
Arch. Mech., 66, 4, pp. 287–301, Warszawa 2014

Brief Note

Cross-properties of the effective conductivity

of the regular array of ideal conductors

S. GLUZMAN1), V. MITYUSHEV2), W. NAWALANIEC2)

1)Bathurst 3000

Toronto M6B 3B4 Ontario, Canada

e-mail: simon.gluzman@gmail.com

2)Department of Computer Sciences and Computer Methods

Pedagogical University

ul. Podchorążych 2

30-084 Kraków, Poland

emails: mityu@up.krakow.pl, wnawalaniec@gmail.com

We present an accurate expression for the effective conductivity of a regular
square-lattice arrangement of ideally conducting cylinders, valid for arbitrary concen-
trations. The formula smoothly interpolates between the two asymptotic expressions
derived for low and high concentrations of the cylinders. Analogy with critical phe-
nomena is suggested and taken to the extent of calculating the superconductivity
critical exponent and the particle-phase threshold from the very long expansions in
concentration. The obtained formula is valid for all concentrations including touching
cylinders, hence it completely solves with high accuracy the problem of the effective
conductivity for the square array.
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1. Introduction

We consider a two-dimensional composite corresponding to the regular
square-lattice arrangement of ideally conducting unidirectional cylinders of ra-
dius r embedded into the matrix of a conducting material as shown in Fig. 1.
The conductivity of the surrounding matrix is normalized to unity without loss
of generality [23, 24].

The volume fraction (concentration) of cylinders is equal to x = πr2 and
corresponding periodicity cell is shown in Fig. 2. The effective conductivity does
not depend on the linear sizes, hence it can be expressed through only one
dimensionless geometrical parameter, the concentration x.

The effective conductivity along the unidirectional cylinders is infinite. The
effective conductivity σ(x) perpendicular to regular arrays of cylinders was dis-
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Fig. 1. Section perpendicular to the unidirectional cylinders.
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Fig. 2. Periodicity cell. Following [23, 24], we assume that it is the unit square and the
radius r is given as a dimensionless value.

cussed by Maxwell [19] and Rayleigh [24] in the lowest orders in x. Their work
was continued in [23], resulting in rather good numerical solutions.

Considerable efforts have been dedicated to the effective conductivity prob-
lem of regular composite when inclusions are ideal conductors and the concen-
tration tends to the critical value xc = π/4. Long series and rational approxi-
mations were proposed in [20–22, 25, 26] to estimate σ(x) (see formula (2.2)).
Two-point Padé approximants were applied in [1, 2, 29, 30] to derive upper and
lower bounds on the effective conductivity. Asymptotically equivalent functions
were constructed in [5] and applied to the percolating random media [3].

On the other hand, Keller [15] obtained in the regime of high concentrations,
close to the particle-phase threshold xc, the following expression for the effective
conductivity:

(1.1) σ(x) ≃ π3/2

2
√

π/4 − x
.

This formula was supplemented in [18] by a constant term

(1.2) σ(x) ≃ π3/2

2
√

π/4 − x
− π + 1.
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Formula (1.2) follows from equation (49) in [18] for a dipole coefficient when the
conductivity of inclusions tends to infinity.

In all previous body of work such expressions for σ(x) valid near xc, were not
matched with the series expansions at x = 0, though tight bounds were obtained
in [2, 29, 30] for a sufficiently large x.

We suppose that previous failure to construct the global approximation, is
related to the principal impossibility of uniform approximation by rational func-
tions on the closed segment [0, π

4 ] of the function σ(x) having a fractional power
singularity.

Our primary goal is to overcome such difficulty and derive an accurate, com-
pact expression for the effective conductivity of such systems, valid for arbitrary
concentrations. Moreover, we demonstrate that the sufficiently long series near
x = 0 capture implicitly the critical value xc = π

4 and even the type of singularity.
This approach may be applied to the random materials as well [11].

