εN = 1/N . At
the beginning of our investigations we compare our SVV results with the DNS
results obtained for transitional and weakly turbulent flow cases (Re = 100 000,
200 000) and we obtain an agreement between these results. Then we perform
computations for higher Re to compare our results with those obtained exper-
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imentally in [6] for the isothermal flow in rotor/stator cavity of aspect ratio
L = 5, Rm = 1.8, Re = 400 000 (the outer stationary cylinder attached to
the stator and the inner rotating cylinder attached to the rotor). All statisti-
cal quantities are averaged in time and in the azimuthal direction. Figure 2a
presents the axial profile of the radial velocity component obtained in the mid-
dle section of cavity (velocity is normalized by the local velocity of the rotor as
in [6] to make the direct comparison possible). We observe an agreement of our
results with [6] data in spite of the fact that experimental investigations have
been performed for the isothermal condition. We observe that the axial profiles
consist of the boundary layer on the stator and on the rotor, and of the inviscid
core between them (this type of flow is called the Batchelor flow, [4, 10]). All
flow cases (L = 5–45) considered in the paper are of the Batchelor type; how-
ever, with increasing L the inviscid core is gradually shrinking. The axial profiles
of mean azimuthal velocity component normalized by the total friction velocity
Uσ = [ν2((dU/dz)2 +(dV/dz)2)]0.25 in function of the axial coordinate with wall
scaling z+ = ZUσ/ν are presented in Fig. 2b. The obtained profiles agree with
the traditional wall law v+ = ln(z+)/0.41 + 5.5 (statistics are gathered during
1–2 global time units, i.e., in terms of Ω−1) and also with Kasagi’s [12] numerical
results obtained for the rotating channel flow.

a) b)

Fig. 2. a) The axial profiles of the radial velocity component obtained for Re = 400 000
(velocity normalized by the local velocity of the rotor). Comparison with the experimental
data [6]. b) Dimensionless azimuthal velocity profiles in function of axial coordinate in wall
scaling obtained for different Reynolds numbers; comparison with the wall law. Comparison
with Kasagi’s numerical results [12]. Middle section of cavity: L = 5, Rm = 1.8, B = 0.1,

Re = 400 000. SVV computations.

The distribution of the r.m.s. radial Reynolds stress tensor component u′u′
0.5

obtained for Re = 400 000 in the middle section of cavity is shown in Fig. 3a
and compared with the experimental results published in [6]. Again, we observe
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an agreement of our results with the experimental data in [6]. For the boundary
conditions described in Section 2 the flow is pumped outward along the heated
bottom disk (rotor). Then the fluid is lifted up along the heated stationary outer
cylinder and recirculates along the cooled stator. Turbulence is concentrated in
the stator boundary with the maximum at the junction between the outside
cylinder and stator. The structures of the flows in the rotor and stator boundary
layers are presented in Fig. 3b (iso-lines of the axial velocity component). In
the stator boundary layer (Fig. 3b) we observe thin axisymmetrical structures
typical of turbulent flows, whereas in the rotor boundary layer, positive spiral
vortices are visible. The obtained flow structure is similar to this presented in [6].
We can conclude that the SVV correctly describes the structure of turbulent
flows.

a) b)

Fig. 3. a) The axial profile of square root of the radial Reynolds stress tensor component
(normalized by the local velocity of the rotor). Middle section of the cavity. Comparison with
the experimental data [6]. b) The iso-lines of axial velocity component obtained near the stator

and rotor for Re = 400 000, L = 5, Rm = 1.8 and, B = 0.1. SVV computations.

