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Brief Note

Existence of zero-group velocity modes

in an incompressible plate
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Zero-group velocity (ZGV) Lamb modes are studied in an incompressible or-
thotropic plate. The existence of such modes critically depends on the anisotropy
parameter a = (c11 + c22 − 2c12 − 4c66)/c66. With materials having a > −1, none of
the modes possesses any ZGV points and every mode has such a point if a < −1.
Several modes have multiple ZGV points.
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1. Introduction

Lamb waves are an important tool for non-destructive testing of materials
[1]. This is done by studying the shape of Lamb modes generated by a pertur-
bation of the surface of a mechanical structure, see for example [2]. In a plate,
free of defects, the phase speed of each mode, as a function of wave number,
exhibits a plateau region and asymptotically approaches a fixed speed [3]. How-
ever in the frequency-wave number spectrum, certain modes are anomalous in
the sense that, over a narrow frequency interval, the group velocity is directed
opposite to the phase velocity. The group velocity vanishes at a point where
the dispersion curve undergoes a change in the sign of its slope. Such a point
is called a zero-group velocity (ZGV) point. The existence of a ZGV mode was
first pointed out by Tolstoy and Usdin [4] in 1957 and these modes have
been investigated theoretically and experimentally by several authors [5–12].
Recently Hussain and Ahmad [13] considered ZGV points in the spectrum of
Lamb modes in a compressible orthotropic plate. It was found that, in addition
to modes with a single ZGV point, a large number of modes exist with multiple
such points.

Several problems in elasticity become relatively easy when the material is
assumed to be incompressible. This happens because, in this case, a displacement
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potential function can be introduced [14, 15]. This assumption can be justified in
case of materials such as Kraton polymer, thermoplastic elastomers and rubber
composites [16]. Rogerson [17] and Ogden and Roxburgh [18] have discussed
the dispersion relation for incompressible elastic plate but they did not consider
ZGV Lamb modes.

In the present paper, we will consider the effect of the incompressibility con-
straint on the ZGV modes. Let us define a parameter of elastic anisotropy

(1.1) a =
c11 + c22 − 2c12 − 4c66

c66
.

This parameter satisfies the constraint

(1.2) a ≥ −4.

We shall consider symmetric Lamb modes in an incompressible orthotropic
plate and show that the numerical value of the anisotropy parameter plays a crit-
ical role in the existence, or otherwise, of ZGV points in the spectrum of a ma-
terial. We shall establish that

(i) No ZGV mode exists if a > −1.
(ii) Every mode, with the possible exception of the lowest few modes, is a ZGV

mode if a < −1.
The above results are established analytically and are borne out by dispersion

curves. These curves also exhibit multiple ZGV points for materials with the
anisotropy parameter in the range −4 < a < −3. Since a = 0 for isotropic
as well as transversely isotropic materials, it follows that the incompressibility
constraint will preclude anomalous modes in such materials.

2. ZGV Lamb modes

The symmetric dispersion relation for the waves propagating in incompress-
ible elastic plates, having thickness 2h, is given by [17, 18]

(2.1)
tan(s1kh)

tan(s2kh)
=

s1(1 − s2
2)

2

s2(1 − s2
1)

2
,

where s2
1 and s2

2 are roots of the following equation

(2.2) s4 +

(

a + 2 − ρc2

c66

)

s2 +

(

1 − ρc2

c66

)

= 0.

If we denote dimensionless wave number kh by x and c/
√

c66/ρ by y, then
Eq. (2.1) becomes

(2.3)
tan(s1x)

tan(s2x)
=

s1(1 − s2
2)

2

s2(1 − s2
1)

2
,
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with s1 and s2 given by

s1 =

√

−(a + 2 − y2) −
√

(a + 2 − y2)2 − 4(1 − y2)

2
,(2.4)

s2 =

√

−(a + 2 − y2) +
√

(a + 2 − y2)2 − 4(1 − y2)

2
.(2.5)

The ZGV modes manifest themselves in the ω − c plane. Let cT =
√

c66/ρ
denote the shear velocity of the wave and we define the dimensionless variable

(2.6) u =
ωh

√

c66/ρ
= yx.

In terms of u and y Eq. (2.3) becomes

(2.7)
tan(s1u/y)

tan(s2u/y)
=

s1(1 − s2
2)

2

s2(1 − s2
1)

2
.

