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Mechanical and electrical fields of piezoelectric curved sensors
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Based on the theory of elasticity, a comprehensive mathematical model is
developed for a piezoelectric bimorph curved bar which is in a closed electrical cir-
cuit. First, the model is verified by considering an actuator under an initial electric
potential, and the numerical results are compared with those of a related study in
the literature. Then, the model is used to obtain the mechanical and electrical fields
of a bimorph curved sensor subjected to a couple at its free end section. Hence, the
bending that causes the generation of electric potential in the sensor is investigated.
The influence of the applied couple on the mechanical and electrical fields in the
curved sensor is examined, and the results are presented in graphical form.
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1. Introduction

Piezoelectric materials are used extensively in microengineering ap-
plications as either actuators or sensors [1]. In reversible sensor behavior, electric
potential is generated in a material that is subjected to a mechanical load (di-
rect effect). However, a piezoelectric material is considered to be actuator since
displacement occurs in response to the application of an initial electric potential
(converse effect) [2]. Generally, the material may be placed on a cantilever [2–4]
or a curved elastic beam [5], depending on the purpose of its use. However, if
a flat piezoelectric material is bonded onto structures that have complex shapes
and uneven surfaces, the sensitivity of the material decreases [2]. Moreover, flat
and curved materials exhibit totally different mechanical and electrical behav-
iors under load [6]. Hence, such behaviors of piezoelectric curved sensors and
actuators should be examined in detail [6].

Bimorph [7–9] and multimorph [10, 11] piezoelectric cantilever sensors and
actuators have been investigated by several researchers. In such investigations,
while the actuators are considered to be subjected to an initial electric potential,
the sensors are under bending moment or shear force. Moreover, mathematical
models to describe the deformation and electrical behaviors also have been devel-
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oped for functionally graded piezoelectric cantilever sensors [12–14] and actua-
tors [13, 15]. In these studies, piezoelectric coefficients are assumed to vary in the
radial direction according to some mathematical functions, such as polynomials,
exponentials, or according to the power laws. On the other hand, there also are
investigations in which curved actuators are taken into consideration. Shi [6]
presented analytical models to describe the bending behavior of both bimorph
and graded curved piezoelectric actuators. Shi assumed that the actuators, which
are poled in the radial direction, are subjected to an electric potential between
the inner and outer surfaces. Shi and Zhang performed a similar analysis in
which the piezoelectric coefficients are assumed to vary in the radial direction
according to a Taylor series expansion [16] and to a second-order polynomial
[17] for a curved actuator under external electric potential. However, there is no
adequate analysis for a piezoelectric curved sensor subjected to mechanical loads
in the literature. In order to fill this gap in the literature, the aim of the present
work is to investigate the behavior of such a sensor subjected to a couple, which
causes pure bending, as a mechanical load.

The purpose of the present study is to develop an analytical solution for
a piezoelectric bimorph curved bar that is more comprehensive than Shi’s model
[6] and to present numerical results for a bimorph curved sensor under pure bend-
ing. The basic equations of the theory of elasticity for a cylindrical coordinate
system have been used to derive the model [18–21]. First, the model is solved for
a bimorph actuator for which an initial electric potential (closed circuit voltage)
is applied to the outer surface, and the results are compared with those of Shi’s
model [6]. Then, the model is used to obtain the mechanical and electrical fields
of a bimorph curved sensor subjected to a couple at its free end section. The
influences of the applied couple on stresses, displacements, and electric potential
have been investigated.

2. Basic equations

The geometry of the bimorph piezoelectric curved bar is presented in Fig. 1.
The bar is considered in a closed electrical circuit [8, 9]. A cylindrical coordinate
system (r, θ, z) is used in the entire analysis. It is assumed that both layers of
the curved bar are polarized along the radial direction r and the direction of
polarization is shown with an arrow in Fig. 1 [22]. It is also presumed that the
two layers of the bar are perfectly joined together. This means that no sliding
occurs on the interface surface between the layers under load. Further, it is as-
sumed that a state of plane stress exists (axial stress components σi

z = 0) and
small deformations are presumed. Here, and in the following equations, script i
denotes the first or second layer of the bar (i = I, II). Because of the cylindrical
symmetry assumption, only radial u and circumferential displacements v depend
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Fig. 1. Geometry of piezoelectric bimorph curved bar on which electrodes are located on the
surfaces r = a and r = b.

on circumferential coordinate θ but other quantities are only a function of radial
coordinate r. Furthermore, this assumption requires that the shear stress τ i

rθ,
the shear strain γi

rθ, the circumferential component of electric displacement vec-
tor Di

θ, and circumferential electric field Ei
θ vanish. The governing constitutive

equations are

εi
θ = S11σ

i
θ + S13σ

i
r + g31iD

i
r,(2.1)