5. Near-wall structure of the flow

The parallelization of the DNS code (OpenMP technology) has allowed us
to perform computations using a large number of collocation points which is
particularly important in the near-wall area. Additionally, the use of the SVV
method has allowed us to perform computations for high Reynolds numbers.
The DNS/SVV of turbulent flow offers a wealth of information which cannot
be obtained experimentally. Specifically, this study aims at comparing the ax-
ial distributions of the Reynolds stress tensor components and the turbulent
heat flux components obtained in the near wall area with the wall asymptotes.
The obtained data can be of interest for the researches dealing with the RANS
method.
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Figures 4–6 show the Reynolds stress tensor components normalized by the
square of the friction velocity V ′V ′/U2

σ , U ′U ′/U2
σ , W ′W ′/U2

σ , V ′W ′/U2
σ and

the turbulent heat flux components (T ′T ′)/TσTσ, (T ′V ′)/TσUσ, (T ′W ′)/TσUσ,
−(T ′U ′)/TσUσ versus the axial coordinate in wall scaling z+ obtained for dif-
ferent Re and L (middle section of cavity; Tσ = q̇w/ρcpUσ denotes friction tem-
perature). The logarithmic scale is used on both axes. Figures 4–6 also show the
slope of the wall asymptotes (black lines) which can be useful in predicting the
fluid behavior in the near-wall area.

Fig. 4. The axial profiles of the three Reynolds stress tensor components
V ′V ′/U2

σ , U ′U ′/U2
σand W ′W ′/U2

σ versus the axial coordinate in wall scaling, obtained
for different Re and L. Rm = 1.8, B = 0.1. Comparison with the numerical results obtained

in [12–14], with the experimental data obtained in [11] and with the near wall asymptotes.

Fig. 5. The axial profiles of the Reynolds stress tensor component V ′W ′/U2
σ versus the axial

coordinate in wall scaling obtained for different Re and L. Rm = 1.8, B = 0.1. Comparison
with the numerical results obtained in [12–14], and with the near wall asymptote.

In the near-wall area the changes of the fluid flow parameters in the axial di-
rection are dominant. Following Hanjalić and Launder [21] the velocity com-
ponents, temperature and pressure fluctuations can be expanded into a Taylor
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a)

b)

c)

d)

Fig. 6. a) The mean square temperature fluctuation profiles T ′T ′/T 2
σ versus the axial coordi-

nate with wall scaling, b) V ′T ′/UσTσ, c) W ′T ′/UσTσ, d) −U ′T ′/UσTσ obtained for Rm = 1.8,
B = 0.1 and different L and Re. Comparison with the numerical results obtained in [12–14],

with the experimental data obtained in [11] and with the near wall asymptotes.
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series in the following way:






u′(ϕ, r, z, t) = au(ϕ, r, t)+bu(ϕ, r, t)z+cu(ϕ, r, t)z2+du(ϕ, r, t)z3 . . . ,

v′(ϕ, r, z, t) = av(ϕ, r, t)+bv(ϕ, r, t)z+cv(ϕ, r, t)z
2+dv(ϕ, r, t)z

3 . . . ,

w′(ϕ, r, z, t) = aw(ϕ, r, t)+bw(ϕ, r, t)z+cw(ϕ, r, t)z2+dw(ϕ, r, t)z3 . . . ,

(5.1a)

Θ′(ϕ, r, z, t) = aT (ϕ, r, t)+bT (ϕ, r, t)z+cT (ϕ, r, t)z2+dT (ϕ, r, t)z3 . . . ,(5.1b)

p′(ϕ, r, z, t) = ap(ϕ, r, t)+bp(ϕ, r, t)z+cp(ϕ, r, t)z
2+dp(ϕ, r, t)z

3 . . . .(5.1c)

For the viscous flow cases with the no-slip condition velocity fluctuations at the
wall equal zero (u′w = v′w = w′

w = 0) and consequently au = av = aw = 0.
Additionally, from the continuity equation written for velocity fluctuations (in-
compressible flow) we have at the wall: (∂w′/∂z)w = 0 so that bw = 0 in
Eq. (5.1a). For isothermal condition at the wall there are no temperature fluc-
tuations (Θ′

w = 0) and consequently aT = 0. After multiplication of appropriate
fluctuations (described by Eqs. (5.1)) and averaging of the product in time we
get the following estimations:

(5.2)
u′u′ ∼ v′v′ ∼ z2, w′w′ ∼ z4, v′w′ ∼ z3, u′w′ ∼ z3, u′v′ ∼ z2,

u′Θ′ ∼ v′Θ′ ∼ z2, Θ′Θ′ ∼ z2, w′Θ′ ∼ z3.