The critical behavior of regular composites is practically never mentioned
together with other critical phenomena [27]. It is remarkable that a relatively
“different” Laplace equation for the potential, when complemented with a non-
trivial boundary conditions in the regular domain of inclusions (see, e.g., [25]),
behaves critically even without explicit non-linearity or randomness, typical
to the phase transitions and percolation phenomena [27]. The series (2.2)
and the critical behavior with the so-called superconductivity critical index
s = 1/2 [31], and critical amplitude A = π3/2/2, will be merged into a single,
unified formula.

From the phase interchange theorem [16] it follows that in two dimensions,
the superconductivity index is equal to the conductivity index [31]. We also
demonstrate how the most typical characteristics of the critical phenomena, the
threshold value and the superconductivity critical index, can be calculated di-
rectly from the series (2.2). To this end we primarily apply properly modified
techniques of Padé approximants, widely used in the theory of critical phenom-
ena [6, 7, 33].

The effective conductivity σ(x) is an analytic function in x. In general case of
a two-phase composite the so-called contrast parameter should be also included
into consideration explicitly, see, e.g., [10].

We are interested here in the case of a high-contrast regular composites, when
the conductivity of the inclusions is much larger than the conductivity of the host.
That is, the highly conducting inclusions are replaced by the ideally conducting
inclusions with infinite conductivity. In this case, the contrast parameter is equal
to unity and remains implicit.

We also restrict our study to the two-dimensional case, which is still
considerably interesting, both for practical [8] and physical reasons [23, 32]. In
practice, the composite often consists of a uniform background-host reinforced
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by a large number (high concentration) of unidirectional rod- or fiber-like inclu-
sions.

On the other hand, two-dimensional regular composites much closer resemble
the two-dimensional random composites, than their respective 3D counterparts
do [32]. The tendency to order in the two-dimensional random system of disks is
a crucial feature in the theory of composites at high concentrations. The effec-
tive conductivity of random 2D high-contrast composites also exhibits critical
behavior with critical index s = 1.3 [31].

One can even think about a dependence of the critical index on the degree
of randomness, but the regular case should be studied first in the same frame-
work as random. While classical renormalization group may not be useful in the
random case [9], “the age-old method of series expansions" remains the only al-
ternative. But it can be applied confidently only if the sufficiently long series in
concentration were available.

The considered problem can be formulated as follows. Given the polynomial
approximation of the function σ(x), to estimate the convergence radius xc of
the Taylor series of σ(x), and to determine parameters of the asymptotically
equivalent approximation near x = xc, for the sought quantities, we are going to
obtain numerical sequences of approximations, and make conclusions based on
convergence or semi-convergence of various sequences.

2. Critical point, square lattice

The normalized effective conductivity σ(x) is exactly expressed by the com-
plicated expansion [21, 22].

σ(x) = 1 + 2x+ 2x2

+
2x2

π

∞
∑

k=1

∞
∑

m1=1

∞
∑

m2=1

· · ·
∞
∑

mk=1

σ(1)
m1
σ(m1)

m2
. . . σ

(mk−1)
mk

σ
(mk)
1

(

x

π

)2(m1+m2+···+mk)−k

,

where

(2.1) σ
(n)
k =

(2n+ 2k − 3)!

(2n− 1)!(2k − 2)!
S2(n+k−1).

The lattice sums S2(n+k−1) can be computed by recurrence equations [21, 22].
Below, this expansion is presented in the truncated numerical form

σ(x) = 1 + 2x+ 2x2 + 2x3 + 2x4 + 2.6116556664543236x5(2.2)

+ 3.2233113329086476x6 + 3.8349669993629707x7

+ 4.446622665817295x8 + 5.272062706160579x9

+ 6.284564073656707x10 + 7.484126768305675x11
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+ 8.870750790107483x12 + 11.376487693870311x13

+ 14.200048348474557x14 + 17.39864131428396x15

+ 21.029475151662286x16 + 26.277897666772887x17

+ 32.66592466836545x18 + 40.31075089986001x19

+ 49.34706707473475x20 + 62.10071128310876x21

+ 77.45700559231325x22 + 95.88562104938396x23

+ 117.89818526393154x24 + 149.04923618206843x25

+ 186.9598285755466x26 +O(x27).