εi
r = S13σ

i
θ + S33σ

i
r + g33D

i
r,(2.2)

Ei
r = −g31iσ

i
θ − g33σ

i
r + ζ33D

i
r,(2.3)

where εi
j denote strains, σi

j are stresses, Di
r are radial electric displacement vec-

tors, Sij are the components of the effective elastic compliance, g31i and g33

are piezoelectric coefficients, and ζ33 is the dielectric permittivity coefficient. It
should be emphasized that, although the piezoelectric coefficients (Type-g) g31i

are assumed to be different in the two layers, the other coefficients (i.e., S11, S13,
S33, g33, and ζ33) are the same in both layers since the dependence of g31i on the
degree of polling is more pronounced than those of the remaining coefficients [14].
The geometric relations read

εi
r =

∂ui

∂r
,(2.4)

εi
θ =

ui

r
+

1

r

∂vi

∂θ
,(2.5)
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γi
rθ =

1

r

∂ui

∂θ
+

∂vi

∂r
−

vi

r
= 0.(2.6)

Furthermore, the relationship between the radial electric field Ei
r and the electric

potential φi requires

(2.7) Ei
r = −

dφi

dr
.

The compatibility equation is

(2.8)
d2εi

θ

dr2
+

2

r

dεi
θ

dr
−

1

r

dεi
r

dr
= 0.

Integrating the compatibility relation (2.8) by parts one finds [20]

(2.9)
d

dr

(

rεi
θ

)

− εi
r = C2i,

where C2i are arbitrary integration constants. The equations of equilibrium for
the principal stresses and electric displacement vectors, in the absence of body
force and body charge, may be expressed as

dσi
r

dr
+

σi
r − σi

θ

r
= 0,(2.10)

1

r

d

dr
(rDi

r) = 0.(2.11)

3. Governing equations

Solution of Eq. (2.11) gives

(3.1) Di
r =

C1i

r
,

where C1i are constants of integration. Keeping Eq. (2.10) in mind and substi-
tuting Eqs. (2.1), (2.2), and (3.1) into Eq. (2.9) give

(3.2) r2S11
d2σi

r

dr2
+ 3rS11

dσi
r

dr
+ (S11 − S33)σ

i
r =

C1ig33

r
+ C2i,

with the solution

(3.3) σi
r = −

C1ig33

S33r
+

C2i

S11 − S33
+ C3ir

−1−S + C4ir
−1+S ,

where C3i and C4i are new integration constants and

(3.4) S =

√

S33

S11
.
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From Eq. (2.10), the circumferential stress component is obtained as

(3.5) σi
θ =

C2i

S11 − S33
− C3iSr−1−S + C4iSr−1+S .

Equations (2.7), (3.1), (3.3), and (3.5) are put into Eq. (2.3) and then solved to
obtain electric potential φ for layer i:

φi = − C1i ln r

(

ζ33 +
g2
33

S33

)

+ C2ir
(g31i + g33)

S11 − S33
(3.6)

− C3ir
−S (g33 − g31iS)

S
+ C4ir

S (g33 + g31iS)

S
+ C5i.

At this point, new integration constants C5i are introduced. For the derivation
of the radial and circumferential displacements, the formulation in Timoshenko
and Goodier [18] is used. Substituting the expressions above into relation (2.4)
and integrating with respect to r, one obtains

(3.7) ui =
C2ir(S13+S33)

S11−S33
+

C3ir
−S(SS13−S33)

S
+

C4ir
S(SS13+S33)

S
+f i

1,

where f i
1 are functions of θ only. Equation (2.5) can be expressed as

(3.8) εi
θr − ui =

∂vi

∂θ
.

Substituting Eqs. (2.1) and (3.7) into Eq. (3.8) and integrating for θ gives

(3.9) vi =

{

C1i

(

g31i −
g33S13

S33

)

+
r−S [C2ir

1+SS + (C3i − C4ir
2S)(S33 − S2S11)]

S

}

θ −

∫

f i
1dθ + f i

2,

where f i
2 is a function that depends only on r. Thus, f i

1 and f i
2 can be obtained

by substituting Eqs. (3.7) and (3.9) into Eq. (2.6):

f i
1 =

C1i(g31iS33 − g33S13)

S33
+ D2i cos θ + D3i sin θ,(3.10)

f i
2 = rD1i.(3.11)

Here, D1i,D2i, and D3i are constants of integrations. Hence,

ui = C1i

(

g31i −
g33S13

S33

)

+ C2ir
(S13 + S33)

S11 − S33
+ C3ir

−S (SS13 − S33)

S
(3.12)

+ C4ir
S (SS13 + S33)