Our results obtained for very strong 3D boundary layers of the stator in
rotor/stator configurations (Figs. 4–6) confirm the inferences (5.2). The results
are compared with experimental data obtained in [11] for a single heated rotating
disk and with numerical data in [12] obtained in fully developed channel flow with
heat transfer and with streamwise system rotation. We can observe an agreement
between all our results and the results in [12] with the near wall asymptotes up
to z+ ≈ 10.

The Reynolds stress tensor components v′w′, u′w′ increase as ∼ z3 for the
small distance from the wall (they are negligibly small in comparison to the vis-
cous shear stresses). For larger distances from the wall v′w′ and u′w′ become the
dominant contributors to the momentum transfer. The axial profiles of the total
shear stress ([(ν∂Ū/∂Z − U ′W ′)2 + (ν∂V̄ /∂Z − V ′W ′)2]1/2/σw), the Reynolds
shear stress ([(U ′W ′)2 + (V ′W ′)2]1/2/σw) and the viscous shear stress are pre-
sented in Fig. 7 as a function of z+ (σw denotes shear stress at the wall). We
can see that the total shear stress is almost constant up to z+ ∼ 3 (thin layer
in which viscous action is a dominant mechanism in momentum transfer). With
increase of the distance from the wall we observe rapid decrease of the total
shear stress (in this area the momentum is transferred mostly by the turbulent
shear stresses). The Reynolds shear stress ([(U ′W ′)2 + (V ′W ′)2]1/2/σw) reaches
the maximum value at z+ ∼ 17.3 (Fig. 7).
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Fig. 7. The axial profiles of the total shear stress [(ν∂Ū/∂Z − U ′W ′)2 + (ν∂V̄ /∂Z −
V ′W ′)2]1/2/σw, the Reynolds shear stress and the viscous shear stress in function of z+

obtained for different L and Re. Rm = 1.8, B = 0.1. Middle section of cavity.

a)

b)

Fig. 8. a) The axial profiles of production rate P+
vv. b) The axial profiles of dissipation

rate −ε+vv. The middle section of cavity, Re = 1.8, B = 0.1. Comparison with the results
obtained by Kasagi [12] and Wu and Kasagi [13, 14].
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In our investigations we also analyze the budget of transport equations (the
transport equations in cylindrical co-ordinate system can be found in [22]). The
Reynolds stress transport equation can be written in the symbolic form:

(5.3)
∂U ′

iU
′
j

∂t
= Aij +Rij + Pij + TDij + PDij + PSij + V Dij − εij .

The physical sygnificance of the particular terms are: A – advection, R – ro-
tation, P – production, TD – turbulent diffusion, PD – pressure diffusion, PS –
pressure strain, V D – viscous diffusion and ε – dissipation. The exemplary axial
profiles of production P+

vv (Eq. (5.4a)) and dissipation ε+vv (Eq. (5.4b)) in func-
tion of z+obtained for different L and Re are presented in Fig. 8. From Fig. 8a we
estimate P+

vv that in the near-wall area is P+
vv ≈ 0.001(z+)3. The stress dissipa-

tion rate ε+vv in the near-wall area is constant – up to z+ ≈ 10. Most of the terms
of the Reynolds stress budget can be estimated with approximations (5.1) [21]:

P+
vv =

(

−2
1

L

∂v̄

∂r
v′u′ − 2

L(Rm + r)
(
∂v̄

∂ϕ
+ ū)v′v′ − 2

∂v̄

∂z
w′v′

)

· Re(5.4a)

·
[

L(Rm + 1)

((
∂ū

∂z

)2

w

+

(
∂v̄

∂z

)2

w

)]−1

,

ε+vv =

(

− 2
1

L2

(
∂v′

∂r

)(
∂v′

∂r

)

− 2

((
∂v′

∂ϕ
+ u′

)

/L(Rm + r)

)2

(5.4b)

− 2

(
∂v′

∂z

)(
∂v′

∂z

))

·
((

∂ū

∂z

)2

w

+

(
∂v̄

∂z

)2

w

)−1

.