Can we really extract a purely geometrical quantity, such as xc, from the ex-
pansion (2.2) for the physical quantity σ(x)? The natural condition on xc is to
assume that it coincides with the point where σ(x) diverges.

2.1. Padé approximants

Probably the simplest way to estimate the position of a critical point, is to
apply the diagonal Padé approximants,

(2.3) p1
1(x) =

A1x+ 1

B1x+ 1
, p2

2(x) =
A2x

2 +A1x+ 1

B2x2 +B1x+ 1
, . . .

Padé approximants locally are the best rational approximations of power series.
Their poles determine singular points of the approximated functions [28]. Calcu-
lations with Padé approximants are straightforward and can be performed with
Mathematica

R©
. They do not require any preliminary knowledge of the critical

index and we have to find the position of a simple pole. There is a convergence
within the approximations for the critical point generated by the sequence of
Padé approximants, corresponding to their order increasing:

x1 = 1, x2 = 1, x3 − n.a., x4 = 0.84447, x5 = 0.842471,

x6 = 0.842781, x7 = 0.842471, x8 = 0.8446, x9 = 0.804535,

x10 = 0.804611, x11 = 0.804535, x12 = 0.80451, x13 = 0.804536.

The percentage error given by the last approximant in the sequence equals
to 2.43649%.

2.2. Quasi-rational Padé approximants

We assume that incorporating explicitly the known value of critical index,
will lead to improved accuracy in the threshold estimates. Let us use asymp-
totically equivalent functions in the form of the quasi-rational (diagonal) Padé
approximants [7],
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(2.4) P1(x) =

√

A1x+ 1

B1x+ 1
, P2(x) =

√

A2x2 +A1x+ 1

B2x2 +B1x+ 1
, . . .

The corresponding sequence of approximate values for the critical point is given
as follows:

x1 = 1/2, x2 = 1, x3 = 0.728069, x4 = 0.75074, x5 − n.a., x6 − n.a.,

x7 = 0.192259, x8 = 0.779385, x9 = 0.77997.

The percentage error given by the last approximant equals to 0.691135%. In the
next order there are two solutions x(1)

10 = 0.7781474 and x
(2)
10 = 0.643305, and

the computations were stopped.
We suggest that further increase in accuracy is limited by “flatness” of the

coefficients values in four starting orders of (2.2). We also consider another se-
quence of power-transformed Padé approximants, multiplied with the Clausius-
Mossotti-type expression,

(2.5) P t
1(x) =

(1 − x)
√

A1x+1
B1x+1

x+ 1
, P t

2(x) =
(1 − x)

√

A2x2+A1x+1
B2x2+B1x+1

x+ 1
, . . .

The transformation which lifts the flatness, does improve convergence of the
sequence of approximations for the threshold,

x1 = 1/4, x2 − n.a, x3 = 0.568452, x4 − n.a,

x5 = 0.826561, x6 = 0.803947, x7 = 0.827349,

x8 = 0.750544, x9 = 0.762065, x10 = 0.78493.

The percentage error achieved for the last point is equal 0.0596084%. The
calculations were stopped here because of the second solution emergence at
x = 0.887047. Although it does not interfere with the correct result x10, such
a branching gives a natural signal to stop.

3. Critical index s

The series from [22] approximated by (2.2) diverge as x → xc. Is it possible
to evaluate the character of singularity as x→ xc from the series (2.2), assuming
only that it is a power-law?

Let us apply the following transformation:

(3.1) z =
x

xc − x
⇔ x =

zxc

z + 1
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to the original series (2.2). To such transformed series M1(z) let us apply the
D-Log transformation (differentiate Log of M1(z)) and call the transformed se-
ries M(z). In terms of M(z) one can readily obtain the sequence of approxima-
tions sn for the critical index s,

(3.2) sn = lim
z→∞

(z PadeApproximant[M [z], n, n + 1]).