S
+ D2i cos θ + D3i sin θ,

vi = r (D1i + C2iθ) − D2i sin θ + D3i cos θ.(3.13)
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4. Solution for a bimorph piezoelectric curved sensor

To obtain a solution for the bimorph piezoelectric curved sensor, 16 unknown
constants (i.e., Cji and Dki, where i = 1, 2; j = 1, . . . , 5; k = 1, 2, 3) should
be calculated by using boundary and interface conditions. First, the following
interface (mechanical and electrical) conditions are taken into account (for details
see [6]):

DI
r

∣

∣

r=c
= DII

r

∣

∣

r=c
,(4.1)

∂uI

∂θ

∣

∣

∣

∣

r=c,θ=π
2

=
∂uII

∂θ

∣

∣

∣

∣

r=c,θ=π
2

= 0,(4.2)

to obtain

C11 = C12 = C1,(4.3)

D21 = D22 = 0,(4.4)

Besides, as the interface conditions of the displacement components are used

uI
∣

∣

r=c
= uII

∣

∣

r=c
,(4.5)

vI
∣

∣

r=c
= vII

∣

∣

r=c
,(4.6)

the following relations are achived:

D11 = D12 = D1,(4.7)

D31 = D32 = D3.(4.8)

C21 = C22 = C2.(4.9)

Furthermore, Eq. (4.5) also leads to the equality below [6]:

(4.10) C1g311 + C31c
−S (SS13 − S33)

S
+ C41c

S (SS13 + S33)

S

= C1g312 + C32c
−S (SS13 − S33)

S
+ C42c

S (SS13 + S33)

S
.

Hence, the number of undetermined constants has been decreased to 10 (i.e.,
Ci, Cji, and Dk, where i = 1, 2; j = 3, 4, 5; k = 1, 3). For the determination of
these constants, Eq. (4.10) and the following nine non-redundant boundary and
interface conditions are used:

φI
∣

∣

r=a
= 0,(4.11)

φII
∣

∣

r=b
= 0,(4.12)

σI
r

∣

∣

r=a
= 0,(4.13)

σII
r

∣

∣

r=b
= 0,(4.14)
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φI
∣

∣

r=c
= φII

∣

∣

r=c
,(4.15)

σI
r

∣

∣

r=c
= σII

r

∣

∣

r=c
,(4.16)

uI
∣

∣

r=c,θ=π
2

= 0,(4.17)

vI
∣

∣

r=c,θ=π
2

= 0,(4.18)

c
∫

a

σI
θrdr +

b
∫

c

σII
θ rdr = −M.(4.19)

It should be noted that a necessary condition of

(4.20)

c
∫

a

σI
θdr +

∫ b

c
σII

θ dr = 0,

is automatically satisfied. Also note that the unknown constants are determined
numerically.

5. Numerical results

In this section, first, the numerical results of the model for a curved actuator
are verified by comparison with the results of Shi’s study [6]. Then, the results of
the model for the curved sensor are presented in graphical form. In all numerical
results, we select the inner surface radius as a = 16 mm, the outer surface radius
as b = 17.32 mm, and the interface radius as c = 16.66 mm (see Fig. 1) so
that our results could be compared with Shi’s results [6]. Furthermore, PZT-4
is considered to be a piezoelectric material in the treatment; then, the elastic
coefficients are

S11 = 1.082 × 10−11 m2/N,

S13 = −2 × 10−12 m2/N,

S33 = 8.28 × 10−12 m2/N,

piezoelectric coefficients are

g311 = −12 × 10−3 m2/C,

g312 = 12 × 10−3 m2/C,

g33 = 2.6 × 10−2 m2/C,

and dielectric coefficient is ζ33 = 86.92 × 106 m/F [23].
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5.1. Verification of the model

To verify the model, it is solved for a bimorph piezoelectric actuator, and
the results are compared with those of Shi’s solution [6]. To do so, the boundary
conditions (4.12) and (4.19) are changed with
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Fig. 2. Comparison of the response variables in the curved actuator obtained from the

present study and those of Shi’s solution [1]. The bar is subjected to excitation by a closed
circuit electrical voltage (V0 = 100 V), then, φI |r=a = 0 and φII |r=b = V0.
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φII
∣

∣

r=b
= V0,(5.1)

c
∫

a

σI
θrdr +

∫ b

c
σII

θ rdr = 0,(5.2)

while the other mechanical and electrical conditions remain the same as those in
Section 4. Here, V0 denotes an initial electric potential (closed circuit voltage)
applied to the outer surface of the bar. Hence, the piezoelectric bar behaves as� �� �� ��� ������� ��� � � � � �

� �� �� �� ����� �� �� ������� �
� �� �� ��� � � ¡¢£ ���¤�� �� �� ����
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Fig. 3. Distributions of: a) radial stress, b) circumferential stress, c) displacements (at
θ = 0), d) electric potential in the radial coordinate r of the sensor on which φI |r=a = 0 and