Fig. 9. The axial profiles of the structural parameter (u′u′+v′v′)/w′w′ versus axial coordinate
in wall scalling z+. Rm = 1.8, B = 0.1, the stator boundary layer, middle section. Comparison

with the results obtained in [12–14].
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The structure of the near-wall flow can be also characterized by structural pa-
rameters which are very useful for modelling purposes, [11]. Figure 9 presents the
distributions of the structural parameter (u′u′+v′v′)/w′w′ obtained for different
L and Re. We observe that (u′u′+v′v′)/w′w′ varies as ∼ (z+)−2 in the near-wall
area (solid line). From Fig. 9 we can see that the values of (u′u′ + v′v′)/w′w′

are very large near wall which implies that the vertical movement in this area is
weak.

6. Local Nusselt number distributions along heated rotating disk
under impinged jet

The flow between two rotating disks with a superimposed flow was investi-
gated in many papers (Owen and Rogers [23], Craspo del Arco et al. [24],
among others). Problem is of great interest for the internal aerodynamics of en-
gines, particularly can be interesting for engineers dealing with turbomachinery
air-cooling devices. However, it is also interesting from fundamental point of
view. Craspo del Arco et al. [24] investigated numerically the spatio-temporal
behavior of the flow in the rotor/rotor cavity with radial inflow and the radial
outflow. They analyzed consecutive bifurcations in the Ekman boundary layer,
which appeared with the increasing mass flow rates. In the present paper we
performed preliminary computations of the flow with heat transfer between two
rotating disks with the axial inflow and the radial outflow. We focused on the
Nusselt number distributions near the axial annular impinging area and on its
correlations with the flow structure.

The local Nusselt number is computed from the equation:

(6.1) Nur =
1

(1 −Θc)

(
∂Θ

∂z

)

w

L(Rm + r),

where Θc(r) denotes the dimensionless temperature in the core of cavity (z = 0),
averaged in time and in the azimuthal direction. The distributions of the local
Nusselt numbers along rotor and stator (rotor/stator cavity) obtained for differ-
ent geometrical and physical parameters are analyzed in detail in [9, 10]. In the
present paper we compare these results (Fig. 10) with the preliminary results
obtained for the flow cases with annular axial jet impinging on the heated rotor
using DNS and SVV (rotor/rotor cavity). Computations have been performed
for very low Reynolds number These preliminary results (obtained using the
same mesh with Gauss-Lobatto collocation points which was previously used for
rotor/stator cavity; 400 × 400 × 200) allow us to estimate the correlations be-
tween the local Nusselt number distributions along disk and the resulting flow
structures. However, this approach is very time consuming so that only some
flow cases have been computed (in our computations we increase gradually the
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Fig. 10. Distributions of the local Nusselt numbers obtained along heated rotor.

axial velocity component at the inlet winl with very small increment). The di-
mensionless time step is δt = 10−5. All computed flow cases with jet are laminar.
The exemplary fluid flow structure and temperature field obtained for L = 15,
Rm = 1.8, Re = 90 000, (ra − rR0

) = 0.02791, winl = 0.46 are presented in
Fig. 11 (only the inlet area is visible).

Investigation of spatio-temporal flow between two rotating discs with ra-
dial inflow and outflow, was investigated by some authors (among others [24]).
Crespo del Arco et al. analyzed consecutive bifurcations which occur with the
increasing mass flow rates. The authors concluded that dynamical behavior of
the flow in rotor/rotor cavity results in instability of the entry flow. In present
paper we analyzed laminar flow in rotor/stator cavity with axial inflow and radial
outflow.

The radial profiles of the axial velocity components obtained for different
axial sections are presented in Fig. 11c. From Fig. 11a we can see that the cold
fluid enters the cavity through the upper disk and the axial annular jet impinges
on the bottom heated rotating disk. As the cold fluid approaches the wall the
axial velocity component vanishes and the fluid changes its direction. The fluid
is pumped radially outward as a wall jet and then it is disgorged to flow radially
inward. In this area a large vortex is observed which intensifies the redistribution
of the hot and cold fluids.