Let Sn, n = 1, 2, . . . denote the n-th mode in the spectrum. To check whether
or not a mode is anomalous, we look at the slope of each mode for large as well
as small y.

In order to examine slope of the mode Sn we rewrite Eq. (2.7) in the form

(2.8) f(u, y) = tan(s1u/y)s2(1 − s2
1)

2 − tan(s2u/y)s1(1 − s2
2)

2 = 0.

For large y,

s1 ≃ ι̇,(2.9)

s2 ≃ y

(

1 − a + 1

2y2

)

,(2.10)

and Eq. (2.8) becomes

(2.11) tan

(

un

(

1 − a + 1

2y2

))

≃ 0.

We will determine the slope dy/du by using the following formula

(2.12)
dy

du
= −∂f/∂u

∂f/∂y
.

The partial derivatives can be approximated, for large y, as follows

∂f

∂u
≃ ι̇(4 − y4),(2.13)

∂f

∂y
≃ −ι̇un(a + 1)y.(2.14)
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Using these expressions we have, for large y,

(2.15)
dy

du
≃ − y3

un(a + 1)
, n = 1, 2, . . . .

If a + 1 > 0, then

(2.16)
dy

du
< 0 for Sn, n ≥ 1.

For a + 1 < 0, we have

(2.17)
dy

du
> 0 for Sn, n ≥ 1.

Now we will estimate the slope when y approaches the line y = 1 from above.
First consider the case when a + 1 < 0. Let b = −(a + 1) > 0 and y2 = 1 + ǫ2,
where ǫ is a small positive number. Then

(2.18)

s2
1 =

b + ǫ2 −
√

(b + ǫ2)2 + 4ǫ2

2
,

s2
1 ≃ 1

2

[

b + ǫ2 − b

√

(

1 + ǫ2
2b + 4

b2

) ]

,

s2
1 ≃ −ǫ2

b
,

where we have ignored terms of order ǫ3 or higher. Also

(2.19) s2
2 ≃ b.

With s1 = ι̇ǫ√
b
, s2 =

√
b Eq. (2.8) becomes

(2.20)
tanh( ǫu√

b
)

tan(
√

bu)
=

ǫ(1 − b)2

b(1 + ǫ2

b
)2

,

or

(2.21) tanh

(

ǫu√
b

)

≃ (1 − b)2

b
tan(

√
bu)ǫ.

The partial derivatives can be approximated, in this case, as follows

∂f

∂u
≃ −ι̇ǫ

√
b

(

(1−b)2√
b

+
u2

√
b

(1−b)2
− 1√

b

)

,(2.22)

∂f

∂y
≃ ι̇ǫu

b2(1−b)2
(2.23)

×[(1+b)(1−b)2−(1−b)4(1+b−b2)+8b(1−b)−b(a+3)u2].
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Using these expressions we have, for y → 1+,

(2.24)
dy

du
≃ b3[(b−2)(1−b)2+u2

n]

un[(1+b)(1−b)2−(1−b)4(1+b−b2)+8b(1−b)−b(a+3)u2
n]

,

for n = 1, 2, . . . . From Eq. (2.24), it is clear that when a + 3 > 0 and y → 1+,
dy/du < 0 for sufficiently large un.

Next let 1 + a > 0. In this case

s2
1 ≃ −(a + 1),(2.25)

s2
2 ≃ ǫ2

a + 1
.(2.26)

Equation (2.8) becomes

(2.27)
tanh(

√
a + 1u)

tan( ǫ√
a+1

u)
≃ a + 1

ǫ

(1 − ǫ2

1+a
)2

(a + 2)2
.

The above equation was considered by Ahmad [3]. All modes, except S0,
approach the line y = 1 with negative slope.

Thus we have established that, in case of materials with a+1 > 0, the modes
maintain their negative slope from their inception when y → ∞ to the eventual
non-oscillation limit when y → 1+. These modes are free of anomalous behavior
and do not possess any ZGV points.

However for materials with a + 1 < 0 and a + 3 > 0 i. e. −3 < a < −1,
Eq. (2.15) indicates that the slope is positive for large y while Eq. (2.24) shows
that, for sufficiently large un, the slope becomes negative when y → 1+. This
change in the sign of slope leads to at least one ZGV point for each mode in the
spectrum, with the possible exception of the first few modes.