Namely, s2 = 0.627161, s4 = 0.633025, s6 = 0.597334, s8 = 0.550467, s10 =
0.551316, s12 = 0.535407. One may expect that adding more terms to the ex-
pansion (2.2) will also improve an estimate for s.

In order to accelerate convergence of the method we suggest adapting the
technique of corrected approximants [13]. Let us first estimate the critical index
by simplest non-trivial factor approximant [14, 34],

(3.3) f3(x) = (B1x+ 1) s1

(

1 − x

xc

)−s0

,

where s0 = 0.59928, s1 = 1.57496, B1 = 0.785398.
Let us divide original series (2.2) by f3(x), apply to the newly found series

transformation (3.1), then apply D-Log transformation and call the transformed
series K(z). Finally, one can obtain the following sequence of corrected approx-
imations for the critical index:

(3.4) sn = s0 + lim
z→∞

(z PadeApproximant[K[z], n, n + 1]).

The following corrected sequence of approximate values for the critical index
can be calculated readily: s4 = 0.62284, s5 = 0.135551, s6 = 0.586051, s7 =
0.559834, s8 = 0.54658, s9 = 0.553502, s10 = 0.549611, s11 = 0.555069, s12 =
0.503875.

4. Crossover formula for all concentrations

Our suggestion for the conductivity formula valid for all concentrations is
based on the following considerations. Let us first calculate the critical amplitude
A. To this end let us again apply transformation (3.1) to the original series to
obtain M1(z) as above. Then apply to M1(z) another transformation to get
T (z) = M1(z)

−1/s, in order to get rid of the square root behavior at infinity. In
terms of T (z) one can readily obtain the sequence of approximations An for the
critical amplitude A,

(4.1) An = xs
c lim

z→∞
(z PadeApproximant[T [z], n, n + 1])−s;
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A1 = 2.28682, A2 = 2.24389, A3 = 2.4418, A4 = 2.57419, A5 = 2.35515,
A6 = 2.34677, A7 = 2.52728, A8 = 2.63203, A9 = 2.69504, A10 = 2.62364,
A11 = 2.55292, A12 = 2.55224.

The ninth member of the sequence gives the best result for amplitude. Cor-
responding approximant to σ(x), satisfying 19 starting terms from (2.2), can be
readily written as follows:

(4.2) σ∗ =

√

zQ3(z)

Q1(z)
,

where

(4.3)

Q1(z) = z(z(z(z(zQ2(z)+61.8908)+27.588)+7.03611)+0.773878),

Q2(z) = z(z(z((0.10813z+2.8373)z+16.885)+47.592)+80.664)+87.607,

Q3(z) = z(z(z(z(zQ4(z)+325.32)+160.471)+51.0803)+9.46732),

Q4(z) = z(z(z(z(z+20.1693)+97.8524)+253.571)+411.488)+444.039.

Substitution of (3.1) in (4.2) yields

(4.4) σ∗ = 2.09382

√

xR3(x)

(π − 4x)R1(x)
,

where

(4.5)

R1(x) = x(x(x(x(xR2(x) − 0.985604) + 0.83488) − 0.0555036)

− 0.473743),

R2(x) = x(x(x(x(1.39918 − x) − 0.632586) + 0.648903) − 0.882948)

+ 1.45321,

R3(x) = x(x(x(x(xR4(x) + 0.53774) + 0.19359) − 0.49707) − 0.96545)

− 0.33948,

R4(x) = x(x(x(x(x+ 1.44888) + 0.504626) + 0.0358506) + 0.24819)

+ 0.921202.