In Fig. 10 we present the Nusselt number distributions obtained along heated
rotor (rotor/stator configuration, Re = 270 000, L = 35, Rm = 1.8 and Re =
260 000, L = 25, Re = 1.8), results obtained along the heated rotor under im-
pingement of cold jet (rotor/rotor configurations with annular impinging jet, dif-
ferent Re, (ra − rR0

) = 0.02791, winl = 0.46), results obtained along the heated
rotor (rotor/rotor configurations without annular impinging jet, Re = 60 000)
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a)

b)

c)

Fig. 11. a) The meridian fluid flow and temperature fields, the local Nusselt number distribu-
tion: Re = 90 000, L = 15, Rm = 1.8, (ra − rR0

) = 0.02791. b) The meridian fluid flow and
temperature fields, the axial profiles of the temperature fluctuations, Re = 90 000, L = 15,
Rm = 1.8, (ra − rR0

) = 0.02791. c) The radial profiles of the axial velocity components ob-
tained for Re = 90 000, L = 15, Rm = 1.8, (ra−rR0

) = 0.02791 (left) and Re = 40 000, L = 15,
Rm = 3.0, (ra − rR0

) = 0.02791 (right).

and results obtained from the experimental correlation formula proposed by
Nikitenko [25] for the heated rotating disk. The local Nusselt number varies
linearly with the radius of the rotating disk in laminar flow Nur ∼ Re0.5

r and
in accordance with function Nur ∼ Re0.8

r in turbulent flow (Rer = ΩR2/ν). We
can see from Fig. 10 that for flow cases with L = 35 and L = 25, Nur is a linear
function of the radius in the range −0.8 < r < 0.5. In the area near the outer
cylinder (r ≥ 0.5) where the turbulence level is high we observe rapid increase
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of the local Nusselt number (there is a change of the slope of the curves). Dis-
tributions obtained in [25] formula and obtained from DNS (rotor/rotor cavity
without jet, Re = 60 000, L = 15, Rm = 1.8) are linear along the whole rotor. In
the flow cases with the axial laminar annular jet we observe rapid changes of the
local Nusselt number near the impinging area; for larger radii we again observe
the linear distribution of Nur.

Figure 11a shows correlation between the fluid flow structure and temper-
ature structure, and the local Nusselt number distribution (Re = 90 000). The
maximum value of the Nusselt number is observed in the area where the bottom
disk’s boundary layer is the thinnest, then Nur decreases to the minimal value
at r ≈ −0.8. The second peak of the local Nusselt number occurs at r ≈ −0.75.
Outside of the impingement area the Nusselt number increases linearly with the
radius. Figure 11b shows correlation between the fluid flow structure, temper-
ature structure and the axial profiles of the temperature fluctuations Θ′Θ′0.5

obtained in the different radial sections of the cavity (Re = 90 000). The maxi-

mum value of the axial Θ′Θ′0.5
profiles depends very strongly on the radius of the

considered section (outside of the large vortex presented in Fig. 11 temperature
fluctuations are negligibly small).

7. Summary and conclusions

In the paper we presented DNS/SVV computations of the flow with heat
transfer in rotating cavity of different aspect ratio L = 5–45, Rm = 1.8 and dif-
ferent Reynolds numbers. We also presented a few preliminary solutions obtained
for the rotor/rotor flow cases with the axial annular jet. The main purpose of
the paper was to investigate the characteristics of the near-wall flows. To obtain
this goal we parallelized existing DNS code and then implemented the spectral
vanishing viscosity method (SVV) to stabilize the discretization scheme.

We verified the exponential convergence of the SVV by the benchmark de-
scribed in [6]. The SVV method turned out to be a very efficient numerical tool
which enabled us to perform computations for higher Re (even on meshes with
the small number of collocation points). In Section 3 we compared our results
obtained for the rotor/stator cavity of L = 5, Rm = 1.8, B = 0.1 and for
Re = 400 000 using the SVV method with the experimental results obtained
in [6] for the same geometrical parameters and Reynolds number but for the
isothermal condition. We found an agreement between the experimental and the
numerical results. We also demonstrated that the stator boundary layer flows sat-
isfy the traditional wall law (turbulence statistics were gathered for 1–2 global
time units). In the frame of the present paper the SVV-Laplace operator ∆SV V

was only applied to the Navier–Stokes equation. In the near future we plan to ap-
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ply ∆SV V to the energy equation. This extension should lead to further increase
of the scheme stability.