The case −4 < a < −3 still needs to be sorted out. For this purpose, we
calculate the slope for that value of y, say y0, at which the lowest mode, S0, is
born. To find y0, let u → 0 in Eq. (2.7). This leads to

(2.28) (1 − s2
1)

2 = (1 − s2
2)

2,

or

(2.29) s2
1 + s2

2 = 2,

is the only acceptable solution of Eq. (2.7) when −4 < a < −3. From Eq. (2.2),

(2.30) s2
1 + s2

2 = −(a + 2 − y2),

hence

(2.31) y2
0 = a + 4,
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or

(2.32) y0 =
√

a + 4.

For the range of a under consideration, 0 < y0 < 1. The lowest mode starts
above or below the line y = 1 according as a + 3 is positive or negative.

The derivative is given by the following expression:

(2.33)
dy

du
|y=y0

=
4s2

1(a + 4)s2 sin2(s2un/y0)

2uns2(a + 2)
√

a + 4 cos2(s2un/y0) + (a + 4)(3a + 10) sin(s2un/y0)
,

for n = 1, 2, . . . .
When y = y0, s1, s2 respectively are found from Eqs (2.4) and (2.5) as

s1 =
√

1 − y0, s2 =
√

1 + y0.

Since y0 does not equal zero or 1, vanishing of cos(s2un/y0) is ruled out by Eq.
(2.7). Also a + 2 < 0, hence

(2.34)
dy

du

∣

∣

∣

∣

y=y0

< 0,

for sufficiently large un. Thus modes will undergo a change of sign and each of
them will possess a ZGV point.

We have established the result that, with the possible exception of first few
modes, no mode will be anomalous if a+1 > 0 and every mode will be anomalous
if a + 1 < 0.

Table 1 shows values of anisotropy parameter a for a few orthotropic mate-
rials.

Table 1. Value of the anisotropy parameter

Material Value of anisotropy parameter a Source

Iodic acid −0.4620 20

Barium sodium niobate −0.3421 20

Lead chloride 4.5625 21

Gallium −1.1166 21

Cadmium formate −2.4894 21

Forsterite 0.8952 21

Rubidium sulfate 0.4043 21

Calcium formate −3.1489 21
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We have plotted the dispersion curves, using the technique of Honarvar

et al. [19].
Figure 1 exhibits the dispersion curves for barium sodium niobate which has

a = −0.3421.

Fig. 1. Symmetric Lamb modes for an incompressible orthotropic barium sodium niobate
material with a = −0.3421 in (ω, c) plane. No mode is anomalous.

Figure 2 depicts the anomalous modes S2, S3, S4, S5 for the spectrum of
calcium formate which has a = −3.1489.

Fig. 2. Symmetric Lamb modes for an incompressible orthotropic calcium formate material
with a = −3.1489 in (ω, c) plane. All modes are anomalous except S0 and S1.

The Lamb modes, having three ZGV points, S6, S7, S8, S9, S10 for calcium
formate are plotted in Figure 3.
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Fig. 3. Symmetric Lamb modes for an incompressible orthotropic calcium formate material
with a = −3.1489 in (ω, c) plane.

In Figure 4, we have plotted first seven Lamb modes for calcium formate in
(k, ω) plane.
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Fig. 4. First 7 symmetric Lamb mode for an incompressible orthotropic calcium formate
material with a = −3.1489 in (k, ω) plane.

One can easily observe that all modes, except S0 and S1, have at least one
ZGV point, but S6 is the first mode which has three ZGV points. The modes S4

and S5 also seem to have multiple ZGV points but a closer inspection does not
bear this out. This becomes clear in Fig. 5, where we have focused on that part
of S4 where the second and third ZGV points appear to exist. However a similar
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Fig. 5. The S4 symmetric Lamb mode for an incompressible orthotropic calcium formate
material in (k, ω) plane.
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Fig. 6. The S6 symmetric Lamb mode with second and third ZGV points for an
incompressible orthotropic calcium formate material in (k, ω) plane.

focus on the corresponding domain of S6 in Fig. 6 clearly indicates the existence
of the second and third ZGV points.
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