For all practical purposes, this expression, which is a crossover between the
low-concentration and high-concentration regimes, is indistinguishable from the
modified Padé-based form,

(4.6) σ∗ =

√

zS3(z)

S1(z)
,
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where

(4.7)

S1(z) = z(z(z(z(zS2(z) + 110.63) + 52.5492) + 14.5119) + 1.78014),

S2(z) = z(z(z((0.101321z + 3.76147)z + 24.5539) + 73.2536) + 130.155)

+ 148.405,

S3(z) = z(z(z(z(zS4(z) + 577.474) + 300.114) + 101.332) + 20.1044)

+ 1.78014,

S4(z) = z(z(z(z(z + 27.4454) + 144.076) + 392.701) + 666.22)

+ 751.704,

or

(4.8) σ∗ = 1.91373

√

xT3(x)

(π − 4x)T1(x)
,

where

(4.9)

T1(x) = x(x(x(x(xT2(x) + 0.477564) − 0.489113) + 1.0752) − 0.995924),

T2(x) = x(x(x(x(0.743958 − x) + 0.478232) − 0.398804) + 0.19758)

+ 0.308858,

T3(x) = x(x(x(x(xT4(x) + 1.21937) + 0.397015) − 0.388154)

− 1.40718) − 0.854307,

T4(x) = x(x(x(x(x+ 2.24302) + 1.24708) + 0.216355) + 0.517846)

+ 1.25935.

The approximant (4.8) matches starting 18 terms from (2.2) and asymptotic
form (1.1) (18+1), not unlike [4]. There is a clear convergence to (18+1), in the
sub-sequence of approximants (2+1), (6+1), (8+1), (16+1) , (18+1); while all
other approximants are discontinuous.

From the crossover formula (4.8) one can readily obtain the higher-order
coefficients [35], not employed in the final formula,

a19 = 40.5543, a20 = 49.768, a21 = 62.9092, a22 = 78.5999,

a23 = 98.0859, a24 = 121.136, a25 = 152.608, a26 = 190.893,

in a fairly good agreement with the original series (2.2).
Analytical expression, deduced in [23], is the most appropriate for comparison

with our suggestion,

(4.10) σ(x) ≈ 1 +
2x

1 − x− 0.013362x8 − 0.305827x4

1−1.1403x8

.
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σ

x

Fig. 3. Our formula (4.8) (solid line) is compared with (4.10) (dashed-dotted line),
asymptotic expression (1.2) (dotted line) and expansion (2.2) (dashed line).

The bounds for σ(x) from [2] give similar numerical results for not critically high
concentrations. Formula (4.8) deviates from the expression (4.10) in the region of
concentrations (0.7, xc). Both formulae are positioned significantly higher than
expansion (2.2). Most importantly, formula (4.8) smoothly interpolates between
the two asymptotic expressions through the whole crossover region of (0.7, xc),
as shown in Fig. 3.

5. Expansion near the threshold

Throughout the paper we derived the expressions for the cross-properties
extending the series from small x to large x on the basis of the polynomial
formula (2.2). Alternatively, one can proceed to extend the series from the large
x (close to xc) to small x on the basis of (1.2) [12]. The simplest way to proceed
is to look for the solution in the whole region [0, xc) in the form

(5.1) σ = α1(xc − x)−1/2 + α2,

and obtain the unknowns from the two starting terms of (2.2), namely σ ≃ 1+2x.
Then, α1 = A (exact!), α2 = (1−π), same form as obtained in [17]. See also [17]
for a discussion of different approximate asymptotic expressions.

In order to improve (5.1), let us divide (series (2.2) by the approximant (5.1),
apply to the new series transformation (3.1) and then use diagonal Padé (or two-
point Padé) approximants. The following expression obtained from the simplest
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non-trivial two-point Padé approximant, satisfies five starting terms from (2.2)
and Keller’s asymptotic expression,

(5.2) σ =

2.05897(x(x(x+ 0.912641) + 0.356584) + 0.349627)(1.30004 −
√

0.785398 − x)

(x(x(x+ 0.847132) + 0.342827) + 0.336139)
√

0.785398 − x
.

Another expression, obtained from the simplest non-trivial diagonal Padé ap-
proximant, satisfying the same five terms, but with slightly higher value of am-
plitude A = 2.80931,

(5.3) σ =
2.17708(x(x+ 0.414669) + 0.18083)

(

1.30004 −
√

0.785398 − x
)

(x(x+ 0.42154) + 0.183827)
√

0.785398 − x
,

works even better than (5.2). Formula (5.3) is almost as good as (4.4).