In studies of the flow with heat transfer in the rotor/stator cavity with higher
L we used refined mesh with up to 35 million collocation points. The obtained re-
sults are complementary to those published in [10] where the solutions obtained
using the meshes with up to 10 million collocation points were presented. The re-
fined meshes enabled us to carefully investigate near-wall area (to the best knowl-
edge of the authors such a detailed information cannot be obtained experimen-
tally). All considered rotor/stator flow cases were of Batchelor type (the flow con-
sists of two boundary layers separated by a rotating inviscid core); however, with
increasing aspect ratio l the inviscid core gradually disappears. We presented the
axial distributions of the Reynolds stress tensor components, the turbulent heat
flux components, the production and dissipation rates and selected structural
parameters in function of the wall coordinate. Our results were compared with
the experimental data from [11] obtained for the heated single rotating disk and
with the numerical results of [12] obtained in a fully developed channel flow with
heat transfer and with streamwise system rotation, and with the wall asymp-
totes. We observed an agreement between all results with the wall asymptotes up
to z+ ≈ 10. These results can be useful for RANS modelers. The authors are also
interested in comparison of their results (3D, SVV/DNS) with those obtained
numerically using different RANS models (RSM, k–ε, [1]). Such a comparison
could help to estimate the strengths and limitations of particular models.

We also presented the preliminary results (DNS/SVV) of the flow in ro-
tor/rotor cavity with the axial annular jet impinging on the heated rotating disk.
All considered flow cases were laminar. We focused on the correlations between
the resulting large scale structures and the distributions of the local Nusselt
number, and the distributions of the temperature fluctuation. The Nusselt num-
ber distributions obtained for the flow cases with jet were then compared with
the distributions obtained along the heated rotating disk in rotor/stator config-
urations, and also with the results obtained from the experimental correlation
formula proposed by Nikitenko for the heated rotor. For all considered Reynolds
numbers we observed two peaks of the Nusselt numbers near the impingement
area and linear increase of Nusselt numbers outside this area. This preliminary
research showed that investigations of the interaction between the axial annular
jet and the heated rotating disk in the rotating cavity can deliver results in-
teresting from fundamental and engineering points of view. Further research is
planned on this problem to deliver more information about the influence of the
geometrical parameters of the cavity (H/a,L,Rm) on the effectiveness of the
heat transfer and on the near-rotating disk characteristics.

Our further research will also include the optimization of the numerical algo-
rithm. We believe that the implementation of the multi-domain method together
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with the MPI parallelization will allow us to perform computations in a shorter
wall time and also will allow us to use better meshes.

Acknowledgement

We are grateful to the Poznań Supercomputing and Networking Center,
where the computations have been performed and to authors of ParaView open
source tool.

References

1. A. Randriamampianina, L. Elena, J.P. Fontaine, R. Schiestel, Numerical predic-
tion of laminar, transitional and turbulent flows in shrouded rotor-stator systems, Phys.
Fluids, 9, 1696, 1997.

2. E. Serre, J.P. Pulicani, A three-dimensional pseudospectral method for rotating flows
in a cylinder, Computers & Fluids, 30, 491, 2001.

3. E. Serre, E. Tuliszka-Sznitko, P. Bontoux, Coupled theoretical and numerical study
of the flow transition between a rotating and a stationary disk, Phys. Fluids, 16, 3, 688–
707, 2004.

4. M. Lygren, H.I. Andersson, Large eddy simulations of the turbulent flow between a ro-
tating and a stationary disk, ZAMP, 55, 268, 2004.

5. S. Poncet, R. Schiestel, Numerical modeling of heat transfer and fluid flow in rotor
stator cavities with throughflow, Int. J. Heat Mass Transfer, 50, 1528–1544, 2007.