φII |r=b = 0 for M = 1 Nm.
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an actuator, not a sensor. The numerical results of our model for the actuator
and those of Shi’s model [6] are compared in Fig. 2. Distributions of the radial
and circumferential stresses in the radial coordinate and the displacements (at
r = c = 16.66 mm) in the circumferential coordinate of the bimorph curved
actuator are plotted in Figs. 2a–2c, respectively, for V0 = 100 V. Furthermore,
the changes in the radial and circumferential displacements at r = c = 16.66 mm
with increasing initial electric potential V0 (up to 100 V) are plotted in Fig. 2d.
In each figure, the dots represent Shi’s results [6], and the solid lines represent
our model. The comparisons show that the solution provided by the present
model agrees perfectly with that of Shi’s model [6].

5.2. Results for the bimorph piezoelectric curved sensor

As discussed in the previous sections, as couple M is applied to the free end of
the piezoelectric bar (see Fig. 1), it behaves as a sensor and produces electricity.
The distributions of radial stress, circumferential stress, radial displacement,
circumferential displacement, and electric potential on the radial coordinate of
the curved sensor (with the dimensions given above) for M = 1 Nm are presented

à áà âà ãäå à æà çèéê ëìíê îïì ëðñäñèé îò  

ä
áâãóëíê ëì ëèí ðê óðôäõ ñóñè uvøù ø ø ú ù ø ú û ø ú ü ø ú ý þ þ ú ù þ ú û þ ú üÿ

� � � � � � � � � � � � � 	 
 � � � � � � � 	 � �
  � 	 � �

Fig. 4. Change in radial and circumferential displacements in the circumferential direction θ
at r = c = 0.01666 m of the sensor for M = 1 Nm.
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in Figs. 3a through 3d, respectively. It is important to remember that the electric
potential is a function only of r but not θ (see Eq. (3.6)), and the distribution in
the radial direction in Fig. 3d proves that an electrical potential difference, which
may be called close circuit electrical voltage, occurs in the sensor in the radial
direction under the specified load. In Fig. 3c, the displacement components are
calculated for θ = 0, which is the free end of the sensor. Under the same load,
the changes in the radial and circumferential displacements in circumferential
direction θ at constant interface radius (r = c = 0.01666 m) are plotted in Fig. 4.

� � �� � �� � ��� � �� �� �� ���� ��� � � � � �
� � �� � �� � ��� ! �" #$ �%##�&� �

' � �' � �' ( ��( �)! �)*+, %�%-$! �" #$ �%##�
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( � �( � �-$! �" ! #>" �)%+%-$ #�  
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Fig. 5. Distributions of: a) radial stress, b) circumferential stress, c) displacements (at

θ = 0), and d) electric potential in the radial coordinate of the sensor on which φI |r=a = 0
and φII |r=b = 0 for M = 10 Nm.
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Fig. 6. Change in the maximum absolute value of the electric potential (V ) generated across

the bar a ≤ r ≤ b on which φI |r=a = 0 and φII |r=b = 0, as M increases.

As seen in the figure, these infinitesimal deformation components decrease as θ
approaches π/2, and they are equal to zero at the fixed end of the sensor (see also
Fig. 1). The response variables for M = 10 Nm are presented in Fig. 5. It should
be emphasized that, while the maximum absolute value of the electric potential
generated in the sensor is around 3.96 V, which occurs on r = 0.01698 m for
M = 1 Nm (see Fig. 3d), it is around 39.6 V at the same radial coordinate but
for M = 10 Nm (see Fig. 5d). These results indicate that, when the couple is
increased tenfold, the response variables also increase by the same rate. This
observation proves that a linear relationship exists between the couple and the
response variables. To simulate this relationship, the change in the maximum
absolute value of the electric potential across the bar a ≤ r ≤ b with increasing
M is presented in Fig. 6.

6. Concluding remarks

Based on the theory of elasticity, an analytical model is presented for the
mechanical and electrical fields of a piezoelectric bimorph curved bar which is in
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a closed electrical circuit. The bar is considered first as an actuator by selecting
the appropriate boundary conditions, and the accuracy of our model is verified
by comparing our results with the results obtained Shi’s model [6]. Hence, the
boundary conditions are set to obtain a distribution of stresses, displacements,
and electric potential in a bimorph curved sensor subjected to a couple at its
free end, and numerical results are obtained for PZT-4. The results show that
the electric potential generated in the sensor increased at the same rate as the
applied moment. The model may be used for any curved actuators and sensors,
depending on the boundary conditions with different dimensions. Hence, the
model and the results may serve as a basis for producers who use piezoelectric
materials bonded to complex structures with curved surfaces.
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