5.1. Corrected critical index

Let us first estimate the critical index from the expression (5.1), not assuming
that we know its value. To this end we have to employ one more coefficient from
(2.2). Then,

(5.4) σ =
2.39749

(0.785398 − x)0.570796
− 1.75194.

To correct the value of index we apply literally the procedure leading to the
expression (3.4), starting with s0 = 0.570796. The following sequence of approx-
imate values for the critical index was found: s2 = 0.470413, s3 = 0.523229,
s4 = 0.553386, s5 = 0.52638, s6 = 0.526343, s7 = 0.513666, s8 = 0.508803,
s9 = 0.514609, s10 = 0.511196, s11 = 0.51180, s12 = 0.458817.

5.2. Corrected threshold

Let us, in addition, estimate the threshold from the expression (5.1), not
assuming that we know its value in advance. To this end we again have to use
the three starting terms from (2.2), σ ≃ 1 + 2x + 2x2. All three unknowns,xc,
α1, α2 may be found explicitly, leading to the following approximant:

(5.5) σ =
3
√

3

2
√

3
4 − x

− 2,

with approximate threshold value of x0 = 3/4. Let us look for the solution in
the same form but with an exact, yet unknown threshold Xc,

(5.6) σ′ =
3
√

3

2
√
Xc − x

− 2.
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From here one can express formally,

(5.7) Xc =
4xσ′(x)2 + 16xσ′(x) + 16x+ 27

4(σ′(x) + 2)2
,

since σ′(x) is also unknown. All we can do is to use for σ′ the series (2.2), so
that instead of a true threshold, we have an effective threshold,

Xc(x) = 3/4 + x3/9 + (2x4)/27 − 0.268791x5 + 0.0164609x6(5.8)

+ 0.108801x7 + 0.0933591x8 − 0.0491905x9 + 0.0306117x10

+ 0.0816431x11 + . . . ,

which should become a true threshold Xc as x → Xc! Moreover, let us apply
resummation procedure to the expansion (5.8) using factor approximants F ∗(x),
and define the sought threshold X∗

c self - consistently,

(5.9) X∗
c =

3

4
+
x3

9
F ∗(X∗

c ),

as we approach the threshold the RHS should become the threshold. Since factor
approximants are defined as F ∗

k for arbitrary number of terms k, we will also
have a sequence of X∗

c,k. For example,

(5.10)
F ∗

2 = (7.92402x + 1)0.0841324,

F ∗
4 = (1 − 0.858374x)1.86127(1.72735x+ 1)1.31087.

Solving (5.9), we obtain X∗
c,2 = 0.823548, X∗

c,4 = 0.770537, X∗
c,6 = 0.778053,

There is no solution in the next even order.
One can also define a sequence of “odd" factor approximants [36], starting

from F1 = (1 + (2x)/3) (where 2/3 comes as the ratio of fourth- and third-order
coefficients in the series (5.8)). The next-order odd approximant,

(5.11) F ∗
3 =

(

2x
3 + 1

)31.0546

(0.425194x + 1)47.1229
,

brings the most accurate value of the threshold, X∗
c,3 = 0.782355, while in the

higher orders, X∗
c,5 = 0.774622, X∗

c,7 = 0.779692. The percentage error achieved
for the last point is equal −0.727%.

6. Concluding remarks

What is the significance of the long expansions in concentration for regular
composites?
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In this paper, we considered three different problems for the regular square
lattice arrangements of ideally conducting cylinders and concluded that a series
(2.2) is good enough to: calculate the position of a threshold for the effective
conductivity, to calculate the value of a superconductivity critical index and to
obtain an accurate crossover expression valid for arbitrary concentrations.

There are strong indications [10] that similar problems for random composites
can be addressed along the same lines, although various techniques based on Padé
approximants employed in the regular case are expected to fail. The obtained
formula (4.2)–(4.3) is valid for all concentrations including touching cylinders,
hence it completely solves the problem of the effective conductivity for the square
array.
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