6. E. Severac, E. Serre, A spectral vanishing viscosity for the LES of turbulent flows
within rotating cavities, J. Comput. Phys., 226, 1234–1255, 2007.

7. A. Randriamampianina, P. Bontoux, B. Roux, Buoyancy driven flows in rotating
cylindrical annulus, Int. J. Heat Mass. Transfer, 30, 1275–1292, 1987 [in French].

8. J. Pelle, S. Harmand, Heat transfer measurements in an opened rotor–stator system
air gap, Exp. Therm. Fluid Sci., 31, 165–180, 2007.

9. E. Tuliszka-Sznitko, W. Majchrowski, K. Kiełczewski, Investigation of transi-
tional and turbulent heat and momentum transport in rotating cavity, Int. J. Heat and
Fluid Flow, 35, 52–60, 2012.

10. E. Tuliszka-Sznitko, A. Zielinski, W. Majchrowski, Large eddy Simulation of tran-
sitional flows in rotor/stator cavity, Archives Mech., 61, 2, 93–118, 2009.

11. C.J. Elkins, J.K. Eaton, Turbulent heat and momentum transport on a rotating disk,
J. Fluid Mech., 402, 225–253, 2000.

12. N. Kasagi, Micro gas turbine/solid oxide fuel cell hybrid cycles for distributed energy
system, The University of Tokyo, 1999–2003.

13. H. Wu, N. Kasagi, Effects of arbitrary directional system rotation on turbulent channel
flow, Phys. Fluids, 16, 979–990, 2004.

14. H. Wu, N. Kasagi, Turbulent heat transfer in a channel flow with arbitrary directional
system rotation, Int. J. Heat Mass Transfer, 47, 4579–4591, 2004.



548 K. Kiełczewski, E. Tuliszka-Sznitko

14. H. Wu, N. Kasagi, Turbulent heat transfer in a channel flow with arbitrary directional
system rotation, Int. J. Heat Mass Transfer, 47, 4579–4591, 2004.

15. R. Pasquetti, C.J. Xu, High-order algorithm for large eddy simulation of incompressible
flow, J. Sci. Comput., 17, 1–4, 273, 2002.

16. E. Severac, P. Poncet, E. Serre, A spectral vanishing viscosity for the LES of tur-
bulent flows within rotating cavity, J. of Comput. Physics, 226, 1234–1255, 2007.

17. E. Tadmor, Convergence of spectral methods for nonlinear conservation laws, SIAM,
J. Numer. Anal., 26, 30–44, 1989.

18. G.S. Karamanos, G.E. Karniadakis, A spectral vanishing viscosity method for large
eddy simulation, J. Comput. Physics, 163, 22, 2000.

19. Y. Maday, S. Kaber, E. Tadmor, Legendre pseudo-spectral viscosity method for non-
linear conservation laws, SIAM, J. Numer. Anal., 30, 2, 321, 1993.

20. S. Sarra, Chebyshev, Pseudospectral methods for conservation laws with source terms
and application to multiphase flow, Phd Thesis, Morgantown, West Virginia, 2002.

21. K. Hanjalic, B. Launder, Modelling Turbulence in Engineering and the Environment,
Cambridge, 2011.

22. H. Littell, J. Eaton, An experimental investigation of the three-dimensional boundary
layer on a rotating disk, Tech. Rep. MD-60. Stanford University, Department of Mechan-
ical, Engineering, Thermosciences Div., 1991.

23. J.M. Owen, R.H. Rogers, Flow and heat transfer in rotating-disc systems, Part II,
Research Studies Press Taunton, Somerset, England.

24. E. Crespo del Arco, P. Maubert, A. Randriamampianina, P. Bontoux, Spatio-
temporal behaviour in a rotating annulus with a source-sink flow, J. Fluid Mech., 328,
1996.

25. N. Nikitenko, Experimental investigation of heat exchange of a disk and screen, J. Engng.
Phys., 6, 1–11, 1963.

Received January 29, 2013; revised version September 30, 2013.


